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Inelastic pulsed neutron scattering measurements on YBa2Cu3O6.95 single crystals indicate that the sample
has a distincta-b plane anisotropy in the oxygen vibrations. The Cu-O bond-stretching-type phonons, which
are suspected to interact strongly with charge, are simultaneously observed along thea andb directions due to
a 7-meV splitting arising from the orthorhombicity, even though the sample is twinned. The bond-stretching
LO branch with the polarization alonga ~perpendicular to the chain! loses intensity beyond the middle of the
zone, indicating branch splitting as seen in doped nickelates, with the second branch being located at 10 meV
below. The mode alongb has a continuous dispersion. These modes show temperature dependence, which
parallels that of superconductive order parameter, suggesting significant involvement of phonons in the super-
conductivity of this compound.

DOI: 10.1103/PhysRevB.67.014517 PACS number~s!: 74.25.Kc, 63.20.Kr, 71.30.1h, 74.20.Mn

I. INTRODUCTION

For a long time the majority opinion on the mechanism of
the high-temperature superconductivity~HTSC! has been
that it occurs via a purely electronic mechanism involving
spin excitations, and phonons are either irrelevant or even
harmful to HTSC.1 However, in recent years evidence has
been building that the lattice may play a nontrivial role in the
transport and superconducting properties of HTSC cuprates.2

In particular, the high-energy Cu-O bond-stretching modes
have their frequencies strongly and abruptly reduced when
crossing from the insulating to the metallic phase as a func-
tion of doping.3–6 Photoemission also suggests strong
electron-phonon interaction for these modes.7,8 The compen-
dium of measurements seem to support the presence of an
anisotropic, locally inhomogeneous charge distribution,
which may take the form of the stripes.9,10 The present paper
describes the results of inelastic neutron-scattering measure-
ments on YBa2Cu3O6.95 ~YBCO! carried out at a pulsed neu-
tron source. We show that the dispersion of Cu-O bond-
stretching phonons in orthorhombic YBCO are very different
alonga andb directions, with the dispersion of the LO mode
along a splitting into two, high-energy and low-energy
branches. Thea axis is also the direction of the modulation
wave vector for incommensurate spin fluctuations observed
in detwinned single crystals11 establishing a connection be-
tween the Cu-O bond-stretching modes and the stripe struc-
ture. We also show that the inelastic neutron-scattering inten-
sity from phonons changes with temperature, in a similar
manner as the superconducting order parameter does. These
results suggest strong involvement of phonons in the super-

conductivity of this compound. Parts of this work have
briefly been reported elsewhere.12–14

II. EXPERIMENTAL RESULTS

Inelastic neutron-scattering measurements were per-
formed on YBa2Cu3O6.95 crystals by neutron time-of-flight
spectroscopy on the MAPS spectrometer at the ISIS facility
of Rutherford Appleton Laboratory with an incident energy
of about 120 meV. The energy resolution was chosen to be
about 4% of the final energy, or 5 meV for elastic scattering
and 3 meV at the energy transfer of 60 meV. With MAPS it
is possible to determine the dynamical structure factor
S(Q,v), whereQ is the momentum transfer and\v is the
energy transfer, in three dimensions~energy and two mo-
mentum transfer axes!. Using the Mslice program by Coldea
~ISIS! the data were first projected on various two-
dimensional slices to inspect the overall picture, and then the
phonon dispersions and scattering intensities were deter-
mined from the constant-Q energy cuts by peak fitting after
removing the background including the multiphonon contri-
bution.

The YBa2Cu3O6.95 sample prepared at the University of
Washington~sample 1! was a disk-shaped crystal weighing
105 grams withTC593 K. The incident energy of 117.5
meV was used for the measurement of this sample. The
sample was placed in a closed-cycle refrigerator~displex!
with one of the twinneda/b axis and thec axis on the hori-
zontal plane, and the othera/b axis in the vertical position.
The c axis was rotated 41° away from the incident-beam
direction towards the high-angle detector bank on the hori-
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zontal plane. In the following we use the (h, k, l ) notation to
expressQ with the units of the reciprocal lattice vectors in
the a/b in plane,a/b vertical, andc directions, respectively.
The vertical angle range~65°! of the high-angle detector
bank limited the coverage in thek direction to only the cen-
tral half of the Brillouin zone, i.e.,k up to 60.25. Another
set of data were taken with thec axis parallel to the incident
neutron beam. This setting results in a considerablec axis
component ofQ, and was used to assess the apical-oxygen
modes. Detailed analysis of this set of data will be reported
elsewhere. A separate measurement was made with a
YBa2Cu3O6.95 sample grown at ISTEC~sample 2!, which
consisted of 30 aligned single crystals weighing in total of
31.7 g.15 In this measurement the sample was rotated around
the c axis by 4.8° to cover the entire half of the Brillouin
zone,k50 –0.5. Also, a slightly different incident energy of
124.7 meV was chosen to cover theQ2v space that fell on
the gaps of the detector banks in the first measurement. Both
samples were fully twinned. Detwinned single crystals of
sufficient quantity for phonon measurements with MAPS are
not presently available. While sample 1, grown with the flux
method, had about 10% of a nonstoichiometric impurity
phase~the so-called green phase!, sample 2, grown from the
melt, had almost none of this phase. As far as the phonon
dispersions are concerned there was no discernible major dif-
ference between the two samples. Additional measurements
were performed on sample 1 by triple-axis spectroscopy with
the HB-2 and HB-3 instruments at the high-flux isotope re-
actor ~HFIR! at the Oak Ridge National Laboratory. For the
triple-axis measurements the final energy was fixed at 14.87
meV and the sample-to-detector horizontal collimation ele-
ments were 488-608-408-1208.

We focused our attention on the Cu-O bond-stretching-
type phonons propagating along thea/b axes in the twinned
crystal. The high-energy bond-stretching phonons of interest
are oxygen modes mainly polarized in the CuO2 plane, as
shown schematically in Fig. 1. Since modulation of the Cu-O

distance results in charge transfer between Cu and O, this
mode is expected to show strong electron-phonon
coupling.16–18 YBa2Cu3O6.95 has an orthorhombic structure
with the CuO chains running along theb direction. In the
reciprocal spacea direction is labeledS and b direction D
according to standard notation.19 Previous measurements
have shown that the LO modes have strongly reduced fre-
quencies compared to the insulating parent compound
YBa2Cu3O6 in the outer half of the Brillouin zone alonga/b
direction.3,4 Due to the presence of the Cu-O chains, some
degree of anisotropy is expected in the lattice dynamics in
the CuO2 plane from orthorhombicity. At the Brillouin-zone
center, Raman scattering on detwinned single crystals has
identified that theB2g (a axis polarization! andB3g (b axis!
bond-stretching modes are split by 7 meV.20 We note that the
displacements of the chain oxygen modes parallel to the
planes are not Raman active, except perhaps weakly due to
disorder, therefore the above mode assignments must be cor-
rect. This splitting is also confirmed by neutron scattering on
twinned crystals21 and the results presented here.

Figure 2 shows theh-v cut around the reciprocal lattice
point Q5(h,k,l )5(3,0,l ) ~in the units for theQx and Qy
axes of the provisional tetragonal reciprocal lattice constant
of 2p/ā51.629 Å21, where ā is the average betweena
53.831 Å andb53.895 Å of the orthorhombic lattice! for
sample 1 atT5110 K. The data were integrated alongk
from 20.1 to 0.1. Thel index changes with energy, because
only a three-dimensional surface of the four-dimensional
space is determined by one measurement. In the present set-
ting thec axis was rotated by 41° so that the energy transfer
\v574 meV corresponds toQ5(3,0,1.8) for sample 2.
Sincec/d;3.6, whered is the spacing between the double
CuO2 layers, only theu modes that are symmetric for the
two layers are seen withl;0 (;50 meV), while only theg
modes that are antisymmetric are seen atl;1.8
(;70 meV). In this paper thel dependence is neglected and
we use the two-dimensional notation (h, k) below for sim-

FIG. 1. Schematics of atomic displacement
for each phonon mode at the zone boundary, with
a black circle denoting Cu, a white circle O, and
a gray circle Y and Ba. The Cu-O chain is at the
top of each figure, and one of the two CuO2

planes is shown below. A dark arrow attached to
an atom indicates a primary polarization direc-
tion, a gray arrow indicates a secondary polariza-
tion which is phase shifted byp, and a thin ar-
row in ~d! indicates a polarization of a transerve
mode.
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plicity, since earlier data3–6 and our measurements made at
HFIR suggested that thel dependence is weak due to the
layered nature of the compound.22 The data presented in Fig.
2 are corrected for the background including multiphonon
scattering,Q2/v, thermal population, the Debye-Waller fac-
tor, and k8/k phase-space factor, wherek and k8 are the
initial and final neutron wave numbers.

In the slice presented in Fig. 2 mainly the LO phonons
along the twinneda/b axis are observed, since the neutron-
scattering intensity is proportional to (Q•e)2, wheree is the
phonon polarization. In Fig. 2 two phonon branches are seen
near~3, 0! and 70 meV. One has the dispersion maximum at
72 meV around~3.03, 0!, while the other at 66 meV at~2.97,
0!. The slight misalignment of the maxima of the dispersion
with the nominal zone center~3, 0! must be due to the fact
thata is smaller thanb by 2%. Thus we find that the 72-meV
mode propagates alongS (a direction! while the 66-meV
mode propagates alongD. This assignment agrees with the
Raman result at the zone center which identified these modes
to be theB2g and B3g modes, respectively.20 Thus we will
use 2p/a and 2p/b as the units of the indices below, unless
noted otherwise. The phonon splitting due to orthorhombic-
ity is consistent with the higher-frequency mode having a
shorter unit-cell distance.

The large frequency offset of theD and S branches al-
lows us to follow each mode independently, in spite of the
fact that the crystal is twinned. A typical energy cut, the
intensity at a fixed (h, k) as a function of energy, is given in
Fig. 3. The dispersion and the scattering intensity of these
modes were determined by fitting Gaussian peaks to the
energy-cut data in the range 2.5,h,3.5. Since a large num-
ber of peaks, up to 7, are involved, we used the data from
other parts of theQ space as well as another data set as a

guide. First the dispersion of the Cu-O bond-bending mode
was determined from the cuts taken in the rangeh,2.5 or
3.5,h, where the bond-stretching mode intensity is reduced
and barely seen. Similarly the apical-oxygen modes were
determined from the second set of data obtained with thec
axis parallel to the incident beam (Q50).

In the fitting procedure the peak width was fixed to the
values calculated for resolution, and also the number of
peaks was fixed~seven in the range seen!. In the range 2.5
,h,3.5 small peaks due to the apical-oxygen modes were
compared to the dispersion previously determined from the

FIG. 2. ~Color! S(Q,v) of
YBa2Cu3O6.95 at T5110 K deter-
mined by the MAPS. The horizon-

tal axis is theh index, with ā*

52p/ā51.629 Å21. Data were
integrated fromk520.1 to 0.1,
and l changes with energy as dis-
cussed in the text. White gaps are
due to gaps in the detector cover-
age. Data were binned to a mesh
grid with Dh50.025 and DE
50.5 meV, and then smoothed
once by weighted 333 adjacent
averaging.

FIG. 3. A constant-Q cut atQ5(2.85,0) as a function of energy.
Data were integrated fork from 20.1 to 0.1,h from 2.8 to 2.9. The
intensity was fit with multiple Gaussian peaks with the width vary-
ing with energy reflecting the energy-dependent resolution. The
subpeak at 61 meV is due to thec-axis apical-oxygen mode.
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data with Q50, and their positions were corrected when
necessary. The continuity of the peak fitting results as a func-
tion of q indicates a success of fitting, in spite of a relatively
large number of peaks to fit.

As shown in the left panel of Fig. 4 theS LO branch
disperses from 72 meV to 67 meV near the~0.25, 0! point,
but beyond this point the intensity rapidly decreases. TheD
LO branch disperses from 66 meV down to 57 meV near the
zone boundary, where it mixes with an intense flat mode
around 55 meV. Mode assignment is difficult in the area near
the zone boundary at 55–57 meV, but since the 57 meV
mode is more symmetric around~2.97, 0! than ~3.03, 0! we
tentatively identify this mode as theD branch. The 55-meV
branch is identified as the secondS LO branch as we discuss
below. In addition two weak branches are present in the en-
ergy ranges of about 70 meV and 61 meV, which we identify
as the IR-active and Raman-active apical-oxygen modes, re-
spectively, polarized alongc. The basis of this identification
is the second set of data taken with thec axis parallel to the
incident beam, in which thec axis modes are more clearly
seen. These data will be discussed elsewhere. Finally the
oxygen bond-bending mode is observed in the energy range
of 40–55 meV. These branches were clearly separated from

the CuO2planeD andS branches except in the close vicinity
of the zone boundary (0.47,h,0.53). The intensity of this
mode at the zone boundary was estimated by extrapolation,
and was separated from that of the bond-stretching
mode.

The intensities of theD and S LO branches atT
5110 K, determined from the area under the fitted peak, are
given in Fig. 5 fromh52.0 to 4.0. For theS LO branch only
the intensity of the high-energy mode~65–72 meV! is plot-
ted. Since it is difficult to separate the intensities of theD
andS modes at 55–57 meV, in Fig. 5 the sum of the inten-
sities for the two modes is shown. The figure also shows the
intensity of the Cu-O bond-bending mode, which depends on
q only weakly. Thus the separation of the intensity of this
mode from those of the bond-stretching modes is not diffi-
cult. The Cu-O bond-stretching modes are composed mostly
of oxygen displacements with a small contribution from Cu
displacements which are opposite in direction to oxygen dis-
placements. The intensity~structure factor! varies with Q,
since atQ5(3,0) the oxygen and copper displacements add
themselves to the structure factor, while atQ5(4,0) and~2,

FIG. 4. Phonon dispersion of the Cu-O bond stretching and
Cu-O bond-bending modes in YBa2Cu3O6.95. The left side shows
the LO phonons and the right side the TO phonons. Small symbols
indicate low intensity. The mode around 70 meV is tentatively as-
signed to the apical-oxygen mode. Note that the units of 2p/a were
used for theS modes, and 2p/b for the D modes.

FIG. 5. Intensity of the Cu-O bond-stretching LO phonons for
YBa2Cu3O6.95 obtained by peak fitting, atT5110 K. The solid line
indicates the structure factor for a shell model for theS mode.
Since it is difficult to separate the low-energyS LO branch at 55
meV from theD LO branch near the zone boundary, the total in-
tensity for the low-energyS LO branch and theD LO branch is
shown.
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0! they subtract from each other. While the Cu displacement
is small, the neutron-scattering length of Cu is nearly twice
as much as that of oxygen, resulting in significant decrease in
intensity going from~3, 0! to ~4, 0! or ~2, 0!.

The shell model by Kresset al.23 predicts vanishing in-
tensities at~2, 0! and~4, 0!, which disagrees with the obser-
vation. The model was then modified by reducing the ampli-
tude of copper by 50% to fit the amplitudes at these points.
This modification does not change the intensity substantially
otherwise, and predicts a smoothly varying intensity shown
also in Fig. 5. The model gives almost equal intensities for
theS mode and theD mode as shown in Fig. 6~a!, while the
intensity determined from the data is highly anisotropic. It is

too low or too high compared to the model intensity for the
S mode and theD mode, respectively, in the vicinity of the
zone boundary. The loss of the intensity of theS mode may
be explained by a model, for instance, if the amplitude of
displacement for yttrium is artificially increased by a factor
of 5, as shown in Fig. 6~b!. However, to explain the increase
in intensity for theD mode yttrium has to move in the op-
posite direction with respect to oxygen for theD mode@Fig.
6~b!#. Since yttrium is farthest from the chain it is difficult to
believe that the motion of yttrium has to be opposite alonga
andb directions. Also at such a high frequencies the ampli-
tude of yttrium compared to that of oxygen cannot be so
large. In addition the calculated curves in Fig. 6~b! have
nodes ath50.25 and 0.75, while the data do not show such
nodes. Thus it appears to be difficult to explain the observed
intensity based only upon the phonon structure factor.

An alternative explanation is that the second, low-energy
branch of theS mode exists at 55-meV near the zone bound-
ary as indicated in Fig. 4, and a significant portion of the
spectral intensity of the high-energy mode is transferred to
this low-energy mode. Similar mode splitting of the bond-
stretching LO mode has been observed for La1.85Sr0.15CuO4
~Ref. 5! and also for La1.69Sr0.31NiO4.24

The in-plane anisotropy was noted also in a recent paper
by Pintschovius et al. for YBa2Cu3O6.6 @O~6.6!#
composition.25 They, however, did not consider the possibil-
ity of branch splitting of theS mode. Our previous study on
the composition dependence of the dispersion shows that the
intensity of the low-energy branch increases with hole
doping,12 so that for O~6.6! the intensity transfer must be
only about a half of what is observed for O~6.95! here. For
this reason it is not surprising that the authors of Ref. 25 did
not consider this possibility, since it is more difficult to see
the intensity transfer for O~6.6!.

Thus the dispersion of the LO modes is very anisotropic
even within the CuO2 plane, with theS mode splitting into
two branches. Anisotropy is less apparent in the transverse
~TO! modes emanating from theB2g andB3g phonons. The
dispersions of the transverse modes were determined by the
k-v cut near the~3, 0! point. In the k-v cut the phonon

FIG. 7. ~Color! The constant
energy cut at\v564 meV ~inte-
grated from 63 to 65 meV! show-
ing a ring around the zone center,
suggesting that the TO of theS
branch and the LO of theD
branch have a similar dispersion.

FIG. 6. ~a! Intensity of the Cu-O bond-stretching LO phonons
calculated for a shell model alonga and b directions,23 ~b! calcu-
lated intensity with the amplitude of yttrium displacement artifi-
cially increased by a factor of 5, with the displacement parallel or
antiparallel to oxygen.
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momentum,q5Q2K , whereK is the reciprocal lattice vec-
tor, is nearly perpendicular toQ. Thus mainly transverse
phonons are seen in thek-v cut. Because the result for
sample 1 covered only up to aboutk;60.25, the data for
the outer half of the Brillouin zone were obtained only for
sample 2 which was rotated around thec axis by 4.8° to
cover a half of the Brillouin zone,k50 –0.5. The dispersion
of the transverse modes thus determined is shown in the
right-hand side of Fig. 4. The transverse mode alongD ~with
polarization along thea direction! remains dispersionless at
72 meV, while the transverse mode alongS disperses more,

from 66 meV at the zone center to 64 meV atk50.25, and
up to this point the dispersion of the TO mode is similar to
that of the LO mode. Indeed the constant-energy slice at 64
meV ~Fig. 7! shows a ring of high intensity, suggesting that
the dispersion is similar for the both. Beyondk50.25 theS
TO mode is also nearly dispersionless. Thek dependence of
the intensity is very similar for theD andS modes as shown
in Fig. 8. It is important to note that theS TO branch, unlike
the S LO branch, does not split into two.

The dispersions of the bond-stretching phonon branches
appeared to show no clearly identifiable temperature depen-
dence. But the scattering intensity was found to show signifi-
cant changes with temperature, beyond what is expected for
thermal excitation. This is shown in Fig. 9 as the difference
in S(Q,v), in the units of 2p/a, between 7 K and 110 K for
sample 1 after the correction for the Bose-Einstein factor.
Note that some strong intensities near the edges of the detec-
tor banks are artifacts due to the edge shadowing. A very
similar result was obtained for sample 2, and with the triple-
axis spectrometer at HFIR for sample 1~Fig. 10!.26 There is
a transfer of the neutron-scattering intensity from the mid-
energy range 60–68 meV to the high-energy range~70–73
meV! and the low-energy range~50–60 meV!. In particular
the increase in the intensity of the TO mode in the low-
energy range is nearly dispersionless around 60 meV, but that
of the LO mode takes place in the band that spans from
around 60 meV at the zone center to 50 meV at the zone
edge. This band parallels the dispersion of theb-axis LO
mode,D mode. The mirror symmetry plane of this band for
the LO mode is slightly belowh53.0 in the units of 2p/ā,
which identifies this band with theD mode. Indeed the loss
of intensity occurs most conspicuously from thev –Q range
for theb-axis polarizedD LO andS TO modes. Furthermore

FIG. 8. The intensity of the in-planeD andS TO modes.

FIG. 9. ~Color! Difference in
S(Q,v) for YBa2Cu3O6.95 be-
tween T57 K and 110 K, S(T
5110 K)2S(T57 K), for the
v-h slice at k50, ~integrated
from k520.1 to 0.1, left! and the
v-k slice at h52.97 ~integrated
from h52.87 to 3.07, right!. The

units of 2p/ā were used forh and
k in this plot and the data were
smoothed four times. As tempera-
ture is reduced the intensity is
transferred from the energy range
60–70 meV to the energy ranges
above and below.
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thev-k slice for the TO mode shows a larger change when it
is integrated fromh52.87 to 3.07 (S TO! rather than from
h52.93 to 3.13 (D TO!. For these reasons we tentatively
conclude a part of the spectral weight of theb-axis polarized
D LO andS TO branches is transferred to this new branch as
the temperature is lowered. The newD LO andS TO branch
is uniformly softened by about 6 meV compared to the origi-
nal branch. However, this conclusion needs to be confirmed
by a measurement with an untwinned sample.

The fraction of the transferred intensity is about
20–25 %, judged from the intensity change. In order to de-
termine the temperature dependence of this transfer in the
spectral weight we measuredS(Q,v) at Q5(3.25,0,0) for
sample 1 with the triple-axis spectrometer at HFIR as a func-
tion of temperature, as shown in Fig. 11. It is clear that as
temperature is lowered below 100 K the intensity in the
range 60–65 meV is decreased, while that in the range
51–55 meV is increased. The difference in the average in-
tensity between the range 1~56–68 meV! and the range 2
~51–55 meV!, I (2)2I (1), is shown in Fig. 12. It has an
obvious resemblance to the temperature dependence of the
superconducting order parameter, suggesting an intimate

connection between the superconductivity in this compound
and the Cu-O bond-stretching phonons.

III. ANALYSIS AND DISCUSSION

The results discussed above confirm the strong softening
of the in-plane Cu-O bond-stretching LO mode observed
previously for YBCO~Refs. 3,4! and LSCO.3–6 In order to
explain this softening in terms of the regular von-Ka´rman-
type lattice dynamics one has to introduce strong oxygen-
oxygen attraction within the CuO6 octahedron,5 which is
rather counterintuitive since oxygen ions are negatively
charged. In contrast the TO modes do not show such strong
softening. Thea-polarized mode is dispersionless, while the
b-polarized TO mode shows slight dispersion. A possible ex-
planation of this marked difference between the LO and TO
modes is that the LO mode softening is an electronic effect,
for instance, through the dielectric constanteel(q,v). As in

FIG. 10. ~Color! A similar result obtained for thev-h slice with
the triple-axis spectrometer at the HFIR.

FIG. 11. Inelastic scattering intensity atQ5(3.25,0,0) as a
function of temperature, determined with the triple-axis spectrom-
eter at the HFIR. Data were smoothed once to reduce noise.

FIG. 12. Temperature dependence of the intensity differenceI 2

2I 1, where I 1 is the average intensity in Fig. 10 from 56 to 68
meV, I 2 from 51 to 55 eV, atQ5(3.25,0,0). Data were taken with
the triple-axis spectrometer at the HFIR.
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the case of the well-known Lyddane-Sachs-Teller relation-
ship for an insulator, only the LO mode is renormalized by
the internal electric field. Indeed such a dielectric effect was
proposed by Tachiki and Takahashi.27 They suggested that
the LO phonon softening can be explained in terms of a
negative electronic dielectric function due to overscreening
involving the vibronic state, in which charge and lattice vi-
brate at the same frequency with an opposite phase. Accord-
ing to their theory the frequencies of the LO and TO modes
are related by

vLO
2 ~q!5vTO

2 ~q!1
A

eel„q,vLO~q!…
, ~1!

where A5vLO
2 2vTO

2 for the insulator. While eel(q
50,vLO)5` reflecting its metallicity,eel(q,v) becomes
negative above the Fermi momentumkF due to overscreen-
ing. This theory predicts high-temperature superconductivity
due to strong resonant electron-phonon coupling.27 The pho-
non softening was explained also in terms of the changes in
the electron energy in the Hubbard model.16,17More recently
a microscopic explanation of the overscreening effect was
proposed using the Hubbard model, through the negative
Born effective charge due to the phonon-induced charge
transfer.28 The electronic nonlocal interaction was considered
also by Falteret al. using a screening model based upon the
local density approximation calculation.18 The relationship
among these models will be discussed in detail elsewhere.

Our experimental results suggest strong in-plane anisot-
ropy of the bond-stretching mode. The softening of the mode
at the zone edge compared to the zone center is larger for the
a-axis mode LO branch~17 meV! than for theb-axis mode
LO branch~9 meV!. However, thea-axis mode is also split
into two branches, a high-energy~65–72 meV! branch and a
low-energy~55 meV! branch. Furthermore, Fig. 5 seems to
suggest that not all the intensity near the zone boundary is
transferred from the high-energySbranch to the low-energy
S1D branch, since the intensity of the high-energyS
branch is not zero at the zone boundary. This implies that
there must be two types of local environment, with nearly
equal population, for instance, with and without local
charge.

The anisotropy in the dispersion, in particular, the branch
splitting along thea axis, does not appear to be explained by
the orthorhombic distortion and the presence of the Cu-O
chain along theb-direction. As we mentioned earlier a very
similar branch splitting was observed for doped nickelate,
La1.69Sr0.31NiO4.24 In this case the splitting occurred along
the @h, h, 0# direction. Since the direction of the branch
splitting coincides with that of the charge stripes for
each case,@h, 0, 0#, for the cuprates and@h, h, 0# for the
nickelates, this invites an interesting speculation that the
branch splitting is caused by, or at least a signature of, the
charge stripes. In nickelates the presence of charge stripes
is well established. In superconducting cuprates, however,
it is merely a speculation at this moment. In either case it
appears to be most natural to relate the branch splitting to
some spatial charge inhomogeneity, such as charge
stripes.

The temperature dependence shown in Fig. 12 suggests
that the softening of the Cu-O bond-stretching mode may be
related to superconductivity. The difference in the dynamic
structure factor betweenT5110 K and 7 K shown in Figs. 8
and 9 indicate that belowTc about 20225 % of the spectral
weight of theD branch is shifted to the new low-energy
branch in the energy range of 50–60 meV. This suggests that
the spatial inhomogeneity of charge distribution develops
both in thea andb directions, which may be related to the
two-dimensional nature of superconducting correlation.29,30

The exact nature of the low-energyD branch is unknown at
present, but it is interesting that its energy maximum
(;60 meV) corresponds to the energy of the apical-oxygen
mode, suggesting some role of apical-oxygen ions. The
c-axis motion of apical-oxygen couples to charge through the
Jahn-Teller effect, as originally envisaged by Bednorz and
Müller.31

The possible presence of inhomogeneous electron dynam-
ics, such as the spin/charge stripes, has an important impli-
cation to the electron-phonon coupling.32 While the Cu-Cu
electron transfer energy is of the order of 0.5 eV, far higher
than the phonon energy, the electron tunneling across the
spin stripes must be much reduced. This could bring the
energy scale of electrons down, particularly around the ex-
tended saddle point,33 possibly to the level comparable in
energy to the LO phonons. This makes the possibility of the
vibronic overscreened resonant coupling, as proposed by Ta-
chiki and Takahashi,27 much more realistic.34 Other related
or overlapping electron-phonon models, such as the resonant
two-band mechanism by Bussmann-Holder,35 the phonon
umklapp mechanism by Castro Neto,36 and the coupled spin-
ladder mechanism of Sachdev,37,38 may offer alternative de-
scription of some parts of the observed phenomenon. The
interaction between the in-plane LO mode and the apical-
oxygen mode mentioned above suggests possible relevance
of the two-band model.35

For La1.85Sr0.15CuO4 ~LSCO! both the split dispersion5 as
well as a continuous dispersion39 have been observed, sug-
gesting that both of them exist in LSCO just as in YBCO.
Then the anisotropy in the screening may be a common fea-
ture of the cuprate superconductors, not a byproduct of the
chain. In YBCO, the orthorhombicity and the presence of the
chain must favor the alignment of stripes in one direction (b
axis! throughout a twin domain, while in LSCO two types of
domains with stripes alongx andy must coexist.
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