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Transport properties of ground state nitrogen atoms 
James C. Rainwater 
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Paul M. Holland 

The Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45247 
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Transport properties of dilute monatomic gases depend on the two body atom-atom interaction potential. 
When two ground state ('S) nitrogen atoms interact, they can follow any of four potential energy curves 
corresponding to the N, molecule; the X l~;, A 3~,+ , 5~;, and 7~,+ curves. Transport collision integrals for 
the l~.' and 3~ ,+ states have been calculated by representing the potentials for these states with the 
Hulburt-Hirschfelder potential. The 5~; state has a large local maximum which requires changes in the 
computational procedure used previously; a modified Hulburt-Hirschfelder potential has been used to 
represent the potential for this state. Collision integrals for the 7~ ,+ state have been obtained by direct use of a 
recent theoretical potential for this state. The collision integrals are compared with results obtained in 
previous studies. 

INTRODUCTION 

Knowledge of the thermophysical properties of nitro­
gen (and air) at high temperatures is important in the 
chemistry and physics of the upper atmosphere 1 and in 
applications including high temperature coal gasifica­
tion,2 plasmas, 3 and atmospheric reentry by spacecraft. 4 

Since the thermophysical properties of a mixture of 
gases depend on the thermophysical properties of the 
individual components, 5 it is important to have accurate 
results for the nitrogen atoms. Experimental thermo­
physical property data is sparse6

-
10 for atomic nitrogen 

because of the high temperatures required. 

As a result, it is necessary to rely on theory to obtain 
the transport properties of nitrogen atoms. The theory 
used is the kinetic theory of gases. According to this 
approach, the transport properties depend on the two­
body interactions between chemical species. When two 
ground state (45) nitrogen atoms interact, they can fol-
10W

11 any of four potential energy curves (states) cor­
responding to the N2 molecule; the ground X 1:0~ state and 
the A 3-,,;:, 5-,,;;, and 1 -,,;: states. The interatomic potentials 
for these states all possess attractive minima although 
the potential minima for the 5-,,;; and 7:0: states are very 
shallow. 

THE N-N INTERACTION POTENTIALS 

Each of these four states of nitrogen must be con­
sidered in determining the ground state transport prop­
erties, uSing the best available interaction potential for 
each state. Currently the best available potential energy 
curves for the X 16; and A 36: states of N2 are the "ex­
perimental" Rydberg-Klein-Rees (RKR) results of 
Vanderslice et al., It,12 Steele et al., 13 and Gilmore. 14 

Theoretical calculations for the ground state are also 
available. 15-17 Potential energy curves for the 5:0; state 
have been estimated from spectroscopic data 11 ,18 and 

theoretical calculations are also available. 19,20 Here, 
the multi configuration, self-consistent field (SCF) re­
sults of Krauss and Neumann20 are probably most ac­
curate. Spectroscopic information is not available about 
the 1:0: state, but valence bond calculations are avail­
able 11 .21 and there is a recent22 SCF calculation of the 
potential energy curve for this state. 

The two previous detailed calculations of the trans­
port properties of nitrogen atoms23

,24 have involved the 
modeling of some of the potentials mentioned above by 
fitting these potentials with empirical potentials for 
which transport collision integrals have been cal­
culated. 25-28 The empirical potentials used in these 
calculations23

,24 are the attractive inverse power (ALP) 
potential, the exponential-six (ES) potential, the Morse 
potential (MP), and the exponential repulsive (ER) po­
tential. The potentials used are shown in Table 1. The 
results of Capitelli and Devoto24 should be more accurate 
for two reasons. First, they fit the RKR results for the 

TABLE 1. Empirical fitting of the N -N interatomic potentials 
for transport property calculations. 

Yun and Masona 

Potential 
state fitted 

1~; RKRc 

3~: RKRc 

5~; Vanderslicp et al. C 

7~: Vanderslice 

aReference 23. 
~eference 24. 
"Reference 11. 

et al. C 

Empirical 
potentiala 

AlP 

AlP 

ES 

ER 

Capitelli and Devotob 

Potential 
fitted 

RKRC 

RKRc 

Carrolld 

Meador" 

dReference 18. 
"Reference 21. 
fReference 46. 

Empirical 
potentialb 

Mpi 

Mpf 

MP 

ER 
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1~; and 3~: states over the entire range of interatomic 
separations, including the repulsive "wall" as well as 
the attractive long-range part of the potential fit by Yun 
and Mason. 23 At the high temperatures where atomic 
nitrogen exists, the repulsive wall makes an important 
contribution to the transport properties. 29 In addition, 
Capitelli and Devoto24 used the results of Carroll18 and 
of Meador21 for the 5~; and 7~: states, respectively. 
These results are probably more accurate than the re­
sults of Vanderslice et al. 11 which were used in the cal­
culations of Yun and Mason. 23 

A computer code has recently been developed30 ,31 
which calculates the transport collision integrals for 
the Hulburt-Hirschfelder (HH) potential. The HH po­
tential is probably the best general purpose empirical 
potential for fitting atom-atom interactions with an at­
tractive minimum in the potential. 13,32-35 The computed 
results give good agreement with experimental trans­
port properties for argon36 and for the alkali metal 
vapors. 37,38 In addition, the HH potential can reproduce 
the local maxima often found at "large" internuclear 
separations for atom-atom interactions. 39-43 

In reduced form, the HH potential is given by39,44,45 

V:H(r*) " exp[ - 2a(r*/d -1))- 2exp[ -a(r*/d -1)) 

where 

V*= ~ 
€ 

y = ba , 

TABLE II. 

+f3(; -IY [1+Y(~ -1)]exP[-2a(r*/d-l)), 

(1) 

r*=r 
[J 

d= ~ 
a 

a = we f3 = ca 3 , 
2.jBe'" ' 

-.2. _€' a2 

c = 1 + al «, b = 2 _ 12 ao 
..; ~ C 

Comparison of the HH, Morsea,b and Alpc potentials 
with the RKRd potential for the 1~; state of N2. 
r (10.10 m) V(HH)/V(RKR) V(MP)/V(RKR) V(AlP)/V(RKR) 

0.896 1. 013 0.878 40.494 
0.904 1.020 0.909 35.032 
0.912 1.016 0.926 30.449 
0.921 1. 013 0.941 26.409 
0.931 1. 009 0.952 22.850 
0.942 1. 003 0.960 19.716 
0.956 1.003 0.972 16.738 
0.973 1.003 0.982 13.994 
0.994 1.000 0.988 11.453 
1.027 1.001 0.997 8.742 
1.146 1. 000 0.999 4.215 
1.213 1. 000 0.997 3.116 
1.261 0.999 0.995 2.591 
1.302 0.999 0.996 2.255 
1.339 1. 000 0.999 2.019 
1.375 1.001 1.001 1.830 
1.410 1.002 1.006 1. 679 
1.447 0.998 1.006 1. 538 
1.477 0.998 1.023 1.464 
1.512 1. 013 1.031 1.374 

aReference 24. cReference 23. 
~eference 46. dReference 11. 

TABLE III. Comparison of the HH, Morsea,b and AlP< poten-
tials with the RKRd potential for the 31:: state of Nz• 

r(10·10 m) V(HHl/V(RKR) V(MP)/V(RKR) V(AlP)/V(RKR) 

1.046 0.455 0.214 41.149 
1.054 0.582 0.386 35.777 
1.062 0.679 0.519 31.265 
1.070 0.751 0.621 27.461 
1.080 0.828 0.727 23.898 
1,089 0.872 0.793 21.022 
1.099 0.911 0.851 18.447 
1.108 0.927 0.882 16.335 
1.120 0.954 0.924 14.247 
1.131 0.963 O. 943 12.545 
1.145 0.977 0.967 10.877 
1.160 0.983 0.981 9.406 
1.180 0.991 0.997 7.922 
1.203 0.991 1.001 6.584 
1.240 0.989 1.002 5.081 
1.356 0.976 0.990 2.746 
1.405 0.974 0.990 2.263 
1.442 0,974 0.992 1.994 
1. 474 0.976 0.997 1.810 
1.503 0.979 1.004 1.674 
1.532 0.980 1.010 1. 555 
1.558 0.985 1.021 1.471 
1.584 0.990 1.033 1.397 
1.609 0.998 1. 047 1.339 
1.633 1.008 1.066 1.294 
1.657 1.020 1. 086 1,257 
1.682 1.031 1.108 1.222 
1.706 1.046 1.135 1.199 
1.732 1.060 1.161 1.174 
1.756 1.083 1.198 1.165 

aReference 24. cReference 23. 
~eference 46. dReference 11. 

Also, r is the interatomic separation, € is the depth of the 
the potential well, r. is the interatomic separation cor­
responding to €, €' is well depth in wave numbers, w. 
is the fundamental vibrational frequency, weXe is the 
anharmonicity constant, B. is the rotational constant, 
(1. is the rotation-vibration coupling constant, and [J is 
the smallest interatomic separation at which the po­
tential is zero (the "effective" hard sphere diameter). 
The empirical HH potential has six parameters, all of 
them determined from spectroscopic data. The HH 
potential reduces to the Morse potential if c = O. 

Comparisons of the empirical potentials used in pre­
vious calculations23

,24 of the transport properties and 
of the HH potential with the RKR results 11 are shown in 
Tables II and III for the 16; and 36: states of N2, re­
spectively. The spectroscopic constants used in the 
HH potential are from Huber and Herzberg. 47 Agree­
ment between the HH and RKR results is excellent for 
the 16; state. Agreement between these results is good 
for the 3~: state except at small values of r. This is 
somewhat surprising since, in general, HH and RKR 
results are in good agreementl3 ,38-39 at small values of 
r. For both states, the HH potential gives better 
agreement with the RKR results than do the results ob-

J. Chem. Phys., Vol. 79, No.3, 1 August 1983 
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FIG. 1. Plot of sinh-1 (V*) as a 
function of r* for the 51:; state of 
N 2' The circles are the results of 
Krauss and Neumann (Refs. 20 and 
48); the line is the fit to the modi­
fied HH potential. This "pseudo­
logarithmic" scale is approximate­
ly semilogarithmic for large V* 
and approximately linear for small 
V*, and can accommodate the large 
variations in magnitude and changes 
of sign in V* with a single graph. 

-1.0L------L~--------~--------~L---------~ __ ___ 
1.0 1.5 2.0 2.5 

r* 

tained using the Morse potential. The AlP potential 
gives poor agreement with the RKR results. 

The SCF calculations2o for the 52;; state of N2 indicate 
that this state has a local maximum at 2.21 x 10- 10 m. 
Indeed, the barrier height is essentially the same as the 
potential minimum (1. 6 X 10-20 J) at 1. 69 x 1O-!0 m. This 
is shown in Fig. 1. Mullikan's calculations!» also indi­
cate the presence of a local maximum. A comparison 
of the results of Krauss and Neumann, 20 Carroll, la 

and Vanderslice et al. 11 is shown in Table IV. Clearly, 
the earlier results l1 • 18 do not agree very well with the 
results of Krauss and Neumann. 20 The earlier results 
have a potential wall that appears to be more steep and 
the long-range part of the potential energy curve is 
nearly flat, with no local maximum. 

The results of delta-function model calculations by 
Meador21 and by Vanderslice et al. 11 for the 72;: state 
are compared in Table V. The results differ by about 

20%. The SCF calculations of Ferrante and Stwalley22 
which, like the earlier results, can be reasonably well 
represented by an ER potential, at least at high tem­
peratures, are also shown in Table V. The earlier 
results l1 •

21 do not agree very well with the results of 
Ferrante and Stwalley22 at small r but agreement is 
better at larger r. It is somewhat surprising that the 
results of Vanderslice et al. 11 give the better overall 
agreement. The potential of Ferrante and Stwalley22 
does have an attractive minimum (0.083 x 10-20 J at 3.71 
x 10- 10 m) since they include the effects of the multipole 
expansion coefficients Cs, Ca, and C10 in their calcula­
tion. 

ATOMIC NITROGEN TRANSPORT PROPERTIES 

The viscosity 1) of a pure dilute gas is given by5 

-s -fMT (kg) 
1) = 2. 669X 10 ,ld2.'ll* m. s (2) 

f h 5,,+ t t f N V I'n 10-19 J, TABLE IV. Comparison of proposed interaction potentials V or t e "'g s a e 0 2: 

1.217 
1.323 
1.429 
1.535 
1.693 
1.852 
2.011 
2.223 
2.434 
2.805 
3.069 
3.281 
3.916 
4. 022 

aReference 20. 

V(Krauss and Neumanna) 

4.933 
2.115 
0.750 
0.019 

- 0.163 
- 0.064 

0.079 
0.157 
0.111 
0.011 

-0.010 
- 0.016 
- O. 014 
- O. 014 

V(Carrollb) 

11.10 
2.012 
0.069 

- O. 216 
-0.141 
-0.059 
- O. 022 
- O. 006 
- O. 002 

0.0 

~eference 18. 

V(Vanderslice et al. C) 

427.3 
2.249 
0,612 

- 0.141 
- 0.027 
- 0.003 

0.0 

CReference 11, 
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TABLE V. Comparison of proposed interaction potentials V for the 1~~ state of Nz< V in 10-19 J. 

r(10-10 m) V(Ferrante and stwaller) V(Meador~ 

1.30 

1.50 

1.75 

2.00 

2.25 

2.50 

2.75 

3.00 

3.20 

aReference 22. 

26.17 

13.52 

5.93 

2.60 

1.14 

0.50 

0.22 

0.10 

0.05 

11.90 

6.92 

3.51 

1.78 

0.90 

0.46 

0.22 

0.11 

0.06 

l>rteference 21. 

where M is the molecular weight in g/mol, T is the tem­
perature in K, and ifn(2,2)* is the viscosity collision in­
tegral in units of 10-20 m2 CA 2). The self -diffusion co­
efficient D is given by 

ff37M 
(ms2) , D= 2.694x10- 1 p(Jn(I,1>* (3) 

where p is the pressure in units of O. 1 MPa (1 bar) and 
a2n(I,1>* is the diffusion collision integral in units of 
10-20 m2(,\21. The translational contribution to the ther­
mal conductivity Atr is given by 

_ -2 .fT7M ( w ) 
Atr -B.322 x lO (JnIZ,Z)* rfI.K (4) 

Since the effect of excited electronic states is not being 
considered, the internal contribution to the thermal con­
ductivity Alnt is zero. 

Thus, the only information required to calculate the 
transport properties are the values of the collision in­
tegrals, obtained by integrating over all possible impact 
parameters and energies of binary collisions. In this 
work, the collision integrals have been calculated for 
the 1~; and 3~: states by using the computer code for the 
HH potential30 ,31 and the spectroscopic constants given in 
Huber and Herzberg. 47 The HH parameters for the 1'0; 
state are 

a = 2.9514 , f3 = 2.1475 , 

Y = 3.0039 , d = 1. 3118 , 

E: = 1. 5870 X 10-18 J, a= 8.3678 x 10- 11 m , 

and those for the 3~: state are 

a = 3.5410 , f3 = 5.8936 , 

y = 3.0751 , d = 1. 2515 , 

E = 5.6636 X 10-19 J, a= 1. 0280X 10-10 m . 

Spectroscopic constants are not available for the 5~; 
state, so the HH potential cannot be obtained in the usual 
manner. The solution of Krauss and Neumann20 for the 
5~; potential is presented in the form48 of a discrete set 
of potential values for evenly spaced values of r, as 
shown by the circles of Fig. 1. One possible procedure 

V(Vanderslice et al. C) 

14.21 

8.19 

4.12 

2.07 

1.04 

0.53 

0.26 

0.13 

0.08 

cReference 11. 

to obtain the 5~; collision integrals would be to fit the 
potential of Krauss and Neumann20 to the HH function and 
then to use the computer code of Ref. 30. Unfortunate­
ly, it is not possible to obtain an adequate fit with a single 
set of HH parameters. 

However, a good fit can be obtained with two minor 
modifications of the HH potential. First, different sets 
of parameters are used for r* < re and r* > reo Second, 
for r* > r. the potential is changed to 

V*(r*) = E:*{exp[ - 2a(r*/d - 1) J- 2exp[ -a' (r* /d - 1) J 

+{3 (r; -1r L1+Y(~ -1)) eXP[-2a(r*/d-1n}. 
(5) 

which differs from the usual HH potential by an overall 
constant factor E:* and the replacement of the parameter 
a by the new parameter a' in the second term of Eq. (5). 
This replacement is necessary for the 5'0; potential be­
cause a is normally fixed by the second derivative at 
the minimum, which in the present case is very large. 
For large r*, the HH potential is dominated by its sec-
0nd term, but because of the very large value required 
for a, the second term is negligible at the distance of 
the secondary minimum. This dilemma can be avoided 
if d is chosen to be substantially smaller than a. Be­
cause of these modifications, the minimum in the poten­
tial functions is no longer located at d nor is its value 
equal to - 1 at d unless the constant E* is appropriately 
chosen. 

With positive values of V* at small r* omitted, the 
potential of Krauss and Neumann20 ,48 was fit to the form 
given in Eq. (5). A nonlinear least squares fitting 
algorithm was used with weight factors included to en­
sure an accurate fit at the maximum and the second 
minimum. The location and value of the primary mini­
mum of the resulting potential were determined nu­
merically. Then the potential values for r* less than the 
location of the primary minimum were similarly fitted 
to an ordinary HH function, subject to the constraint 
that the potential and its first derivative be continuous 
at the minimum where it is joined to Eq. (5). 

The potential parameters determined in this way are, 
for r* < 1. 0909, 

J. Chem. Phys., Vol. 79, No.3, 1 August 1983 
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a= 8.8086 , {3= 86.9094 , y=2.4211, d=1.0909, 

and, forr* > 1. 0909, 

E* = O. 911 36, a = 4. 7482, (I' = 2.2106 , 

{3 = 1184.354, y = O. 1624, d = 1. 0545 . 

Also, the well depth and the effective hard sphere diame­
ter are 

E = 1. 4900XlO- 20 J, a= 1. 5507x 10- 10 m . 

The above potential is plotted as the solid line in Fig. 1. 
The fit to the potential of Krauss and Neumann2o ,48 is 
excellent except for some small and insignificant dis­
crepancies just beyond the maximum. Errors in the 
collision integrals due to fitting are expected to be negli­
gible. 

The only required alteration in the computer code of 
Ref. 30 is in the subroutine to calculate the potential 
and its first two derivatives. Collision integrals for 
potentials with long-range maxima and second minima 
have been calculated previously, 3~ in particular for the 
5:0;, 109, 3 Au, and 16~ states of C 2• However, in those 
cases, the height of the maximum was at least an order 
of magnitude less than the depth of the primary mini­
mum, whereas in this case the maximum and minimum 
are nearly equal in magnitude. The 5:0; state of nitro­
gen thus provides an exacting test of the numerical 
methods of Ref. 30. Nevertheless, the computer pro­
gram succeeded in calculating the collision integrals 
without difficulty. 

The potential function of Ferrante and Stwalley22 for 
the 1:>.;: state of nitrogen can also be fit to an HH poten­
tial, but it is more convenient to use their potential 
directly. In reduced units such that V*(1) = 0 and 
V ~in = - 1, their potential function is 

where 

1"(1'"*) 
= 1 , 

The parameters are 

A = 2.2666 X 105
, B = 10.833, C6 = 2.9089 , 

Cs = 1.4917, C10 =0.9993 , r s =1.4151 , 

(6) 

(7) 

and the well depth and the effective hard sphere diame­
ter are 

E= 8.436x10-22 J, a= 3.2814x10- IO m. 

The potential and its first derivative are continuous, 
but its second derivative has an infinite discontinuity 
at 1'"* = rs' The divergence is quite weak since the sec­
ond derivative goes as (1'"* - rstO. 1 as 1'"* - rs from below. 
For the calculation of collision integrals, the normal 
requirement30 is that 

z(r) '" Veri + tr ~: 

be continuous. The only conceivable computational 
problem would occur if r. were close to the "critical 

TABLE VI. The diffusion collision integral ,,'n" ,J" 

and viscosity collision integral (T'\I' 1,1). fo)' nit "(\­

gen atoms in the ground (45) state, 

T(K) 

1 (1110 

ZI)IlO 

30(JO 
4 \lOI! 

50UD 

61100 
7000 
800(1 

9 (100 

10 O(JO 

11 000 
12000 
13 (101) 

14 000 
1500U 

16 UOO 
17000 

18000 

19 aoo 
20000 

1i,4571; 

5. :l645 
4,8256 
4. ,17(j3 

4.209:3 
3. :)974 
3.8249 
3. (j824 

3.5232 
:3. ·1348 
3.3313 
3.238:3 
3.1490 
3.0642 
2.9878 
2.9184 
2. 8545 
2.7948 
2.7376 
2. 68(j0 

7.NIO 
5.9liolj 

5. :3551; 
'1.%,,[ 
.1. 71J1 () 
.J. 4(1)4 

·L 2830 
·1.1384 
.l. 0104 
:3. 8:)4:3 
3. 7921 
3.7017 
3.6j·1G 
:3. 53(J4 
:l.45:l9 
:3.3842 
3.3194 
:3.2561 
:l.1:)71 
3,1428 

distance,,3o Yc, the location of the maximum of z(y). 

Here, Y c = 1. 3256 and is sufficiently removed from ,'s' 

Once again, the only required changes in the computer 
code of Ref. 30 are in the subroutine to calcuiate the 
potential and its derivatives, and the program computed 
the collision integrals without difficulty. The results 
are in reasonable agreement with those obtained using 
the ER potential of Meador. 21 

DISCUSSION 

The transport collision integrals for each of the four 
possible interactions between two ground state nitrogen 
atoms have been computed. For the I;:;; and 32:: states, 
Hulburt-Hirschfelder (HH) potentials were obtained 
from available spectroscopic parameters. 47 For the 
56; state, the potential of Krauss and Neumann20 was 
fitted by a slightly modified HH potential function, and 
collision integrals for the 1:0: state were calculated di­
rectly using the potential obtained by Ferrante and 
Stwalley.22 

The novel computational methods of Ref. 30 were 
important for the successful calculation of the col­
lision integrals for the 5:0; state, since its potential 
possesses a long-range maximum and a second mini­
mum. The present work contrasts with previous 
work23 ,24 in which potentials were fit to functional forms 
for which collision integrals had been previously tabu­
lated. 25-28 

Transport collision integrals for nitrogen atoms in 
the ground electronic state are obtained by averaging 
the results for each of the four molecular states ac­
cording to their degeneracies. 4H Results for the dif­
fusion and viscosity collision integrals are given in 
Table VI. A comparison with the results obtained pre­
viously23,24 for the viscosity collision integral is given 

J, Chern. Phys., Vol. 79, No, 3, 1 August 1983 
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TABLE VII. Comparison of various results for the viscosity 
collision integral ;0(2,2)* of nitrogen atoms. 

rl- 11(2,2)* [Yun (Ref. 23)J 0211(2,2)* [Capitelli (Ref. 24)J 
T(K) 0211(2,2)* (this work) o2nl 2,2) (this work) 

1000 0.972 
3 000 0.968 
5 000 0.955 1.02 
8000 0,942 1. 01 

10 000 0,936 1. 01 
13 000 0.928 0.969 
15 000 0.928 0.988 
18000 0.972 
20 000 0,968 

in Table VII. The agreement is very good in spite of 
the fact that the potentials used in this work are gen­
erally quite different than those used previously, es­
pecially by Yun and Mason. 23 There are evidently two 
reasons for this. First, the transport collision inte­
grals are relatively insensitive to the details of the po­
tential; there is a rule of thumb that an error of a fac­
tor of 2 in the potential leads ot an error of 20%-40% 
in the collision integrals. ,0 

Second, there appears to be a pattern of compensating 
discrepancies among the cross sections for individual 
states, which are in considerably poorer agreement than 
the final degeneracy averaged cross sections. The 
agreement in Table VII, therefore, may be somewhat 
fortuitous. In particular, the contribution of the 1~; 
and 3~: states alone is consistently at least 1 ~o smaller 
with the HH potential than with the MP and the contri­
bution of the 5~; state is considerably higher with the HH 
potential than with the MP. This is illustrated in Table 
VIII. The more detailed calculations presented here 
thus provide greater confidence in the theoretical trans­
port properties of nitrogen atoms. 

The calculations for the 5~; potential (an example of a 
potential with large multiple extrema) provide a signifi­
cant test of a method proposed by Hirschfelder and 
Eliason. 51 A single MP, of course, cannot fit the po­
tential in Fig. 1, but Hirschfelder and Eliason51 recom­
mend using different MP parameters for different tem-

TABLE VIII. The ratio (h-Z(2,Z)* (CapiteUi 
and Devotoa)/tiO(Z.Z)*b for the Nz molecular 
states. 

T(K) ~l~;+p~~ 5~; 7J.:: 
5000 1.19 0.73 1.02 
8 000 1.16 0.78 0.99 

10000 1.19 0.80 0.96 
13000 1.17 0.83 0.94 
15000 1.18 0.84 0.93 
18000 1.16 0.86 0.91 
20000 1.16 0.87 0,89 

aReference 24. ~his work. 

TABLE IX. Comparison of the HH and MP 
results for the transport collision integrals 
for the .J.:; state of N2. 

uZ 11<1,1)* (MP) ti O(Z,Z)* (MP) 

T(K) rl-OU,l)* (HH) rl- 0(2,2)* (HH) 

1000 0.742 0.649 
2000 0.888 0.801 
3 000 0.952 0.881 
5 000 1. 02 0.964 

10 000 1.08 1.03 
15 000 1.11 1. 06 
20 000 1.11 1.07 

peratures; here six different sets are used since the 
multiple extrema are not reproduced by any single set 
of MP parameters. Table IX gives a comparison of the 
MP results using the Hirschfelder-Eliason method with 
the collision integrals calculated directly from the modi­
fied HH potential. 

Agreement is relatively good for T?: 3000 K, but 
breaks down for lower temperatures. This trend was 
also observed in previous work. 39 At low reduced tem­
peratures, the effective barrier for binary collisions is 
the outer maximum rather than the inner core, and an 
anomalously large effective cross section results. Such 
behavior persists to some degree for intermediate tem­
peratures as well. The method of Hirschfelder and 
Eliason51 is seen to accommodate the large increase 
in the cross section with decreasing temperature, but 
only up to a point for potentials with multiple extrema; 
these contribute Significantly to the collision integrals' 
at low and intermediate temperatures. 

The accuracy of the averaged collision integrals for 
ground state atomic nitrogen depends on both the accuracy 
of the potentials used as input for each of the states and 
the relative contribution of the states according to their 
degeneracies. While the HH potentials for the 1~; and 
3~: states should be very accurate (except at large y36), 

the large well depths and consequent low reduced tem­
peratures for these states increases the error in the 
collision integrals with decreasing temperature. 36 The 
5~; and 7~: states make the largest contribution to the 
collision integrals because of their higher degeneracies. 
For these states, the results depend on the accuracy of 
the theoretical potentials used as input. 20 ,22 Assuming 
these potentials are in error by 20% or less, the aver­
aged collision integrals given in Table VI should be in 
error by less than 10%, with the error decreasing some­
what at higher temperatures. 
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