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Calculating potential energy curves with fixed-node diffusion
Monte Carlo: CO and N2

Andrew D. Powell and Richard Dawesa)

Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 26 August 2016; accepted 22 November 2016; published online 13 December 2016)

This study reports on the prospect for the routine use of Quantum Monte Carlo (QMC) for the
electronic structure problem, applying fixed-node Diffusion Monte Carlo (DMC) to generate highly
accurate Born-Oppenheimer potential energy curves (PECs) for small molecular systems. The sin-
glet ground electronic states of CO and N2 were used as test cases. The PECs obtained by DMC
employing multiconfigurational trial wavefunctions were compared with those obtained by conven-
tional high-accuracy electronic structure methods such as multireference configuration interaction
and/or the best available empirical spectroscopic curves. The goal was to test whether a straightfor-
ward procedure using available QMC codes could be applied robustly and reliably. Results obtained
with DMC codes were found to be in close agreement with the benchmark PECs, and the n3 scaling
with the number of electrons (compared with n7 or worse for conventional high-accuracy quantum
chemistry) could be advantageous depending on the system size. Due to a large pre-factor in the
scaling, for the small systems tested here, it is currently still much more computationally intensive to
compute PECs with QMC. Nevertheless, QMC algorithms are particularly well-suited to large-scale
parallelization and are therefore likely to become more relevant for future massively parallel hardware
architectures. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971378]

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have shown
promise in performance and scalings as an approach to quan-
tum mechanical calculations.1–5 These methods have been
applied not only to the electronic structure, especially of
solids6–10 and medium-sized molecules,11 but also to atoms
and small molecules12–28 presenting an alternative to tra-
ditional high-accuracy quantum chemistry methods such as
configuration interaction (CI)29 and coupled-cluster (CC).30,31

Some typical limitations of standard ab initio methods are as
follows: (1) high-order dynamic electron correlation may be
neglected or is prohibitively costly to compute; (2) scaling with
the number of electrons is poor;32,33 (3) some errors may be
introduced by internal contraction;34 and (4) many algorithms
are not yet efficient for large scale parallelization.

Key advantages for QMC methods are favorable scal-
ing with the number of electrons and efficient parallelization
(scaling with the number of computing cores). CI and CC
methods can scale as n7 (for n electrons) or worse32 and
thus rapidly become prohibitively expensive with the increas-
ing system size, whereas QMC methods scale as n3 making
them especially favorable for larger systems. In practice for
small systems, despite the impressive n3 scaling, QMC tends
to have a large cost-prefactor making it relatively expensive
compared with traditional quantum methods. Nevertheless, the
vastly better scaling means that there exists a crossover point
in system size beyond which QMC is favored. In addition,
QMC algorithms can be very efficiently parallelized, scaling

a)Author to whom correspondence should be addressed. Electronic mail:
dawesr@mst.edu

essentially linearly with the number of cores.35 QMC meth-
ods can take full advantage of massively parallel machines, and
are thus well-suited for next-generation computer architectures
with millions of cores.3,5

During the development of QMC methods over the past
few decades, there have been numerous reported studies of
first-row atoms and (mostly) homonuclear diatomics12–27,36

as well as hydrides.37,38 The majority of those studies have
focused on a single equilibrium geometry for each species
while treating the total binding energy as well as compo-
nents of the energy as method development benchmarks. It is
well established that QMC methods can capture large frac-
tions of both the strong and dynamic correlation energies,
illustrated for example, by its impressive performance for
the challenging Be2 system.17,25 Methods to compute forces
have also been developed39 and estimates of anharmonic force
constants based on a few near-equilibrium points have been
reported.15

Some PECs calculated with QMC have been reported40–42

including the most recent work of Giner et al.40 Those stud-
ies focus on technical aspects of the wavefunction construc-
tion and sampling as well as accuracy performance, but with
less emphasis on assessments of cost and routine feasibility.
They did achieve high-accuracy in comparison with reference
curves, and reported that the fixed-node error (due to the fixed-
node approximation)43 was reduced as an increasing number
of determinants were used. Some of the studies did not pur-
sue the highest degree of accuracy, limiting the size of basis
set in the trial wavefunction.40 The largest bond dissociation
distances were the least well converged relative to reference
PECs,37,40 and this was ascribed to limitations in the number
of determinants.
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For PECs, single-reference methods (with typical levels
of truncation of the excitation operators) often do not pro-
duce the correct behavior over the entire bond-distance range,
because they cannot easily account for the evolution toward
other configurations as the bond is stretched toward dissocia-
tion. The problem is common when breaking multiple bonds,
a well-known example being N2.44 Even though CCSD(T),
i.e., coupled-cluster with single, double, and perturbative triple
excitations, is considered the “gold standard” of quantum
chemistry, for N2 it cannot accurately calculate the region of
the PEC corresponding to dissociation. CCSD(T) breaks down
at about twice the equilibrium bond length re and produces an
artificial hump.44,45

Multi-reference methods are often preferred as a globally
applicable approach with correct dissociative behavior and
have been found necessary in previous QMC studies.37 The
single determinant fixed-node (FN-DMC) atomization bench-
marks reported by Grossman in 2002 found a 2.9 kcal/mol
average absolute deviation over a 55 molecule test set, with
deviations of 3.0 and 4.1 kcal/mol for CO and N2, respec-
tively.14 The efficient use of multideterminants in QMC codes
is not trivial but has been successfully addressed by an algo-
rithm known as the table method46,47 implemented in the
QMCPACK48 code package. The work reported here focuses
on assessing the accuracy, cost, and routine feasibility of using
QMC as implemented in two freely available packages, cal-
culating ground state potential energy curves (PECs) for two
test systems (CO and N2). The multi-determinant trial wave
functions used in this study were generated from orbitals and
determinants using the multi-configurational self-consistent
field (MCSCF) and configuration interaction (CI) methods
from GAMESS (U.S.).49 The CASINO50 package was used
for most of the QMC calculations reported here, along with
some timing comparisons conducted using the QMCPACK48

code.

II. FIXED-NODE QUANTUM MONTE CARLO

Here, we give a brief summary of some important aspects
of QMC. For more technical details, the reader is referred to
Refs. 50 and 51.

A. Variational Monte Carlo (VMC)

Variational Monte Carlo (VMC), using an approximate
trial wave function ΨT , calculates the expectation value of
a Hamiltonian H, with the integrals being performed by a
Monte Carlo method.52–54 The variational energy EVMC is
an upper bound to the exact ground state energy E0 and is
mathematically defined as

EVMC =
∫ Ψ

∗
T (R)HΨT (R) dR

∫ Ψ
∗
T (R)ΨT (R) dR

≥ E0, (1)

where R is a 3N-dimensional vector of the coordinates
(r1,r2,...,rN) of the N particles in the system (in this case elec-
trons).50 The expectation value of the Hamiltonian H can be
rewritten with respect to the trial wave function ΨT as

〈H〉 = ∫
|ΨT (R)|2 Eloc(R) dR

∫ |ΨT (R)|2 dR
, (2)

with the local energy Eloc = Ψ
−1
T HΨT . By sampling the points

Ri according to the distribution |ΨT |
2 with M configurations,

the variational energy can then be computed from a set of local
energies,

EVMC = lim
M→∞

1
M

M∑
i=1

Eloc (Ri) . (3)

Statistical uncertainty in a Monte Carlo method decreases as
1/
√

M, where M is the number of samples. The primary pur-
pose of the VMC method in this application is to optimize
the parameters of a trial wave function, such as the Jastrow
factor,55–59 for subsequent use in the more accurate DMC
(Diffusion Monte Carlo) method.

In this work, to help describe dynamic electron correla-
tion, a three-body Jastrow factor was used,52 which includes
electron-electron u terms, electron-nucleus χ terms, and
electron-electron-nucleus f terms. The Jastrow factor makes
the trial wave function depend explicitly on particle separa-
tions and is symmetric under the interchange of identical par-
ticles.60 Note that in a similar application to the F2 molecule,
Giner et al. justified not employing a Jastrow factor, primarily
in order to avoid the costly optimization of parameters.40 They
state that non-linear optimizations of Jastrow factors may make
it more difficult to obtain smooth PECs. The main drawback
to lacking a Jastrow factor conceded by Giner et al. is a greatly
increased variance in the trial wavefunction and correspond-
ing increased simulation times.40 For a detailed description of
the form of the Jastrow factor that is used in CASINO, see
Ref. 54.

B. Diffusion Monte Carlo

The Diffusion Monte Carlo (DMC) method61,62 uses the
importance-sampled imaginary-time Schrödinger equation to
evolve an ensemble of electronic configurations toward the
ground state. The Schrödinger equation can be written in
integral form as

f (R, t) =
∫

G
(
R← R′, t − t ′

)
f
(
R′, t ′

)
dR′, (4)

where R is a point in the configuration space of an
N-particle system. Here, f (R, t) is a mixed distribution depen-
dent on some trial wave function ΨT , and written mathe-
matically as f (R, t) = Ψ (R, t)ΨT (R). The Green’s function
G (R← R′, t − t ′) gives the probability of a transition from R
to R′ in the time interval t−t ′, and satisfies the initial condition
G (R← R′, 0) = δ(R − R′).

Due to the fermion sign problem,51 the DMC method in
CASINO adopts the fixed-node approximation, in which the
nodes of f are constrained to be the same as those of the trial
wave functionΨT . The DMC method then produces the lowest
energy possible for this nodal surface and can be considered
variational with respect to it.41 Interestingly, for both atoms
and diatomic molecules, Giner et al. reported a systematic
decrease in the fixed-node error with respect to both the num-
ber of determinants retained and the size of the one-particle
basis.40
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III. COMPUTATIONAL METHOD

For all of the QMC calculations, multi-determinant Slater-
Jastrow (MD-SJ) trial wave functions were used, which can be
written mathematically as

ΨT (R) = eJ(R)
ND∑
k=1

ckD↑k D↓k , (5)

where ΨT is the trial wave function, eJ is the Jastrow factor,
ck are the determinant coefficients for the multi-determinant
expansion describing static correlation,51 and D↑k and D↓k are
the spin-up and spin-down Slater determinants, respectively.
For both CO and N2, the aug-cc-pwCV5Z basis sets63 were
truncated to 11s10p8d, i.e., angular momentum functions ≥ f
were removed. The orbitals in the trial wave functions were
cusp corrected using the scheme of Ma et al.60

All DMC calculations were performed with the electrons
moving one at a time (electron-by-electron). The time steps
for all the systems were chosen so that the acceptance ratio of
the proposed moves would be ∼99.5%.

A. Applications

For both systems, the Jastrow factor was defined using an
expansion of order 8 for the u terms (Nu = 8), an expansion
also of order 8 for the χ terms (Nχ = 8), and an order of 4
for the f terms (Nen

f = Nee
f = 4), resulting in a total of 149

variable parameters for N2 and 281 parameters for CO in the
two respective Jastrow factors. For all trial wave functions, the
truncation order-parameter C, which determines the behav-
ior at the cutoff lengths, was set to a value of 3, providing a
local energy that is continuous in configuration space.60 For
the electron-electron u terms and electron-electron-nucleus
f terms, different parameter values were used for the parallel-
and the antiparallel-spin electron-pairs, and, for the electron-
nucleus χ terms, different parameters were used for spin-up
and spin-down electrons.

The parameters of the Jastrow factor were optimized with
un-reweighted variance minimization. For each initial opti-
mization cycle, the default cutoff lengths for the u, χ, and f
terms were used and the initial Jastrow parameters were set to
zero. To see how uncertainties in the optimized Jastrow fac-
tors would carry over to the subsequent DMC calculations, two
procedures with vastly different costs were tested. Procedure 1
is designed to seek high precision during the optimization
stage, thus incurring a high computational cost. Procedure 2
explores what compromises in accuracy are suffered when a
less rigorous and time consuming optimization is performed.
In Procedure 1, the Jastrow parameters were optimized using
5.0 × 105 configurations for one initial cycle, followed by a
system-dependent number of additional optimization cycles.
For N2, the number of additional cycles was 6 and, for CO,
the number of additional cycles was 9. In Procedure 2, the
Jastrow parameters were optimized using 1.0 × 105 config-
urations (five times fewer than procedure 1) for 10 cycles
with the cost of the optimizations being roughly an order of
magnitude fewer CPU-hours than Procedure 1. It is common
in studies using multiconfigurational trial wavefunctions to
also re-optimize the CI coefficients.25 In this study, this was

tested for each system at a few points. Following Jastrow
optimization using the VMC variance minimization proce-
dure, additional cycles were performed to re-optimize both
the Jastrow parameters and the CI coefficients, using the VMC
energy minimization method. For these systems, further opti-
mization using energy minimization did not yield significantly
lower VMC energies and also resulted in larger variances and
uncertainties. The energy minimization optimizations were
less robust (particularly at stretched geometries), requiring
additional sampling, thus making the procedure less straight-
forward and further increasing costs. We therefore elected
to use the variance minimized Jastrow parameters and not
re-optimize the CI coefficients. In both procedures, the sub-
sequent DMC calculations were performed with target pop-
ulations of 2500, a minimum of 1.5 × 105 sample points,
and time steps of 0.002 a.u. for all geometries. For com-
parison with DMC, multireference configuration interaction
(MRCI) calculations were also done using the MOLPRO64

package.

1. CO: C(3Pg) + O(3Pg)→ CO(X1Σ+)

When the ground states of carbon and oxygen atoms com-
bine, the number of molecular states of CO, resolved into C2v

symmetry, is65

5,3,1(3 A1 + 2 B1 + 2 B2 + 2 A2), (6)

which represents a total of nine states of each of three
spin-multiplicities (singlet, triplet, and quintet). Since there
are nine singlet-states, dynamic weighting66 was used to
facilitate robust convergence near the asymptote for the
full-valence (10e,8o), state-averaged multi-configurational
self-consistent field (SA-MCSCF) calculations. As in the
case of N2, a high-spin (quintet) restricted-open Hartree-Fock
(ROHF) calculation was performed before the subsequent
singlet DW-SA-MCSCF calculations.

To control the cost of the QMC calculations, only a limited
number of determinants were retained (specified by two con-
tending criteria). First, a coefficient cutoff of 0.002 was used at
each point, such that all determinants with an absolute weight
coefficient value >0.002 were retained. This resulted in a
varying number of retained determinants at each rCO distance.
Second, for comparison, a fixed number of 250 determinants
(those with the largest coefficients) were retained throughout
the coordinate range.

To assess the quality of the QMC results for CO in com-
parison to typical high-level conventional electronic structure
methods, an accurate MRCI-based reference PEC by Dawes
et al.67 was used. It was constructed from Davidson-corrected
MRCI data, based on a dynamically weighted state-averaged
CASSCF reference (DW-SA-CASSCF), with a full-valence
active space. The MRCI(Q) data were extrapolated to the
complete basis set (CBS) limit with the aug-cc-pwCVnZ
(n = 3-5) bases and all electrons correlated. The vibrational
levels on the PEC are of spectroscopic accuracy. The MRCI-
based PEC also includes small spin-orbit (SO) and scalar-
relativistic (SR) corrections. The small SO and SR correc-
tion terms were removed from the MRCI-based PES for the
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comparisons with DMC presented here. This permits a more
direct comparison since the DMC Hamiltonian does not
include those terms.

2. N2: N(4Su) + N(4Su)→ N2(X1 Σ+g )

When two ground state N(4Su) nitrogen atoms combine,
the total number of molecular states of N2, resolved into
D2h symmetry, is 7,5,3,1Ag (one state of each of four spin-
multiplicities).65

For the calculations in GAMESS, to ensure convergence
to the ground state of N2, a high-spin (in this case septet)
restricted-open Hartree-Fock (ROHF) calculation was per-
formed at the largest N–N distance, followed by a 1-state
MCSCF calculation for the desired singlet ground state with
the full-valence (10e,8o) active space. In the QMC calcula-
tions, based on the results for CO discussed above, the strat-
egy of retaining a variable number of determinants based on
a coefficient threshold was abandoned, and a fixed (gener-
ous) number of 396 determinants were retained. The QMC
data obtained along the coordinate range were assessed by
comparison with an empirical spectroscopic PEC by Le Roy
et al.68

IV. RESULTS AND DISCUSSION

For CO, initially a coefficient weight cutoff of 0.002 was
used to restrict the number of determinants retained in the
trial wavefunctions, generally resulting in a different num-
ber of determinants employed at each CO bond distance.
The DMC energy data and the number of determinants are
given in Tables I and II for Procedure 1 and Procedure 2
(respectively), which differ by roughly an order of magni-
tude in the computational expense devoted to optimizing the
Jastrow factor (the parameters are better converged by Pro-
cedure 1). The DMC energy data were overlaid with the
reference PEC using weighted least-squares to account for
the different uncertainties at each data point. The root mean-
squared deviation (RMSD) of the DMC energy data with
respect to the reference PEC is 315 cm�1. As shown in Fig-
ure 1, the points obtained via both (Jastrow optimization)
procedures follow the reference PEC quite well near the equi-
librium geometry. At bond distances >2.0 Å, where fewer
determinants are retained, the DMC points tend to deviate

TABLE I. DMC energies for CO following Procedure 1 (see text) for Jastrow
factor optimization (data plotted in Figure 1).

Bond distance Number of DMC Uncertainty
(Å) determinants (a.u.) (±) (a.u.)

0.90 107 �113.095 117 4 0.000 413 133
1.00 133 �113.248 941 4 0.000 380 672
1.10 153 �113.295 985 9 0.000 415 229
1.30 229 �113.252 781 4 0.000 348 658
2.60 204 �112.900 792 8 0.000 193 650
3.00 113 �112.888 233 2 0.000 321 403
3.30 95 �112.884 669 0 0.000 296 271
3.50 87 �112.884 567 8 0.000 310 887

TABLE II. DMC energies for CO following Procedure 2 (see text) for
Jastrow factor optimization (data plotted in Figure 1).

Bond distance Number of DMC Uncertainty
(Å) determinants (a.u.) (±) (a.u.)

0.90 107 �113.094 438 0 0.000 389 325
0.95 127 �113.189 637 8 0.000 436 312
1.00 133 �113.249 445 7 0.000 436 334
1.10 153 �113.296 637 3 0.000 396 878
1.20 202 �113.288 083 3 0.000 415 661
1.30 229 �113.253 058 1 0.000 446 796
1.50 317 �113.161 942 5 0.000 352 915
2.10 276 �112.959 646 9 0.000 301 529
2.50 229 �112.907 849 8 0.000 321 865
3.00 113 �112.888 736 5 0.000 296 142
3.30 95 �112.885 660 1 0.000 307 478
3.50 87 �112.884 845 8 0.000 329 048

slightly from the reference PEC (to higher energies). To see
if this behavior might be related to the reduced numbers
of determinants, trial wave functions with a fixed number
of determinants (250) were optimized via both procedures
and then recalculated with DMC. The results are given in
Tables III and IV and in Figure 2. The RMSD of the DMC
energy data computed using a fixed number of determinants
with respect to the reference PEC is 292 cm�1. This is only
slightly less than that of the variable determinants data. Note
that corresponding to the number of DMC samples, the uncer-
tainties at each data point are in the range of 40-90 cm�1

(see tables). It is not clear from these results that retaining
a fixed number of determinants produces significantly more
consistent results than the lower-cost coefficient weight cut-
off strategy (which results in a variable number of retained
determinants). Regarding the Jastrow optimization, since the
results obtained by procedures 1 and 2 are of similar quality
and are essentially interchangeable, it appears that the invest-
ment of considerably more CPU time in Procedure 1 was not
warranted.

To test whether sensible spectroscopic parameters could
be obtained from the data, a fit to the Morse function was
performed (it is straightforward to convert Morse parameters
into anharmonic parameters).15 First, since the most accurate
PEC will not be precisely Morse-like, parameters obtained
by fitting the reference PEC were compared to the experi-
mental CO parameters of re = 1.128 Å, ωe = 2170.2 cm�1,
and ωexe = 13.46 cm�1.65 The Morse form could not accu-
rately accommodate the entire coordinate range of the ref-
erence PEC and produced a fitted value for the harmonic
constant that is significantly too high (ωe = 2215.1 cm�1).
Fitting data in a more limited range of rCO = [0.9, 1.6] Å pro-
duced more reasonable values of re = 1.128 Å, ωe = 2174.9
cm�1, and ωexe = 13.05 cm�1. Fitting the DMC data over the
same coordinate range yields parameters of re = 1.129 Å, ωe

= 2187.0 cm�1, andωexe = 13.28 cm�1, all of which are quite
useful estimates. Since the spectroscopically accurate refer-
ence PEC and the DMC data are globally consistent, it seems
likely that further reducing the DMC uncertainties (through
additional sampling) and a denser grid would yield even better
constants.
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FIG. 1. DMC calculations for CO with variable numbers
of determinants are compared with two MRCI reference
curves (see text).

For N2, a fixed number of 396 determinants were
employed for all geometries. The data for Jastrow optimiza-
tions via Procedure 1 and Procedure 2 are given in Tables
V and VI, respectively, and are plotted in Figure 3. The
data are compared with an empirical spectroscopic PEC by
Le Roy et al.68 The DMC data are generally consistent with
the empirical PEC and are much closer to it than moderately
high-level MRCI/AVTZ data shown for additional compari-
son. The RMSD of the DMC data with respect to the empirical
PEC is 598 cm�1, which is significantly larger than was found
for CO discussed above. Since the empirical PEC for N2

was obtained via direct fit to spectroscopic data, it implic-
itly includes small effects such as relativistic corrections not
included in the DMC Hamiltonian (that were removed for this
reason from the CO PEC for the previous comparison dis-
cussed above). However, this is not likely to be a significant
source of discrepancy as these sorts of corrections are rela-
tively small for N2. It is noteworthy that the DMC data point
at rNN = 0.8 Å (listed in Tables V and VI) was excluded from
the comparison as it is an outlier roughly 5000 cm�1 more sta-
ble than the value given by the reference PEC. The empirical
PEC is expected to be unreliable for repulsive geometries far
beyond the turning points of the contributing spectroscopic
data. Indeed, the empirical PEC was confirmed to be much
more repulsive at short range than a high quality ab initio
PEC by Gdanitz which is consistent with the DMC value.69

Again, as was found for CO, the additional cost of a stricter
Jastrow optimization procedure did not yield obviously
improved results.

As was done for CO, the reference and DMC-based PECs
were each fit to a Morse function to extract spectroscopic

TABLE III. DMC energies for CO following Procedure 1 for Jastrow
optimization with a fixed number of determinants.

Bond distance Number of DMC Uncertainty
(Å) determinants (a.u.) (±) (a.u.)

1.10 250 �113.296 209 2 0.000 430 335
1.20 250 �113.287 484 7 0.000 453 569
1.60 250 �113.115 708 7 0.000 396 781
2.20 250 �112.941 968 1 0.000 350 373
3.50 250 �112.884 136 9 0.000 288 665

parameters. The experimental values used for comparison are
re = 1.094 Å, ωe = 2359.6 cm�1, and ωexe = 14.46 cm�1.65

Fitting the reference PEC over the range rNN = [0.9, 1.3]
Å produced values of re = 1.098 Å, ωe = 2360.6 cm�1,
and ωexe = 14.70 cm�1. Fitting the DMC data over the
same coordinate range yields parameters of re = 1.097 Å,
ωe = 2373.4 cm�1, and ωexe = 14.45 cm�1, all of which
are again quite accurate.

The cost of generating high quality energies via DMC
for the two 14-electron systems (CO and N2) was assessed.
A significant fraction of the total cost relates to the optimiza-
tion of a Jastrow factor that was employed in this study. As
mentioned previously, some advantages and disadvantages of
using a Jastrow have been noted by Giner et al.40 The initial
Jastrow optimizations for N2 with a fixed number of determi-
nants using cheaper Procedure 2 took ∼800-1300 CPU-h per
point. With CO, for Jastrow optimizations via Procedure 2 with
a varying number of determinants (using a coefficient cutoff
strategy), the CPU-hours depend significantly on the number
of retained determinants. The lowest cost was the bond dis-
tance of 3.5 Å, which includes 87 determinants and took about
300 CPU-h. The highest cost was 1.5 Å, which includes 317

TABLE IV. DMC energies for CO following Procedure 2 for Jastrow
optimization with a fixed number of determinants.

Bond distance Number of DMC Uncertainty
(Å) determinants (a.u.) (±) (a.u.)

0.80 250 �112.742 692 4 0.000 170 137
0.90 250 �113.094 621 5 0.000 182 671
1.00 250 �113.248 980 0 0.000 158 881
1.10 250 �113.296 145 5 0.000 167 728
1.20 250 �113.287 490 1 0.000 149 456
1.30 250 �113.253 788 0 0.000 168 859
1.40 250 �113.209 066 1 0.000 158 616
1.50 250 �113.162 305 9 0.000 164 298
1.60 250 �113.116 031 3 0.000 144 766
2.00 250 �112.981 497 0 0.000 139 589
2.20 250 �112.941 313 8 0.000 137 728
2.50 250 �112.907 113 6 0.000 138 389
3.00 250 �112.888 779 5 0.000 121 424
3.50 250 �112.885 223 1 0.000 126 156
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FIG. 2. DMC calculations for CO with a fixed num-
ber (250) of determinants are compared with two MRCI
reference curves (see text).

determinants and took about 1860 CPU-h. For Procedure 1,
the cost for CO increased to ∼5000-15 000 CPU-h per point,
and the cost for N2 increased to ∼18 000-25 000 CPU-h per
point.

Once the Jastrow has been optimized by VMC via either
Procedure 1 or Procedure 2, the subsequent DMC energy cal-
culations add a significant additional cost which depends on
the number of DMC samples which in turn determines the
final uncertainties (related as 1/

√
M, where M is the num-

ber of samples). For N2, to reach uncertainties on the order
of 100 cm�1 (see Tables V and VI), the DMC cost was
∼1800-2200 CPU-h per point. Specifically, after Jastrow opti-
mization via Procedure 1, the cost of the DMC sampling
for the N2 points located at rNN = 0.8 Å, 1.1 Å, and 2.5 Å
took 2170 CPU-h, 1850 CPU-h, and 2010 CPU-h, respec-
tively, to reach an average uncertainty in the three points of
∼86 cm�1. Similarly, after Procedure 2 optimization, the DMC
cost for the same points was about 1880 CPU-h, 2035 CPU-h,
and 2030 CPU-h, respectively, for an average uncertainty of
∼93 cm�1.

For CO, the DMC sampling cost after Jastrow optimiza-
tion was ∼775-1900 CPU-h per point to reach similar uncer-
tainties. The cost of the DMC calculations for CO and N2

(both 14-electron systems) was approximately the same, but
the Jastrow optimizations via Procedure 1 took about an order
of magnitude longer than those of Procedure 2. The qual-
ity of the final energies is similar for the two procedures,
indicating that a more conservative Jastrow optimization is rea-
sonable since it appears that diminishing returns are realized

TABLE V. DMC energies for N2 following Procedure 1 (see text) for Jastrow
factor optimization (data plotted in Figure 3).

Bond distance Number of DMC energy Uncertainty
(Å) determinants (a.u.) (±) (a.u.)

0.80 396 �109.016 719 2 0.000 434 940
1.10 396 �109.515 594 9 0.000 434 508
1.20 396 �109.494 409 1 0.000 447 115
1.60 396 �109.293 648 4 0.000 367 967
1.80 396 �109.222 031 5 0.000 335 620
2.00 396 �109.181 161 3 0.000 554 249
2.50 396 �109.154 345 7 0.000 308 338

with respect to further optimization. Trial wave functions for
CO with 250 (fixed) determinants were also optimized using
Procedure 2 with a cost of ∼1000-1500 CPU-h per point.
To achieve an average uncertainty ∼33 cm�1 in the DMC,
an additional cost of ∼7000-10 000 CPU-h per point was
required.

The QMCPACK code was used to test the improved effi-
ciency that is expected by the use of the table method algorithm
for multideterminant calculations.46,47 For these comparisons,
the same numbers of determinants were retained and the same
Jastrow factors were employed. The QMCPACK code was
found to reach similar uncertainties for our two test systems
in about 30% fewer CPU-hours. For much larger numbers
of determinants (up to 16 000), Clark et al. reported much
more significant speedups in the range of factors of 15-40.47

They noted smaller speedup factors for smaller numbers of
determinants. The speedup that one might expect from the
QMCPACK algorithm will depend on the size of the system
and the number of determinants as well as hardware limitations
such as memory and cache.70 In our study of two small systems
with only 14 electrons and modest numbers of determinants,
the speedup is already significant indicating that this method
should be preferred in future larger scale multideterminant
applications.

TABLE VI. DMC energies for N2 following Procedure 2 (see text) for
Jastrow factor optimization (data plotted in Figure 3).

Bond distance Number of DMC Uncertainty
(Å) determinants (a.u.) (±) (a.u.)

0.80 396 �109.016 277 8 0.000 501 235
0.90 396 �109.344 800 2 0.000 453 625
0.95 396 �109.432 559 5 0.000 506 966
1.10 396 �109.515 532 7 0.000 455 739
1.20 396 �109.493 794 5 0.000 427 817
1.30 396 �109.447 839 0 0.000 430 446
1.40 396 �109.393 779 5 0.000 361 739
1.50 396 �109.340 537 4 0.000 365 678
1.60 396 �109.293 422 1 0.000 408 069
2.00 396 �109.180 624 2 0.000 341 908
2.20 396 �109.163 490 8 0.000 323 882
2.50 396 �109.154 808 3 0.000 323 347
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FIG. 3. DMC calculations for N2 compared with an MRCI
curve and an empirical curve from the work of Le Roy
et al.68

V. CONCLUSION

It was determined that straightforward application of
QMC methods implemented in two freely available codes
(CASINO and QMCPACK) could robustly compute electronic
energies along dissociation coordinates of small molecules
that are comparable in accuracy to high level traditional quan-
tum chemistry. A QMC tutorial aimed at graduate students
who have some familiarity with traditional quantum chemistry,
but no experience with QMC, is provided as supplementary
material.

Points along the potential energy curves of the ground
states of CO and N2 were generated with multideterminant
fixed-node diffusion Monte Carlo methods and were found to
be in close agreement with spectroscopically accurate curves.
The spectroscopic constants obtained by fitting the data are in
close agreement with the experiment. In particular, the equi-
librium bond distance parameters obtained by fitting to only a
few points are within 1-3 pm of experiment.

For the two 14-electron test systems, generating com-
parably high-quality electronic structure data by conven-
tional methods such as MRCI takes less than 0.5 CPU-h per
point, compared with at least 4000 CPU-h for the employed
DMC method, as implemented in CASINO, depending on the
desired final uncertainty. The QMCPACK code is known to be
more efficient for multideterminant trial wavefunctions. For
the small test systems and modest numbers of determinants
employed in this study, the QMCPACK code was only slightly
faster (∼30%), but is indicated for larger scale applications
where more significant speedups have been reported.47 The
favorable n3 scaling of DMC does ensure a crossover point
in system size beyond which it becomes cheaper than con-
ventional high-accuracy electronic structure methods (scaling
as n7 or worse). The large cost pre-factor of DMC seems to
preclude it from the routine use in the construction of global
PESs (which for 3-5 atom systems typically require thousands
of points) at this time. However, in addition to the favorable
scaling with system size, QMC methods scale nearly linearly
with the number of cores, which could lead to short time-to-
solution using next generation architectures with millions of
cores.

Even now, given the high accuracy that is achievable via
QMC methods, we also see it as a possible arbiter in difficult
cases where high-level conventional methods might disagree

about the presence or height of a rate determining reaction
barrier.71,72

It is anticipated that QMC methods will become increas-
ingly relevant in the near future.

SUPPLEMENTARY MATERIAL

See supplementary material for a guide illustrating the use
of CASINO to perform VMC and DMC calculations with trial
wavefunctions generated in GAMESS. The guide is intended
to be accessible to readers with some experience in traditional
quantum chemistry.
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8B. Santra, J. Klimes, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides,
R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).

9K. P. Esler, J. Kim, D. M. Ceperley, and L. Shulenburger, Comput. Sci. Eng.
14, 40 (2012).

10N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde, Phys. Rev. Lett.
108, 067204 (2012).

11I. G. Gurtubay, N. D. Drummond, M. D. Towler, and R. J. Needs, J. Chem.
Phys. 124, 024318 (2006).

12C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett. 60, 1719
(1988).

13Z. Sun, R. N. Barnett, and W. A. Lester, Jr., J. Chem. Phys. 96, 2422 (1992).
14J. C. Grossman, J. Chem. Phys. 117, 1434 (2002).
15M. W. Lee, M. Mella, and A. M. Rappe, J. Chem. Phys. 122, 244103 (2005).
16A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. B 71,

066704 (2005).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-039646
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-039646
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-039646
http://dx.doi.org/10.1126/science.231.4738.555
http://dx.doi.org/10.1088/1742-6596/125/1/012057
http://dx.doi.org/10.1088/1742-6596/125/1/012057
http://dx.doi.org/10.1021/cr2001564
http://dx.doi.org/10.1002/jcc.23216
http://dx.doi.org/10.1146/annurev.physchem.51.1.501
http://dx.doi.org/10.1103/PhysRevB.80.033407
http://dx.doi.org/10.1103/PhysRevLett.107.185701
http://dx.doi.org/10.1109/mcse.2010.122
http://dx.doi.org/10.1103/PhysRevLett.108.067204
http://dx.doi.org/10.1063/1.2150818
http://dx.doi.org/10.1063/1.2150818
http://dx.doi.org/10.1103/PhysRevLett.60.1719
http://dx.doi.org/10.1063/1.462043
http://dx.doi.org/10.1063/1.1487829
http://dx.doi.org/10.1063/1.1924690
http://dx.doi.org/10.1103/PhysRevE.71.066704


224308-8 A. D. Powell and R. Dawes J. Chem. Phys. 145, 224308 (2016)

17J. A. W. Harkless and K. K. Irikura, Int. J. Quantum Chem. 106, 2373
(2006).

18M. D. Brown, J. R. Trail, P. López Rı́os, and R. J. Needs, J. Chem. Phys.
126, 224110 (2007).

19W. Purwanto, W. A. Al-Saidi, H. Krakauer, and S. Zhang, J. Chem. Phys.
128, 114309 (2008).

20N. Nemec, M. D. Towler, and R. J. Needs, J. Chem. Phys. 132, 034111
(2010).

21B. Braı̈da, J. Toulouse, M. Caffarel, and C. J. Umrigar, J. Chem. Phys. 134,
084108 (2011).

22P. Seth, P. L. Rı́os, and R. J. Needs, J. Chem. Phys. 134, 084105 (2011).
23K. Hongo and R. Maezono, Int. J. Quantum Chem. 112, 1243 (2012).
24M. A. Morales, J. McMinis, B. K. Clark, J. Kim, and G. E. Scuseria, J.

Chem. Theory Comput. 8, 2181 (2012).
25M. J. Deible, M. Kessler, K. E. Gasperich, and K. D. Jordan, J. Chem. Phys.

143, 084116 (2015).
26R. C. Clay III and M. A. Morales, J. Chem. Phys. 142, 234103 (2015).
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