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Effect of molecular angular momentum on the thermal 
conductivity of a multicomponent gas mixture 

Louis Biolsi 

Department of Chemistry. University of Missouri-Rolla. Rolla. Missouri 65401 

E. A. Mason 

Brown University. Providence. Rhode Island 02912 
(Received 14 February 1975) 

The effects of molecular angular momentum (spin polarization) on the thermal conductivity of a 
multicomponent gas mixture are considered. The Wang Chang-Uhlenbeck approach to the kinetic theory 
of gases with internal states is used. Formal results are obtained for the thermal conductivity of a gas mixture 
of uniform composition. These results are given in terms of the quantum mechanical degeneracy-averaged 
cross section. 

The formal kinetic theory of a single-component gas 
composed of polyatomic molecules with internal states 
was first developed by Wang Chang and Uhlenbeck1 and 
was extended to include polyatomic gas mixtures by Mon­
chick, Yun, and Mason. 2 Later work3 showed that the 
assumption of detailed balance made by Wang Chang and 
Uhlenbeck is not, in general, correct but their results 
are valid if the internal states are nondegenerate or if 
the quantum mechanical cross section has been degen­
eracy averaged. 

In 1961 Kagan and Afanas' ev4 showed that in a system 
of molecules possessing angular momentum, the per­
turbation part of the distribution function should be writ­
ten in terms of the two independent vector quantities lin­
ear momentum and angular momentum. The angular 
momentum terms account for the polarization of the 
molecules caused by gradients in the gas and were not 
included in the work of Refs. 1 and 2. This "spin polar­
ization" can affect the transport properties. 5,6 For in­
stance, Sandler and Dahlers found, using a classical 
loaded-sphere model for a mixture of D2 and HT, that 
spin polarization caused negligible changes for diffusion, 
appreciable changes for thermal conductivity, and 
changes up to 24% for thermal diffusion. McCourt and 
Snider' developed a formal quantum mechanical approach 
to the spin polarization effect on thermal conductivity for 
a single-component polyatomic gas. The purpose of this 
paper is to extend the quantum mechanical treatment of 
the spin polarization effect on thermal conductivity to 
polyatomic gas mixtures, using the Wang Chang-Uhlen­
beck approach. 

I. THE SEMICLASSICAL BOLTZMANN EQUATION 

The kinetic equation solved by Wang Chang and Uhlen­
beck is l 

~t'+Vq. a~fqi=L L f··· f (~~f:q'l-fqJlq'J) 
0' Jld 

xgI:: (g,X,<p) sinxdxd<pdVlq' , (1) 

where fo; = fq(vq, Eqlo r, t) is the Singlet distribution func­
tion and Eq; is the internal energy of the qth chemical 
species in quantum state i. Also I:: is the differential 
scattering cross section for the process in which mole­
cules q and q', initially in internal states i and j, re-
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spectively, go to final internal states k and l, respec­
tively, the primes indicating post-collision values, and 

Equation (1) has been obtained by assuming the existence 
of symmetry between inverse processes; i. e., 

kl ( ) _ , IJ (' ) gIIJ g, X, <p - g I kl g , X, <p • (2) 

This relation is strictly correct only if the internal 
states are nondegenerate or if the differential cross sec­
tion has been degeneracy averaged. Equation (1) is 
called the semiclassical Boltzmann equation because the 
translational motion is treated classically and the inter­
nal motion is treated quantum mechanically. 

In the perturbation solution of the Boltzmann equation, 
the left hand side of Eq. (1) is treated as the perturba­
tion and the distribution function is written as 

f qi = f~1 (1 + <Pol + ••• ) , 

where f~1 is the zero-order (equilibrium) distribution 
function and <Pqi is the perturbation function. 

Consider a system of rotating polyatomic molecules 
without any net macroscopic angular momentum; i. e., 
one in which no torques act on the gas. The zero order 
distribution function for this system is7 

f~~) =[nq/~exp(-Eql -a· J.)/kT }mq/21TkT)3/2 

(3) 

where Jq is the internal angular momentum operator and 

Vq=Vq-VO, 

in which Vo is the mass-average velocity. The vector a 
represents the local average angular velocity,6 i. e. , 
even when the net macroscopic angular velocity is zero, 
there can be a local angular velocity due to internal ro­
tation. 

The normalization conditions on f~i are 

nq = L;: f f~1 dVq , 

and 
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(4) 

(5) 
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where 

(6) 

Also 

PUo=PU~r+PU~nt=~~f f~j(~qV~+Eqj)dVq , (7) 

and 

(8) 

where nq is the macroscopic number density, P is the 
macroscopic mass density, U O is the energy per gram, 
and J is the angular momentum density. 

The average internal angular momentum will be taken 
to be zero in which case a is also zero. 7 Then Eq. (3) 
can be written as 

° nq( mq )3/2 2 
f ql = Qq 2rrkT exp(- W q - Eql) (9) 

where 

w q =·fm,)2kTVq, Eqj =EqdkT, Qq = :L>-6q l • 
I 

Gradients in a are necessary for the transport of angu-
lar momentum. However, when the average internal 
angular momentum is zero, individual molecules may 
still have polarized angular momenta. 

II. THE EQUATIONS OF CHANGE 

The usual equations of change are obtained: the equa­
tion of continuity, 

(10) 

the equation of motion, 

a a a 
P at Vo + pvo' ar vo = - ar' P , (11) 

and the equation of energy balance, 

a ° a ° a a 
Pat U + pvo' ar U = - P : ar Vo - ar . q (12) 

In the equations above the pressure tensor p is defined 
as 

p = L nq mq (Vq V q) , 
q 

and the heat flux vector q is defined as 

q==Lnq«~mq V~+Eqj)Vq) , 
q 

where 

(13) 

(14) 

(15) 

In addition, there is an equation of change for internal 
angular momentum; 

(16) 

where the angular momentum flux tensor L is defined 

At equilibrium 

L =0, q==O, P==PU, p=nkT , 

where U is the unit tensor. 

III. THE LINEARIZED BOLTZMANN EQUATION 

The set of integral equations for the perturbation 
function, CPqi> is given by 

L [(cpql) = f~1 [2(Wq Wq - tw! U): 5 +{(w~ -~) 
q' 

where 

[(cp qj) == L: J ... J f~1 f~q' J (iP;k + cP;, I - <Pql - CPq' ,) 
Jkl 

(17) 

(18) 

xg[~l(g, X, cp) sinxdxdcp dv1q , (19) 

and 

Also, Cv is the heat capacity per unit volume per mole­
cule and the internal heat capacity per molecule, C1nt, is 
given by 

In addition 

1(a a t) 1 a 5=- -v +-V ---. V U 2 ar ° ar ° 3 ar ° , 
and 

dq == a~(~) + (;: - napa) a~ lnp , 

where the superscript t denotes the transpose. 

The form of Eq. (18) suggests that CPql should be ex­
panded in the linearly independent gradients of density, 
temperature, and velocity, i. e. , 

<Pql == - Aqj . aa lnT - Bql : 5 +n L (c:' • d",) 
r q' 

(20) 

The first term in Eq. (20) is associated with thermal 
conductivity, the second term with shear viscosity, the 
third term with diffusion, and the fourth term with the 
volume (bulk) viscosity. If a had not been taken to be 
zero, there would also be a term involving the gradient 
of angular momentum. 7 

IV. THERMAL CONDUCTIVITY 

Thermal conductivity is determined by the tempera­
ture gradient, associated with the Aql in Eq. (20). 
From Eqs. (18) and (20), the set of integral equations 
for the Aql is found to be 

J. Chern. Phys., Vol. 63, No.1, 1 July 1975 



12 L. Biolsi and E. A. Mason: Thermal conductivity of a multicomponent gas 

f~[(W~-t)+(Eqi-Eq)]Vq=-LI(Aql) . (21) 
q' 

From Eqs. (14), (20), and (21), the heat flux vector can 
be written as 

q = qtr +qlnt , 

where 

and 

Clint =kT~nq Eq (Yq) +kT ~ 4= J Vq f~j(Eql - Eq) 

(22) 

x[ -A.qj'· a>nT+n ~ (C:' • dq,)]dVq . (24) 

The first terms on the right in Eqs. (23) and (24) rep­
resent heat flux due to mass transport, and the second 
terms on the right represent the heat flux due to tem­
perature gradients. A thermal conductivity coefficient 
for a mixture at uniform composition, -\" is associated 
with the second terms. 

The last terms in Eqs. (23) and (24) represent the 
heat flux due to diffusion forces; i. e., the effect of ther­
mal diffusion. The diffusion forces, dq., are conven­
tionally eliminated by using the diffusion equation, 2,9 

leading to a new thermal conductivity coefficient, A ... 

In this paper it is assumed that the gas mixture main­
tains a uniform composition. Thus the last terms in 
Eqs. (23) and (24) do not contribute. This should be a 
reasonable assumption since, often, \J "" Am. 2,10 Also, 
classical numerical model calculations of the effects of 
spin polarization on thermal conductivity involve calcu­
lations of \,.5 Work is in progress on the spin polar­
ization contribution to A.,. 

There are several auxiliary conditions on the pertur­
bation function. These are a consequence of the fact that 
the local values of density, energy, and linear and angu­
lar momentum must be determined by the local equilib­
rium distribution function. The auxiliary conditions are 

L f f~jAqjdvq=O , 
j 

(25) 

(26) 

(27) 

and 

(28) 

Four independent polar vectors can be constructed 
from Wq and Jq. 1 These are 

Since it can be shown that the last two terms do not con­
tribute to the expression for q, 7 the operator Aqj can be 

written in the Hermitian form 

Aqi +A~j Wq +H[Jq; Jq Wq]+; A!j}+ , 

using the polar vectors, where 

A l - '"' 1 sen) (W 2)R(O)( ) p(O)( 2) qj - L.J aqfllli 3/2 q I> Eqj 1 m 
n",t 

and 

(29) 

(30) 

A!j = L a;fIIIl S ~'?z(W:)R:O)(Eqj) p:I)(m2) . (31) 
n",t 

The a~flllt and a!fIIIf are expansion coefficients to be de­
termined. The effect of spin polarization is included in 
the second term on the right in Eq. (29). 

The polynominal S~%(W;) is a Sonine polynomial, 11 

R;O)(Eqj ) is the polynomial introduced by Wang Chang and 
Uhlenbeck,l and p:O}(m2) and p:l)(m2) are the quantum 
mechanical analogs7 of the polynomials introduced by 
Kagan and Manas'ev. 4 Only the first few polynomials 
will be used. These are given by 

S~~)2(W!) = 1, Sm(w!) =t - W~ , 

R~O)(E:qf)=1, R!()«(qj)=(qj-Eq , 

p~0)(m2)=1, p~1)(m2)=[l(l+l)]-1, 

where 1 is the angular momentum quantum number and m 
is the z component of angular momentum quantum num­
ber. Thus the index i stands for the indices 1 and m and 
(q/ = (q/' The orthonormality conditions on these poly­
nomials are 

1m xm e"% sInH --) S(n' ) (x) dx = (m +n)! /) 
o m ~ on nl nn', 

'"' e- Eq
/ (0) (0) _ (C qlut)1> y(21+1)~R, «(ql)R" (Eql)- -k- 6/1/1' , 

.LP ~O) (m 2 ) P ~O) (m 2 ) = (2l + 1) 601 , 

m 

and 

'"' m2 P'(1)(m2) p(1)(m2) = (21 + 1) (; 
~ 0 1 31(1+1) 01 

Let the direction of Wq be the z axis. Then, upon sub­
stituting Eqs. (29), (30), and (31) in Eqs. (23) and (24) 

. and using the properties of the polynomials, it can be 
shown that 

Cltr =~ kTLnq (Vq) - Aotr ",8 T 
q vr 

(32) 

and 

(33) 

assuming that the contribution to thermal conductivity 
due to thermal diffusion is small. The translational and 
internal contributions to the thermal conductivity in a 
multicomponent gas mixutre of uniform composition are 
given by 

(34) 

and 
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(35) 

respectively. It can also be shown that the auxiliary 
condition on the expansion coefficients is 

Lna.rm;, (a!ooo + t a!ooo) =- 0 . (36) 
a 

The a/s in Eqs. (34), (35), and (36) must now be deter­
mined. 

V. CALCULATION OF THE EXPANSION 
COEFFICIENTS 

The expansion coefficients are obtained through the 
use of the variational principle. This has been discussed 
by Hirschfelder, Curtiss, and Birdll and by McCourt 
and Snider. 7 In order to calculate the coefficients, a 
trial function for Aql is necessary. Let 

T (3/2)01 =5(n) (W 2)R(0)(E: ) p(f)(m2) 
nPt 3/2 q , ql t • (37) 

Then the trial function used in this paper can be written 
as 

A _I T(3/2)00W (I (3/2)00 I T,(3/2)00)W al - aaOOO 00 a + aalOO T 100 + aqOIO OlD a 

1 2 '7'(3/2)0I[J J W] 1 (2 T(3/2)DI +2aaOOO ~OOO a; a' a ++2 aalOO lao 

(38) 

i. e., the trial function contains terms with 

n =- p =- t=-O n =- t =- 0; P =- 1 P =- t =- 0; n =- 1 (39) 

Equation (38) is similar to the trial function used by 
McCourt and Snider7 and contains more terms than have 
been used in the analagous classical calculations. 4-6 

The smallest number of terms necessary to give all the 
physical effects have been used in the trial function. 

A set of six equations for the six unknown expansion 
ff·· t I 2 I 2 I d 2 • coe lClen s aaooo, aaooo, aalOO, aqlOO , aqOIO , an aqOIO IS ob-

tained by taking integral moments of each term in trial 
function (38) with Eq. (21). These equations can be 
written in the form 

R -""" { I -nPt,n','t' qnPt - ~ ~ ~ aq'n'p,t' Qqq'OO 
q' nl't 11'1" t' 

(40) 

and 

(41) 

subject to the constraints on n, p, t and n', pi, t' in ex­
pressions (39). Also the R's and Q's are defined as 

/JF![15 3c ] RqnPt =- -nq J rn; 4" o(,zpt, 100) -'2 ~ o (npt, 010) ,(42) 

QnPt n','t' _ " {'" [T(3/2)OOW' T(3/2)00W ] 
0(1'00 - L...J n"nq " V CZG ' rtlJt q, n'p't' Q qq" 

q" 

" [T(3/Z)00W . T(3/Z)00W 1 } 
+UqIQII nit (I' n'/J't' q"JQq", (43) 

x T(3/Z)01[J'J W]] " [...I3/Z)00W • T(3/2101 
n'p't' q, q- q+qq,'+uQ'<l" 1,." G') n'p't' 

(44) 

(3/2)01[ ]] } 
XT"'P'f' Jq";Jq".Wq,, +Qq" , (45) 

where the bracket integrals, [ lq'" are evaluated in the 
Appendix. In addition 

<';>000,000 _ QOOO, 000 _ nq,,rm; QOOO,OOO 
qq'OO - qa'OO nq~ qqOO , (46) 

(47) 

and 

Q- nit.n',' tt _ .t n'P' tt 
qq'OO -Qqq'OO 

(48) 

whenn, p, t, n', pi, and t' are not all zero. 

The auxiliary condition given by Eq. (36) has been in­
cluded in this set of equations. The form has been 
chosen so that the results reduce to those obtained in 
Ref. 2 in the absence of spin polarization. 

Now define matrix elements L by9 

(49) 

with an exactly similar definition of L:~~~"'t' in terms of 
Q:~~r" t', where 

3
C q IDt J -'2 -k- o(,zpt, 010) . (50) 

When Eq. (49) is substituted in Eqs. (40) and (41), a 
set of linear equations in terms of the L:!~r P' t' is ob­
tained. This set of equations is solved for the expansion 
coefficients. Then Eq. (34) becomes 

J. Chern. Phys., Vol. 63, No.1, 1 July 1975 
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Aotr =4 
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I a 
1--­
: Xq 

r---
I Xq 

L nllt,n'p't' 1--- 1 
qq'ab L Q. _ +-

ly./6 
1---
'x./6 

-T--T-'-,-T-+-­
o I x.' I 0 I a I 0 I a I 0 

ILnllt,n'p't'\ 
qq'ab 

3 
Lnllt,n'p't' 

qq'ab 

I 0 
/--­
I Xq 

r---
I x. 
1--­
'_Q 
: x./6 
r---­
I xq /6 

- T - T" - T -, -.,-- - -1---
a I 0 I 0 I 0 I x.' I 0 I 0 

and Eq. (35) becomes 

Aolnt =4 

where 

Lnllt,n'p't' 
qq'ab 

I 
I 0 
1---
, x. 
1---
'x. 1 
I- - - +­
'0 3 r--
, x./6 
t- -­
, x./6 

- T - T - T - T - T -+ - -
OIO'X,1 0 1 010' 0 

, I • I , I J 

I Lnllt,n,p't'l 
qq'ab 

: 0 
r-­
, x. 
r-­
, x. 

L:! ~~' P' t' t-- __ 
I 0 
r--
I x./6 
r-­
I x./6 

-,-T-T-'-T---t- --
a : a : 0 : a : 0: x.' L a 

1
000,000 I _000,100 I _000,010 1 _000,000 I _000,100 I _000,010 

, IL , ,L , IL , IL , ,L , 
qq 00 I qq 00 I qq 00 ~ qq 01: qq 01 I qq 01 

------+-----+------t-----'1"- --.-- +- ----
lOa, 000 I 100,100 I 100,010 I 100,000 I 100,1<00 I 100,010 

1- , 11 I II, II, II, 'I, 
qq 00 l qq 00 ~ qq 00 : qq 01: qq 01 ! qq 01 

-------1--- --- + ------t----- "t'-- - --+- -----
010,000 I 010,100: 010,010: 010,000' 010,100 1 010,010 
I, II, ,i , ,i , II , :1, 

qq 00 I qq 00, qq 00 , qq 01, qq 01, qq 01 
nIIt n',' t' I 

L •• ·~b =------+-- --- + - - - - -t - - - - '1"-- ----t- -----
000,000 : 000,100: ODD, 010 1 000,000 I 000,100 I 000,010 
L, IL, L, IL , IL 'L, 

qq 01 I qq 01 1 qq 01 1 qq 11! qq'l1 I qq 11 

-----+-----+-----4-----~-----+-----
100,000 I 100,100: 100,010 I 100,000 1 100,100 1 100,010 

L , lL IL IL, IL , IL , 
qq 01 I qq'Ol, qq'Ol I qq 11 1 qq 11 , qq 11 

-----+----+--- - + ----+-----+-----
010, 000: 010,100: 010,010 1 010,000 I 010,100 I 010,010 

L I IL , ,L , 'L , IL , IL , 
qq 01 I qq 01 I qq 01 , qq 11' qq 11 , qq 11 

I "I 

The L=!~rp·t' are evaluated in the Appendix. 

(51) 

(52) 

(53) 

DISCUSSION 

In the absence of spin polarization these results re­
duce to those given in Ref. 2; i. e., the second term on 
the right in both Eq. (51) and Eq. (52) does not contribute 
to the thermal conductivity and the only nonzero matrix 
elements L=!~rp't' are those with a'" b = O. The results 
given above and in the Appendix have also been examined 
for a mixture of mechanically similar molecules; i. e., 

are consistent with those obtained by McCourt and Snider 
for a single-component gas. 7 

a mixture of a gas with itself. In this case the results 

Many of the bracket integrals depend on inelastic col­
lision processes. This dependence consists of two types 
of terms; terms linear in ~E:iD.t '" ~E: ••• and terms of the 
order ~E:;.'. In a first ·approximation, inelastic colli­
sions can be ignored. 12,13 Then many of the matrix ele­
ments such as L!~?b~OO (see Ref. 2), L!~?~fO, etc. are con­
siderably simplified. Other matrix elements such as 

J. Chern. Phys., Vol. 63. No. 1, 1 July 1975 
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L!~?oglO and L~~?b~OO (see Ref. 2) vanish. 

Since ~E:"", can be either positive or negative, the lin­
ear terms in ~E:Il'" should be -nearly zero on averaging 
over all collisions. 12 Thus the inelastic collision pro­
cesses depend on terms of order ~E::",. Mason and Mon­
chick12

,13 showed that for a single-component gas without 
spin polarization, these terms can be expressed in terms 
ofthe relaxation time, a quantity that is often experimen­
tally measurable. Inelastic collision processes in a gas 
possessing spin polarization should also be related to 
relaxation times and work is in progress on this point. 

tion contributes significantly to transport properties that 
depend sensitively on inelastic collisions. Thermal con­
ductivity is such a transport property. 2 The assumption 
of inverse collisions is correct if the internal states are 
nondegenerate or if the cross section is degeneracy av­
eraged. Does this degeneracy averaging "wash out" 
spin polarization effects? A complete answer is not 
possible at this point. However loaded spheres have 
inverse collisions but still show a definite spin polariza­
tion effect. 5,6 
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APPENDIX 

Using Eqs. (43) through (50), the L:::!~~I>'t' can be written in terms of the bracket integrals. The results are 

and 

L-rw>t,n'/I'I' _ 6x"x",..rm;:rn;; '" {" [T(S/2)00w. (3/2)00 1 [(3/2)00. (3/2)00W l} 
q,,'OO --k2rn L..J nq" v"", rw>t ",Tn'/I't' Wq.lqq"+O"'"'' Trw>t W", Tn'/I't ' ,,".Iq" 

ll,gq",tgll'n'p't' fl" 

(A2) 

when n, p, t, n', p', and t' are not all zero. Also 

-000 000 16xqxq'..rm;m;; '" {[ (1)( 2 [ ] ] [(1)( 2 [ ] 1 
L""'(ll = - 75k2rn

o
' ~ n,," _li"o' W,,; Po mil) Jo;J,,' W" + 0"" + li"'ott W,,;Po m/) J"" ;J"" . W"" +.lqq" 

(A3) 

and 

" [T(3/2)OOW 'T(S/2)01[J'J w] 1, } 
i- Va'll".t a' n'II't' qll, q". q" + 12" (A4) 

when n, p,_ t, n', p', and t' are not all zero. In addition 

Lrw>t n'/I't' - 3xoxo'.rm;m; '" {o [(3/2)00 (S/2)01 [ 1 ] 
",,'61 - - k2rn -L..J~" ",,' T rw>f W,,; Tn'I>' t' J" ; J" • W" + ",," 

tl,ganl'tgq'n'P't' q" 

and 
" [",f3/2)00 W . T(3/2)01[J J W] 1, } + VQI Q,,1 .t q, n' " I' 'I"; ql'. 0" + fI" (A5) 

o [T(S/ZIOI [J.J W]· T(S/2101 [J.J ] 1, } + q'Q",.t 4" G· a +, ,.','f' 'I'" G"· Wqll + q" (AS) 

for all combinations of n, p, t, n', p', and t' subject to the constraints in expressions (39). 

The bracket integrals can be written as 

[ 1"" =Q Q8 j2
kT

J.L L f ... f e-h,z.e"j+IIJ) F/lc.J:;(y, x, rp) (2lo +1)(2lo" +1) Y sinXdXdrp dy , 
" ,," 1T i/'II 

(A7) 

where the F/la depend on the specific bracket integral and 

y =,f J.L12kT g . 

J. Chem. Phys., Vol. 63, No.1, 1 July 1975 



16 L. Biolsi and E. A. Mason: Thermal conductivity of a multicomponent gas 

In evaluating the bracket integrals, it has been assumed that either the internal states are nondegenerate or that the 
degeneracy averaged cross section, iU(", X, 1», is used. This is defined by14 

(AB) 

The expressions for i:',i~'t' were evaluated by Monchick, Yun, and Mason. The results are given by Eqs. (82) 
through (gOd) in Ref. 2. 

The results for the in~~.n'~'t' and Ln/1t,.n·~·t' are given below: 
~~ 01 ~~ 01 

where L::~~~oO is given by Eq. (A9) with the last term omitted. Also 

LOO~'100=LoOC!.I00=_32"a"~I.r,n;;n;; L n4"m~" LfdO "{c5 'W--E.M _M""Z)jlt/(')I.')I.) 
q~ 01 q~ 01 75k2Tn~. q"~4 (m~+m~") ~ ~~ 2 2 ~ q IJ ~ ~ 

- (~- ~M - M "r'2)[";J
'

(')I. ')I.')] + c5 I ,,';m 1m ,,[(~ - %M II - M r'Z)["IJ'('\/ "r',,) a ~ ~ ~ a~ q ~ ~ ~ q 'a q 

5 7 Z -
- (2-zMqll+Mq-Mq" m:<"qllrq")]) ' (AIO) 

2 4 '2] [-U( ')(§M 25 llM2 M2 2'2 2M M f 5M2'2 
+9M~M~"" +Mq"" -MqMa"" + 1J'Y4"~ 2 ~-T-T q- 4""" - «a""" COSX+2 q"" 

+ ~M:",,2] + i~:(,,:y;)(~ m,/mq" - "Z - ~Mq]} + 2 MqMq" (AE:;r)qq" + 8M;0~::~)J 

( 2 ) (1,1)~} + 2M M #I AE:,. .. - 8M M ,,0 II , 'flll qqqq qq fl(l 

LI0~,OI0='Ll~,OI0=16"q"q'~L nq"ma" {-c5 1[4 m q «Mllyz+~M -~)AE:) "+LJdO .,{j·"(r.r) 
qq 01 qa 01 15kTn ,e ' ,,(m + mil) qq m II q q a qq qq fJ q q 

a a !at a 4 a 4 

X [(E:af - (a)(~ - t Mq - Mq"Y) + Mq{E:d - (a)] - i':('Yq"~)(E:a" - (q)(~ - tMq - MqIlY)}] 

+ c5~'q"';m/m~ .. [4«M~",,2+ ~Mq - ~)AE:~"\~II + L f dOaq .. {j~:('Y~""~1I )[M~II(E:q"l - (~II) 

- {E:~ ", - (~ .. )(~ - ~M~ - M~ .. ,,2)1 + i~]('Y~ "";" )(E:qll l - (qll)(~ - ~M~ - Mqll"Z)}]} , 
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iOl~.100=L01~.100=16XI1Xfl·..tm;m;: z= n,,"mq" Jo ,rz=fdU .. (E 1-(,,){i::(YqYq)(~-l-MI1-MfI"'YZ) 
qq 01 "" 01 15kTnQ'cQ'bt Q" (m

l1
+m

Q
,,){ qq t QQ 'I 

-It!<y,,Y:) (~-1 Mg - MQ •• y'2) +MJ::(Y:Y:)}+MI1(~E:",,)qq,,] + Oq. q" Jm,/mq" [?: f dOqq,,(Eqi - ~q) 
{ -", I (~ S I?,) -Ill ( ) (§. ~ M M 2) M -I"'(' ')} M (A. 2 > ]} x 1 0 (yo"yq ,,) 2.-zMq'.-MqY -lij 1'11'.1'"" 2-2Mq"+ ,,- qY + II iJY,,"Y"" + q ... E"q"Qq" , 

and (A16) 

-010 010 010010 8x"xq.;;n;m;; ~ nt(.mg .. { [~fd;; ( - }2{-1"'( ). I- Itl ( , )} 
Lqq'h =Lqq·bl =- 3 L. ( ) Oqq. L. '·111/" E.j-E. Ij I'I/Yq - IJ Y"Yq Tnq• c q' htCq int q" ma + mq" 

- 42!!L. «Eql- €,,) ~(q)qqJ + I)q''''' J m/mq" [L f dnqq" (Eq{ - Eq) (Eq" j - €q .. ) 
rna" :J 

X {l~~(y;" yq .. ) - i~~(YII" y ... )} - 4«(1/1 - (q) AEq")fI"]}' (A17) 

where 

and 

Mq =mq/( mq +mq,,) , 

- M!yy' COSx) + jfJ (Jq Jq;yy)(' +M~.0y4 - 5Mq'.;!l-15Mq +\, M! +9Mq Mq"'; _ MIIMqa.yIZ) 

+j:HJqJq;""')(~M.,.."z -, -M:;."zyt2 +tMq',y'2+,Mq -'M! - iMqMQ .. "z - iMIIMq'.y'2 - 2J\1qMq"YY' coax) 

- MqMq .. i~~(J"JQ; y'Y)+MI1(f - ~ MO' -M.,Hy 2)i1:(J"J,,; y',,'») + I)"."" J m"/mq'.[iWJQJ,,,,) H· MqMq"y4 - tMQY 

+ tMI1y'2 - !M"Mq .. y Zy'2 +tM~ yz -tM!y'Z _M"M.,.,y2 +MqMq.,yy' COSx) +i:;(JqJ" .. ; n) 

x (~M" •• r 2. - ¥ - M"M.,. ,y! +tMqy2 +tM: +i Mil" -Jj M" Mil" + Jf Mil +4M
Il
M" .. y Z _ !M~, yZ _ ~M!Yz _ M"Mq" Y '2) 

+i:!(JA,,,; yy') (¥ +M«Mquy 2y'2 -i M.,..+ ¥MqM.,.. -iM" _ ~M.,..y2 +!M! .. y 2 _% M,,}"2 +~ M~y'2 
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and 

where 

and 
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