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Effect of molecular angular momentum on the thermal
conductivity of a multicomponent gas mixture

Louis Biolsi

Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65401

E. A. Mason

Brown University, Providence, Rhode Island 02912
(Received 14 February 1975)

The effects of molecular angular momentum (spin polarization) on the thermal conductivity of a
multicomponent gas mixture are considered. The Wang Chang-Uhlenbeck approach to the kinetic theory

of gases with internal states is used. Formal results are obtained for the thermal conductivity of a gas mixture
of uniform composition. These results are given in terms of the quantum mechanical degeneracy-averaged

cross section.

The formal kinetic theory of a single-component gas
composed of polyatomic molecules with internal states
was first developed by Wang Chang and Uhlenbeck! and
was extended to include polyatomic gas mixtures by Mon-
chick, Yun, and Mason.? Later work® showed that the
assumption of detailed balance made by Wang Chang and
Uhlenbeck is not, in general, correct but their results
are valid if the internal states are nondegenerate or if
the quantum mechanical cross section has been degen-
eracy averaged.

In 1961 Kagan and Afanas’ev* showed that in a system
of molecules possessing angular momentum, the per-
turbation part of the distribution function should be writ-
ten in terms of the two independent vector quantities lin-
ear momentum and angular momentum, The angular
momentum terms account for the polarization of the
molecules caused by gradients in the gas and were not
included in the work of Refs, 1 and 2. This “spin polar-
ization” can affect the transport properties.®® For in-
stance, Sandler and Dahler® found, using a classical
loaded-sphere model for a mixture of D, and HT, that
spin polarization caused negligible changes for diffusion,
appreciable changes for thermal conductivity, and
changes up to 24% for thermal diffusion. McCourt and
Snider’ developed a formal quantum mechanical approach
to the spin polarization effect on thermal conductivity for
a single-component polyatomic gas. The purpose of this
paper is to extend the quantum mechanical treatment of
the spin polarization effect on thermal conductivity to
polyatomic gas mixtures, using the Wang Chang-Uhlen-
beck approach.

I. THE SEMICLASSICAL BOLTZMANN EQUATION

The kinetic equation solved by Wang Chang and Uhlen~
beck is!

93%‘.+Vq-§8;fai=;Z f--'f(f;;f{q'l—fqifla’.i)

I*
xgl¥ (g, x, ¢) sinxdxde dvy,. 1)

where f,; = f, (v, Eg;, T, D) is the singlet distribution func-
tion and E,; is the internal energy of the gth chemical
species in quantum state i. Also I] is the differential
scattering cross section for the process in which mole-
cules ¢ and ¢’, initially in internal states 7 and j, re-
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spectively, go to final internal states % and I, respec-
tively, the primes indicating post-collision values, and
=V, — Vg
Equation (1) has been obtained by assuming the existence
of symmetry between inverse processes; i.e.,
gliile, % $)=g'iig’, x, ¢) . @

This relation is strictly correct only if the internal
states are nondegenerate or if the differential cross sec-
tion has been degeneracy averaged. Equation (1) is
called the semiclassical Boltzmann equation because the
translational motion is treated classically and the inter-
nal motion is treated quantum mechanically.

In the perturbation solution of the Boltzmann equation,
the left hand side of Eq. (1) is treated as the perturba-
tion and the distribution function is written as

Fai=fa+&g+-01),

where f{; is the zero-order (equilibrium) distribution
function and &,; is the perturbation function.

Consider a system of rotating polyatomic molecules
without any net macroscopic angular momentum; i.e.,
one in which no torques act on the gas. The zero order
distribution function for this system is’

fa'= [nq/z exp(-E,; —a- Jq)/kT](mq/ZwkT)s/a
i

xexp(~mg VE/2+E +a- J)/kT , (3)
where J, is the internal angular momentum operator and
Vd = V¢ - Vg ,

in which v; is the mass-average velocity. The vector «
represents the local average angular velocity, %i.e. ,
even when the net macroscopic angular velocity is zero,
there can be a local angular velocity due to internal ro-
tation.

The normalization conditions on £, are

nG:fo:idvq s @)

and

pVy =szq ffgi Ve dv, , (5)
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p=Enqmq . 6)
Also

p0°=pUt +o0t -2 [ 14 Ve B )ave , @
and

J=Zfo2‘Jqdvq , ®)

a i

where #n, is the macroscopic number density, p is the
macroscopic mass density, U? is the energy per gram,
and J is the angular momentum density.

The average internal angular momentum will be taken
to be zero in which case « is also zero.” Then Eq. (3)
can be written as

naf me \*'2
gi =6§(2,”qu> exp(— Wi - eqi) H (9)
where

W, =V, J2kTV, , €;=Eu/kT, @, =2; esai

Gradients in o are necessary for the transport of angu-
lar momentum. However, when the average internal
angular momentum is zero, individual molecules may
still have polarized angular momenta.

{. THE EQUATIONS OF CHANGE
The usual equations of change are obtained: the equa-
tion of continuity,
] 9
2P " P%=0, 10

the equation of motion,

9 7] 9
P Vo +PYor Vo= =32 P (11)

and the equation of energy balance,

8 ] I}
3;U°+pvo~-a—rU°=-p:3;V0— a . (12)

T
In the equations above the pressure tensor p is defined
as -

p= Z ngmy (V, Vo) , (13)

and the heat flux vector q is defined as

a=3 n {Gm, VE+E,)V,) | (14)
where
uate, D=5 [ &, %0y Sl (15)

In addition, there is an equation of change for internal
angular momentum;

] 8 8
3;;n,<J,> tor MmNl =-ge L, (16)
q

where the angular momentum flux tensor L is defined

as
L=> 1V, I . L))

At equilibrium
L=0, ¢=0, p=pU, p=nkT ,

where U is the unit tensor.

IH. THE LINEARIZED BOLTZMANN EQUATION

The set of integral equations for the perturbation
function, &,;, is given by

2 tag)= 14 26w, — $wiw: S +fiwd =D

- 2 4
+(€g; =€)}V, B;lnT+—é‘“{(%w§— 1)
v

k - 9 n
—— (g, - eq)}-a—-r - Vg +n_,,V“ . d¢] , (18)

Cint
where
[(!b“) = IZM: J e f faoi f?q’](@;k'("b;'l - qu - Qq'j)
xgl%}(g, x, ¢) sinxdx d¢ dv,,. (19)
and

- 1
€ =—_Z € exp(- €qi) .
1

q

Also, c, is the heat capacity per unit volume per mole-
cule and the internal heat capacity per molecule, ¢y, is
given by

Cint = Cy —%k
In addition
_1(8 8 ) 128
5—- 2(8rv0+8rv0>-3 ar“ VQU 3
and
9 fn n, n,m,\ 8
=—{ 4 i St el - 3y P
d 8r<n)+(n p )Brlnp ’
where the superscript f denotes the transpose.

The form of Eq. (18) suggests that &, should be ex-
panded in the linearly independent gradients of density,
temperature, and velocity, i.e.,

] ’
Boy == Agy - e InT =By : S +n 2 (CY - )
qQ

2
- D

2 9p " Vo . (20)

The first term in Eq. (20) is associated with thermal

. conductivity, the second term with shear viscosity, the

third term with diffusion, and the fourth term with the
volume (bulk) viscosity. If a had not been taken to be
zero, there would also be a term involving the gradient
of angular momentum.’

IV. THERMAL CONDUCTIVITY

Thermal conductivity is determined by the tempera-
ture gradient, associated with the A ; in Eq. (20).
From Egs. (18) and (20), the set of integral equations
for the A, is found to be

J. Chem. Phys., Vol. 63, No. 1, 1 July 1975
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FallVE =9+ ey =TIV, == 218, . (21)

From Eqs. (14),
be written as

Q=qer +q4ae (22)
where

(20), and (21), the heat flux vector can

_%kTZn (V)+kTZZfV fu(W Z_)

x [— Ay %lnT 17 .,Z (c? . d,. )] av, (23)
and
Une AT G VAT L 3 [ Vo Flle = %)
x[-AM,,--;;lnT+n CE dq.)]dv, YY)

The first terms on the right in Eqs. {23) and (24) rep-
resent heat flux due to mass transport, and the second
terms on the right represent the heat flux due to tem-
perature gradients. A thermal conductivity coefficient
for a mixture at uniform composition, X, is associated
with the second terms.

The last terms in Eqs. (23) and (24) represent the
heat flux due to diffusion forces; i.e., the effect of ther-
mal diffusion. The diffusion forces, d,., are conven-
tionally eliminated by using the diffusion equation, *°
leading to a new thermal conductivity coefficient, 2..
In this paper it is assumed that the gas mixture main-
tains a uniform composition. Thus the last terms in
Eqs. (23) and (24) do not contribute. This should be a
reasonable assumption since, often, M=~ A..%'" Also,
classical numerical model calculations of the effects of
spin polarization on thermal conductivily involve caleu-
lations of A).° Work is in progress on the spin polar-
ization contribution to A_.

There are several auxiliary conditions on the pertur-
bation function. These are a consequence of the fact that
the local values of density, energy, and linrear and angu-
lar momentum must be determined by the local equilib-
rium distribution function. The auxiliary conditions are

fog‘Aq‘dV¢=0 ’ (25)
i

LEmf fuvagdn=o, (26)
EZ: ffﬂ( V2+E )Aqidva=o E (27)

and
22 i Audv=0 . (28)
q 1{

Four independent polar vectors can be constructed
from W, and J,." These are
W, [Jq; Jg+ Wc]’ [Ja; Jg- Wa]-

Since it can be shown that the last two terms do not con-
tribute to the expression for q,” the operator A, can be

I X W,

written in the Hermitian form

Ay +Aal¢ Wq*'%{[J J, W ;}.. , (29)
using the polar vectors, where
2’; s S (WO RO (€) PO(m?) (30)
np,t
and
i ‘;t Fomps SSP2AWR R, (€)) PV (m?) . (31)
figPy

The a3y, and a? enps aT€ expansion coefficients to be de-
termined. The effect of spin polarization is included in
the second term on the right in Eq. (29).

The polynominal S{7,(W?Z) is a Sonine polynomial, *
R, is the polynomial introduced by Wang Chang and
Uhlenbeck, * and P{(m?% and P{¥(m?) are the quantum
mechanical ana_logs" of the polynomials introduced by
Kagan and Afanas’ev.* Only the first few polynomials
will be used, These are given by

Sw=1, SsPhwi=5-w?
00)(€q‘) = 1 5

P (m?) =1,

R"e, ) =€, ~F,
(l)(mZ) [l(l+1)] =1

wherelis the angular momentum quantum number and m
is the z component of angular momentum quantum num-
ber. Thus the index i stands for the indices I and m and
The orthonormality conditions on these poly-
nomials are

6“ =€

(m +n)!
nl! 6rm‘ »

[ wm e sy s e =
0
Z (21 +1) e;: (0)(641)1%(0) (qu) ( diﬂt)’ aﬂﬁ' >

SIP®m?) PO m?)=(21+1) &y,

and

22+1)

31(+1) Ous

Z mzpél)(mz) Pfl)(mz)=
m

Let the direction of W, be the z axis, Then, upon sub-
stituting Eqs. (29), (30), and (31) in Egs. (23) and (24)

" and using the properties of the polynomials, it can be

shown that
8
w =BT g Vo) = dow 52 T (82)
[
and
_ 9
qlnt :kTZna €q <Vq> - Aﬂlut —8; T ] (33)
q

assuming that the contribution to thermal conductivity
due to thermal diffusion is small. The translational and
internal contributions to the thermal conductivity in a
multicomponent gas mixutre of uniform composition are
given by

2rT
e =4 kz:nq Vo @} 100 +5 @100) (34)
q q

and

J. Chem, Phys., Vol. 63, Na. 1, 1 July 1975
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1 2rT
Ar)m='2“E”q [ e Cotnt (@g010 +%a5010) , (35)
[ §

respectively. It can also be shown that the auxiliary
condition on the expansion coefficients is

2"« Vg (ago00 + 5 @log) =0 . (36)
q

The a,’s in Eqs, (34), (35), and (36) must now be deter-
mined.

V. CALCULATION OF THE EXPANSION
COEFFICIENTS

The expansion coefficients are obtained through the
use of the variational principle,
by Hirschfelder, Curtiss, and Bird!' and by McCourt
and Snider.” In order to calculate the coefficients, a
trial function for A,; is necessary. Let

T8/2% =S (WA RS (e,) PP (m?) . (37)

Then the trial function used in this paper can be written
as

3/2)00 1 3/2)00 (34200
Ay =a, 2000 %2 W, +(ag100 T +aqt)1 Tyt )W,

1,2 (3/2)01[ 1 . 1,2 (3 /2)01
+3 5000 1000 ! [Jw Jg- W¢]+ +2 (aqwo Tiog

+aly0 TSP (T30, - Wl 5 (38)

i.e., the trial function contains terms with

n=p=t=0 n=t=0;p=1 p=t=0;n=1 (39)
Equation (38) is similar to the trial function used by
McCourt and Snider” and contains more terms than have
been used in the analagous classical calculations. =8
The smallest number of terms necessary to give all the

physical effects have been used in the trial function.

A set of six equations for the six unknown expansion
coefficients g, 5000, Te100, G100, G010, 30 @rgyq is Ob-
tained by taking integral moments of each term in trial
function (38) with Eq. (21). These equations can be
written in the form

= i Dt n'p't’
Ramt ‘E Z Z {aa'n’»'t' Qqa'60
q npt n'p't’
2 Ardt,n'p't’
FQyrpprpe s (40)

and
1 = n'p’ s’
3Rarvt ‘E Z Z {aa oy Qqa 61
Q' npt n'p't’

2 oot
+8g iy Qi P} (a1)

subject to the constraints onn, p, t and »’, p’, ¢ in ex-
pressions (39). Also the R’s and @’s are defined as

Rempt =11, | -——zmm [1—45 6(npt, 100) —g E%u Snpt, 010)] , (@2)

This has been discussed

Eonp TG 20y, 74200
Qs Z NoMgrr {600 T, s TOIROW oo

+8gr g [TRIPO W TR/2OW L L}, (43)

Q 67 prge :__Zn g {6“ [T(S/z)uow
X TN T 5 Tg s Wl Lo + 0grger [T/ DWW, TELRM

X [Jqll’ qll . q" ]qﬂ"} (44)

szi’ltlp’t' =3 annq" {bqq' [T(3,2)01 [Jq;Jq ¢ Wq]*;

X Tr(lsp/’zt)'m [Ja;Ja * wq ]+] o +0 a'q*? [T(S/Z)m [J )

qr-aq

AN
133
X T'(,?p/,at’, [Jqu, e Weoe ],]“u} , (45)

where the bracket integrals, [ .., are evaluated in the

Appendix, In addition
- v m
000,000 _ 000,000 _ %2g'V Mg~ 000,000
Qaq'OD —Qqa ‘00 n \/—' aq00 s (46)
gV M
Qi - Qi e T gegeo )
and
Qz't bt = qq’ bO"'t’ ’
(48)
Q“: n'pt _ thurlx'p't' ,

whenn, p, t,n’, p', and ¢’ are not all zero.

The auxiliary condition given by Eq. (36) has been in-
cluded in this set of equations., The form has been
chosen so that the results reduce to those obtained in
Ref. 2 in the absence of spin polarization.

Now define matrix elements L by9

ot npttt __ R BamtSa'w 't o pot ¢
Qqq zg 12 x qu Lm 'n * b (49)
with an exactly similar definition of L3%;""*" in termsof
QRL#'t | where

2eT[1
P /7"— [T5 5(npt, 000)+4 5(npt, 100)
q

3 clnt
-3 % == supt, 010)] (50)

When Eq. (49) is substituted in Eqs. (40) and (41), a
set of linear equations in terms of the L%:2 #'*' ig ob~
tained. This set of equations is solved for the expansion

coefficients. Then Eq. (34) becomes

J. Chem. Phys., Vol. 83, No. 1, 1 July 1975
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;_0 1 0
. T
i |
L_xa I X4
prer == 1 i —_——
Rotr =4 Lgga Lo +3 gt L0 ] (51)
I,/6 1 x/6
_—— ‘.—_._
x,/6 1 x,/6
F- T T-T-TC-T T - F-T = - - - N -
leq.|0|04nO|010 0|0TOT0qu,_r0|0
A 1. 1 — 'l 1 1 A L - |
|zt |
and Eq. (35) becomes
[ |
Y ) 0
= ===
I *a | *q
—— ———
= npt,n'plt’ . 1 Lt t U Xq
Aoint =4 qu‘ab :" 6 - +§ aq‘ab :— '6'_ s (52)
——— ———
1x,/6 1 x,/6
—— '——-—
I x,/6 U x,/6
“‘T’T_T"T_T""’"_ - T T -T-T—T-—t+ ——
010!x. 1050400 010101010 x,! 0
Lnﬂf.:’p't’.
qq’a
where
Looo,ooo /' .000,100 | _000,010 : zooo, 000 ; 000,100 | ]:000,010
i ]
9’00 | q¢’00 [ qq’00 | qg'ot | gg'or | g0l
————— B e e e H e o
100,000 | 100,100 : _100,010 | 100,000 ! 100,100 | 100,010
, L L L
99’00 | 7 qq'00 |7 qq’00 1 7 gg'o1 17 gg'or 1 7 gq'ot
—————— e e e e el
_010, 000 { _010,200 | 010,010 = _010,000 ! 010,100 : 010,010
L
99’00 1 7 gq’00 | " qq’00 | 7 gq'01 | 7 gg'or |7 gq’01
LY = . e AN SR S o 63)
000, 000 :Looo,loo : Looo,ow : 000,000 | 000, 100 | 000,010
L
gq’01 : qq’01 } gq’01 | qq’'11 ! gg9°'11 : qq9'11
————— R e e B
100, 000 { 100,100 | 100,010 | 100,000 | 100,100 } 100,010
’ i L ’ i L ? ‘ L * ! ’ | L I
qq01 | gq0l | gq01 | ggll 1 g¢ll | gqqll
_____ +____+__.__+...___. __.__..__*___,____
010,000 | 010,100 : 010,010 | 010,000 ! 010,100 I 010,010
’ | ' ] L ' 'L ' bz ' 'L '
q9'01 | gq01 | o1 : qq 11 ; qq 11 : qq 11
]
The L®{:7*'¢ are evaluated in the Appendix.
.
DISCUSSION are consistent with those obtained by McCourt and Snider

In the absence of spin polarization these results re-
duce to those given in Ref. 2; i.e., the second term on
the right in both Eq. (51) and Eq. (52) does not contribute
to the thermal conductivity and the only nonzero matrix
elements L%}:7'?""" are those with a=5=0. The results
given above and in the Appendix have also been examined
for a mixture of mechanically similar molecules; i.e.,
a mixture of a gas with itself, In this case the results

J. Chem. Phys., Vol.

for a single-component gas.”

Many of the bracket integrals depend on inelastic col-
lision processes. This dependence consists of two types
of terms; terms linear in A€, =A¢€,,. and terms of the
order Aef,,, . In a first approximation, inelastic colli-
sions can be ignored.'*'® Then many of the matrix ele-
ments such as Ly.3° (see Ref. 2), Liosi®, etc. are con-
siderably simplified. Other matrix elements such as

63, No. 1, 1 July 1976
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L0010 and LI43% (see Ref. 2) vanish.

Since A, can be either positive or negative, the lin-
ear terms in A¢€,,, should be nearly zero on averaging
over all collisions. > Thus the inelastic collision pro-
cesses depend on terms of order Ae%,. Mason and Mon-
chick'#!® showed that for a single-component gas without
spin polarization, these terms can be expressed in terms
of the relaxationtime, a quantity that is often experimen-
tally measurable. Inelastic collision processes in a gas
possessing spin polarization should also be related to
relaxation times and work is in progress on this point.

The results given here are quite formal and one might
wonder if the spin polarization effects on thermal con-
ductivity are important, The classical model calcula~
tions mentioned previously®'® indicate that spin polariza-

1

APPENDIX

Using Eqs. (43) through (50), the L®!:7#'*" can be written in terms of the bracket integrals.

qq'ad

tion contributes significantly to transport properties that
depend sensitively on inelastic collisions, Thermal con-
ductivity is such a transport property.2 The assumption
of inverse collisions is correct if the internal states are
nondegenerate or if the cross section is degeneracy av-
eraged. Does this degeneracy averaging “wash out”
spin polarization effects? A complete answer is not
possible at this point. However loaded spheres have
inverse collisions but still show a definite spin polariza-
tion effect.®
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The results are

32x x \/ MM, Ra'V ma’
A an L LA Ly { a0t (W3 Woligrr + 8 [Wos Wors Ligrs === Wi W o] ggro + Bggr [Wes Wers L } ¢ (A1)
q’ q e
and
vyr 6xq xqV mamq:
L"’fm')‘" t Tk T:l :gqmtga :l,p t ; Hart {6“ T(3/2)00w r(lsﬁl'zt)‘oowcqu"+ aa'u"[Tv(n:t/Z)oo Wq;Tr(r?#/'at)Po Wc“]a"} (a2)
whenn, p, t,n’, p’, and ¢’ are not all zero. Also
16xgxq:V mam,
ngoogoo = ;sqk T‘nq Z nqr I{qu [Wq, P‘l)(mz) [ Jq . WGL]“,, + Gq.qu[wq;.p((,l)(m%) [Jqu ;Jqll . wq" ],an
in ‘
g L=t n“ e L1 (W, Wl + o“..[wq;w,,,]“,.}} (a3)
and
[rotrs e _ = 3xaxq'V Mg /200 vy . 743/ 201
L P Dre g e ;t' GZn, {000 LTSI PO W,; T2 T 3, - Wl Lo
80 qe [T BOW 3 TR 2T 13T g0« Wt L L} (a4)
whenn, p, ¢, n’, p', and ¢’ are not all zero. In addition
™ 3xaxq'V MaMa’
4 R ., L[ 7B/2)00 (3/2)01 LT . .
6 szﬂq,ngtga'n‘p't' ; " {5“ [T"“ Wa; T Toi da w,L ]“ ’
and + 60 a”[T(ngt/z)oow r(l‘sf(zt)'m[‘]a""]a“ -W, "] ]qq" } (A5)
1yt g 3xq xg'V My
L'::.‘i" " 2kfmqq'g¢mt;¢':'p't' qzn:n“" {6« [T(s,zml To3de s Woli; ﬂ?b/'at)'m[']‘q;‘rq * Wa]+]¢a"
+ 60’«" [T(S/Z)m [Jq’J W, ]ﬂ T(gp/’zt)'m [Jc";Jc" * Wq" ]’f]ﬂ"} (AG)
for all combinations of n, p, £, n’, p’, and ¢’ subject to the constraints in expressions (39).
The bracket integrals can be written as
8 kT PN - :
[ e =5om/ 2om ;., ... [ e e By T, x, 6) (@, + 1))@l +1) ¥ sinxdxd dv (A7)

where the F;, depend on the specific bracket integral and
y=vVu/2kT g .

u=m¢m,,./(mq+m,,,)

J. Chem. Phys., Vol. 63, No. 1, 1 July 1975



16 L. Biolsi and E. A. Mason: Thermal conductivity of a multicomponent gas

In evaluating the bracket integrals, it has been assumed that either the mternal states are nondegenerate or that the
degeneracy averaged cross section, I;,(% X, ¥), is used. This is defined by'

- 1
Al _— R IH .
TS $) (2l +1)(21 wtl) :-oomvon§ states A ¢) (A8)
The expressions for L""(," #t" were evaluated by Monchick, Yun, and Mason. The results are given by Eqgs. (82)
through (90d) in Ref. 2.

- e 1,7 0,7
The results for the L#:#*" and L7#:1?*" are given below:

325 %, Vmom,e "' Mg’ ’ =
o DhXeXe" Y Mg Mh," Va7
Lm%;wo 75k Tn,: 'Z';e: (m, +”: ,'){Z[d ”{6« [I (re%) :(‘yq‘ya)] +Oqtq VMg My [I:ll(ya"yc:”)

- 4 ng'Vm,'
Z Ty ey ) — 2 PG a1y
B}~ 3 2 g (49)
where L::?"’o" is given by Eq. (A9) with the last term omitted. Also
R2xyxy Vmem N ‘Mg’ -
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- G=FMr + M, - MOy )} (A10)
16x,%,Vmgmy 7" Mg *! [ j ]
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+6 " m Mgee [Zj‘d qu ( oy~ E :4){1*}(}/‘:”7 u) f (}’q"'}’q")}+4<A€ u) u}} s (All)
32xx Mg’ ng''my’’ ’
0 ,0 0 _ y 100,000 _ aq HER™ ve
o= i BT AW (6 o )
+6q :qnvma ;mqll [i?}('}’q“'}’q’") - i?}(yqllyqll)]} s (AIZ)
16x,x,Vmemy' ng''my’’ j = - - - '
7010,000 _ 7 010,000 _ 1 O%Xq" Vg, ' Mg wle - A7 _
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J. Chem. Phys., Vol. 63, No. 1, 1 July 1975



L. Biolsi and E. A. Mason: Thermal conductivity of a multicomponent gas 17

16%,%,'V ’ ng'me" | [ J’
7.010,100 _ y 010,100 _ ~DXa%s MigMiq e Ma " - 1 lM Y
Lot =Lyem 15T Cyrigy o7 lmg+m u){ Aol = EHT ) - Mer?)

By JG-3Mi— May'D) + M I P (v v} + M, (Ae“,,)“..] + B o mq/m .[Z‘,f BBy (€~ € o)

X {8 e Ve VG = 3 Mg =~ MY ") < T (v Vg ) B ~ SMp o + M, = M) +M,I’;}(y§..y;,.)}+M,(Ae§,..)“,.]} ,
and (A186)
8x x o fmgm Ny o TH oo = - -
Lmo 010 210,000 Pul i KT ULD E PRI {6“, [Zfdgaq“ (€ - eq)z{l"(y 7)) - I?;(Ya’ya)}

37‘71 ‘cq'lnthlnt P (m +m :n
—4"“—_m «(q; -€ )A( >“n] + Oqr g+ \/ m /mq,. [Z fdQ“.. (Eci -€ ) ((q,,j-— Eq,,)
KATE Y o Vo) ~ T8 (v Ve N} - Mgy, ~ €) Aeq,.),.]}, » (A17)
where
My=my/(mg+my.) M. =myp./(mg+mg.),
A€, = €~ €y, B€ger T€qroy = €pey,

I
AEGG" ZAQQ +A€qu :}’2_ Y 2’

/kT - 2 D7
Q“ 2= Qquu 2mu % f f dyd¢ sinydy y® e “ai*e ‘)I'i‘.:'(‘r’ X, ¢) (21, +1)(Zla" +1) (Yz-yylcosx)’

= kT J. 3 -(12« vagrey) FRE
(A€} g e QQ,.. ’sz ””J dyde sinxdyy®e ¥ et I [y, x, ¢) (21, +1) (2. +1) Flae),

S o B /kT J’ 3 tr% )
ZJdQ“..I‘—QGQW 2mer Zf dvde sinydy yie™ *cai™a 5 21, +1) 21, +1) F,

E31- 1
and

1

1 - :
L] | Y. S — . PrVid ‘. . ki
7“(Y°”°)'(2z¢+1)(zz,,,. +1) 272 [y*Jeder ey 3ol oy 155, 0, 0) (a18)

#=-component
states

The results for the L2/{7*' " are given below:
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