Electron and Spin Transport in the Presence of a Complex Absorbing Potential

Fatih Dogan
Missouri University of Science and Technology, doganf@mst.edu
Wonkee Kim
C. Blois
Frank Marsiglio

Follow this and additional works at: https://scholarsmine.mst.edu/matsci_eng_facwork
Part of the Materials Science and Engineering Commons

Recommended Citation

F. Dogan et al., "Electron and Spin Transport in the Presence of a Complex Absorbing Potential," Physical Review B, American Physical Society (APS), May 2008.
The definitive version is available at https://doi.org/10.1103/PhysRevB.77.195107

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Materials Science and Engineering Faculty Research \& Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Electron and spin transport in the presence of a complex absorbing potential

Fatih Doğan, ${ }^{1}$ Wonkee Kim,,${ }^{1,2}$ C. M. Blois, ${ }^{1,3}$ and F. Marsiglio ${ }^{1}$
${ }^{1}$ Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2 JI
${ }^{2}$ Texas Center for Superconductivity, University of Houston, Houston, Texas 77004, USA
${ }^{3}$ Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E6

(Received 21 February 2008; revised manuscript received 9 April 2008; published 13 May 2008)

Abstract

We examine the impact of a complex absorbing potential on electron transport both in the continuum and on a lattice. This requires the use of non-Hermitian Hamiltonians; the required formalism is briefly outlined. The lattice formulation allows us to study the interesting problem of an electron interacting with a stationary spin and the subsequent time evolution of the electron and spin properties as the electron is absorbed after the initial interaction. Remarkably, the properties of the localized spin are affected "at a distance" by the interaction of the (now entangled) electron with a complex potential.

DOI: 10.1103/PhysRevB.77.195107
PACS number(s): 03.65.Ud, 72.25.Rb, 03.67.Mn

I. INTRODUCTION

Typically, the dynamics of a closed system are described by a Hamiltonian that is Hermitian and accounts for all possible interactions and degrees of freedom. However, the task of merely writing down the full Hamiltonian is hopeless in many cases and might also be superfluous from a practical point of view. Following this line of thought, a reduced or effective Hamiltonian can be introduced to phenomenologically describe relevant dynamics. As discussed in Ref. 1, for example, the effective Hamiltonian may or may not be Hermitian depending on the phenomena under consideration. For example, a reduction of the full Hamiltonian often used in nuclear physics is referred to as the "optical model." In order to explain experimental results, this model uses phenomenological potentials such as a complex absorbing potential.

When a complex absorbing potential is introduced into a system with a real Hamiltonian, the resulting effective Hamiltonian is not Hermitian but symmetric and complex in its matrix representation. The mathematical properties of complex symmetric matrices are a little more complicated than those of Hermitian matrices, as detailed in, for example, Ref. 2. There have been many studies of a complex absorbing potential in the continuum limit based on various calculational schemes. ${ }^{3-12}$ The approach followed in this paper requires the diagonalization of a complex symmetric Hamiltonian defined on a lattice, as will be described below.

The textbook example is the one-dimensional scattering problem in which the absorption is modeled with an imaginary Dirac- δ potential. The effective Hamiltonian is H $=p^{2} / 2 m-i \beta \delta(x)$, with $\beta>0$. Then, the scattering states are given by $\phi_{k}(x)=\left[e^{i k x}+R e^{-i k x}\right] \theta(-x)+T e^{i k x} \theta(x)$, where θ is the Heaviside step function. The reflectance and transmittance amplitude R and T are determined by matching conditions at $x=0$ to be $R=-\beta /(2 k+\beta)$ and $T=2 k /(2 k+\beta)$. Clearly, $|R|^{2}$ $+|T|^{2}<1$. In fact, the absorption probability is defined as $|A|^{2} \equiv 1-|R|^{2}-|T|^{2}$. A deeper understanding of this "absorption" can be attained by studying the dynamics of a sufficiently broad wave packet; this will be illustrated below.

It is also possible to consider an absorbing potential in a (one-dimensional) lattice by allowing the potential U_{i} at each site i to be complex. This approach follows that used for impurity potentials on a lattice, as described in Ref. 13. The reflectance and transmittance amplitudes in the case of a complex potential, $U=-i \beta(\beta>0)$, at one site are, respectively,

$$
\begin{equation*}
\mathcal{R}=-\frac{\beta e^{2 i k}}{2 \sin (k)+\beta} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}=\frac{2 \sin (k)}{2 \sin (k)+\beta} \tag{2}
\end{equation*}
$$

with the lattice constant set to unity.These relations are the basic building blocks for any more complicated complex potential, which will be further examined in this paper. In particular, spin-flip potentials with the appropriate modifications can also be described in this way to understand how spin interactions (along with some decoherence effects) can modify a spin current. The question of coherence of spin currents is an important one; in this paper, we make a preliminary attempt to model the decoherence of spin and charge currents. We find an interesting property that highlights the "entanglement" properties of spins, in particular. These issues are the subject of this investigation.

This paper is organized as follows: In Sec. II we present the formalism of the dynamics of a wave packet in the presence of complex absorbing potentials both in the continuum limit and on a lattice. In Sec. III illustrates how a complex potential influences the time evolution of a wave packet as a simple example. In Sec. IV we study the spin-dependent scattering problem in the presence of a complex absorbing potential. The time evolution of an expectation value of an operator is derived when the Hamiltonian is non-Hermitian. We then demonstrate a highly nontrivial consequence of the complex potential on spin transfer. This result shows that quantum entanglement plays an important role in spin transfer in the presence of a complex potential. In Sec. V, we conclude with a summary.

II. FORMALISM

We begin by considering a single particle in d-dimensional space under the influence of a complex potential. As usual, the state space is $L^{2}\left(\mathbb{R}^{d}\right)$ equipped with the usual inner product:

$$
\begin{equation*}
\langle f \mid g\rangle:=\int_{\mathrm{R}^{d}} f^{*} g \tag{3}
\end{equation*}
$$

The Hamiltonian, $H:=p^{2} / 2 m+V$, where $V: \mathbb{R}^{d} \rightarrow \mathrm{C}$ achieves nonreal values (on some set of nonzero measure), is easily seen to be nonsymmetric (and, therefore, non-Hermitian). There are many computational complications due to a nonHermitian Hamiltonian; some nuances have been cataloged in Refs. 8 and 10, for example. We follow Moiseyev ${ }^{10}$ and introduce the c product, $(\cdot \mid \cdot): L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$, which is defined by

$$
\begin{equation*}
(f \mid g):=\int_{\mathbb{R}^{d}} f g \tag{4}
\end{equation*}
$$

[Note that by the Cauchy-Schwarz inequality, $|(f \mid g)|$ $=\left|\left\langle f^{*} \mid g\right\rangle\right| \leq\left\|f^{*}\right\|\|g\|=\|f\|\|g\|<\infty$ for $f, g \in L^{2}\left(\mathrm{R}^{d}\right)$.] We see that the Hamiltonian exhibits symmetry with respect to the c product; that is, for all functions f and g in the domain of H [the Sobolev space $H^{2}\left(\mathbb{R}^{d}\right)$],

$$
\begin{equation*}
(f \mid H g)=(H f \mid g) \tag{5}
\end{equation*}
$$

This can be easily shown for $f \in H^{2}\left(\mathbb{R}^{d}\right)$ and $g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, and a density argument completes the proof. From this symmetry, it follows that eigenfunctions of H corresponding to distinct eigenvalues are "orthogonal" with respect to the c product (rather than the inner product, ${ }^{3}$ as is usual). That is, if $\psi, \phi \in Ł^{2}\left(\mathbb{R}^{d}\right), \lambda, \xi \in \mathrm{C}$ with $\lambda \neq \xi, H \psi=\lambda \psi$, and $H \phi=\xi \phi$, then

$$
\begin{equation*}
(\psi \mid \phi)=0 . \tag{6}
\end{equation*}
$$

For convenience, we now restrict our domain to a d-dimensional cube in \mathbb{R}^{d} and impose periodic boundary conditions on the edges. In doing so, we force the spectrum of H to be discrete. We look for solutions to the initial value problem,

$$
\left\{\begin{array}{l}
i \partial_{t} \Psi_{t}=H \Psi_{t} \tag{7}\\
\Psi_{0}=\psi
\end{array}\right.
$$

We suppose that, as in the case where H is Hermitian, the solution is obtained by acting on the initial wave function ϕ with the time-evolution operator, $U(t):=e^{-i H t}$. Then, if the eigenfunctions of H are denoted by $\left\{\phi_{j}\right\}_{j=1}^{\infty}$, with the corresponding complex eigenvalues E_{j}, and the initial wave function is $\psi=\sum a_{j} \phi_{j}$, it follows that the solution to Eq. (7) is

$$
\begin{equation*}
\Psi_{t}=\sum_{j=1}^{\infty} a_{j} e^{-i E_{j} t} \phi_{j} \tag{8}
\end{equation*}
$$

See the Appendix for a sample calculation of wave-packet evolution under the influence of a complex potential.

In a lattice with N sites, we use the tight-binding Hamiltonian:

$$
\begin{equation*}
H=-t_{0} \sum_{\langle i, j\rangle \sigma} C_{i \sigma}^{+} C_{j \sigma}+\sum_{j \in \mathcal{I}, \sigma} U_{j} C_{j \sigma}^{+} C_{j \sigma}, \tag{9}
\end{equation*}
$$

where $C_{i \sigma}^{+}$creates an electron with a spin σ at a site i, t_{0} is a hopping amplitude between the nearest neighbor sites and is set to unity, U_{j} is a complex potential at site j, and \mathcal{I} represents a set of the potential sites. For complex absorbing potentials, $U_{j}=-i \beta_{j}$, with $\beta_{j} \geq 0$. By varying U_{i} and \mathcal{I}, one can build various effective potentials. For example, in order to study the dynamics of a wave packet and compare the reflectance [Eq. (1)] and the transmittance [Eq. (2)] given in the Sec. I, we choose a single-site potential with $U_{j}=-i \beta \delta_{0, j}$.

In the lattice, the state space is finite dimensional; the Hamiltonian can be represented by a complex symmetric matrix. Recall that an $N \times N$ matrix with entries in a field (C) is diagonalizable if and only if it has N linearly independent eigenvectors.

An initial electron wave packet with spin up can be written as

$$
\begin{equation*}
|\Psi(0)\rangle=\sum_{i=1}^{N} \varphi_{i} C_{i \uparrow}^{+}|0\rangle \tag{10}
\end{equation*}
$$

where $C_{i \uparrow}^{+}$acts on the vacuum $|0\rangle$ to create an electron with spin up and $\left|\varphi_{i}\right|^{2}$ is the initial probability to find such an electron at site i. Thus, in the matrix representation,

$$
|\Psi(0)\rangle \doteq\left(\begin{array}{c}
\varphi_{1}(0) \tag{11}\\
\varphi_{2}(0) \\
\vdots \\
\varphi_{N}(0)
\end{array}\right)
$$

For the purposes of this paper, $|\Psi(0)\rangle$ is a Gaussian wave packet that is far from (and broad when compared to) the region of nonzero potential. In order to find the time evolution of this wave packet, we solve for all eigenvectors $|n\rangle$ and corresponding eigenvalues E_{n} of the Hamiltonian matrix (and, hence, verify its diagonalizability). Now, the time evolution of the wave packet on the lattice is given by

$$
\begin{equation*}
|\Psi(t)\rangle=\sum_{n=1}^{N}\left(n|\Psi(0)\rangle e^{-i E_{n} t}|n\rangle\right. \tag{12}
\end{equation*}
$$

where ($n \mid$ is the matrix transpose of $|n\rangle$. This can be seen by noting that the eigenvectors $|n\rangle$ form an orthogonal set with respect to the finite-dimensional analog of the c product:

$$
\begin{equation*}
\left(n|m\rangle=\delta_{m n}\right. \tag{13}
\end{equation*}
$$

for all $m, n \in\{0, \ldots, N\}$.
The reflection and transmission probabilities are defined as $\quad|\mathcal{R}|^{2}:=\lim _{t \rightarrow \infty} \Sigma_{i<\min I}\left|\varphi_{i}(t)\right|^{2} \quad$ and $\quad|\mathcal{T}|^{2}:=\lim _{t \rightarrow \infty}$ $\times \Sigma_{i>\max \mathcal{I}}\left|\varphi_{i}(t)\right|^{2}$, respectively. Here, $\varphi_{i}(t)$ is the i th component of $|\Psi(t)\rangle$, and \mathcal{I} is the region of the nonzero potential.

So far, we have acquired the machinery to describe the dynamics of a given initial wave function in the presence of a complex potential by solving the Schrödinger equation. In Secs. III and IV, we will utilize it to examine various physical systems.

FIG. 1. (Color online) The time evolution of a wave packet in the presence of a complex absorbing potential.

III. COMPLEX POTENTIALS AS ABSORBERS

For illustrative purposes, a good example is the complex Dirac- δ potential, $V(x)=\lambda \delta(x)$, where $\lambda \in \mathrm{C}$ with $\operatorname{Im}(\lambda)<0$ for an absorbing potential. (The complex square-well potential is also described in detail in the Appendix.) Suppose that the one-dimensional space spans from $x=-L$ to $x=L$. Then, eigenfunctions of the Hamiltonian, $H=p^{2} / 2 m+V(x)$, can be classified according to their parity. These eigenfunctions must have the following form:

$$
\psi(x)=\left\{\begin{array}{lr}
C \cos (k x)+D \sin (k x) & \text { if } \quad-L<x<0 \tag{14}\\
A \cos (k x)+B \sin (k x) & \text { if } 0<x<L],
\end{array}\right.
$$

where, if E is the corresponding eigenvalue, $k=\sqrt{2 m E}$. For even eigenfunctions, $C=A$ and $D=-B$. We impose open boundary conditions at $x= \pm L$ [namely, $\psi(-L)=\psi(L)=0]$. By using the usual matching conditions for the eigenstates at $x=0$, we find that

$$
\begin{equation*}
\tan (k L)=-\frac{2 k}{\lambda} \tag{15}
\end{equation*}
$$

For the odd channel, $C=-A$ and $D=B$, and the eigenstates should vanish at $x=0$, which requires that $A=0$. As expected, the odd-channel eigenstates are independent of λ. These states are given by $\psi(x)=\sin \left(p_{n} x\right)$, with $p_{n}=n \pi / L$.

The initial wave packet,

$$
\begin{equation*}
\Psi_{0}(x)=(2 \pi \alpha)^{-1 / 4} e^{i k_{0}\left(x+x_{0}\right)} e^{-\left(x+x_{0}\right)^{2} / 4 \alpha} \tag{16}
\end{equation*}
$$

can then be expanded in terms of the eigenfunctions of H by exploiting their c-product orthogonality: $\Psi_{0}=\Sigma_{k} c_{k} \psi_{k}$, where

$$
\begin{equation*}
c_{k}=\left(\psi_{k} \mid \Psi_{0}\right) \tag{17}
\end{equation*}
$$

The time evolution is then given by Eq. (8).
For the lattice problem, as described in Sec. II, one can consider a complex potential with $U=-i \beta$ at a single site, say, I. Then, the Hamiltonian becomes $H=-t_{0} \Sigma_{\langle i, j\rangle \sigma} C_{i \sigma}^{+} C_{j \sigma}$ $-i \beta \Sigma_{\sigma} C_{I \sigma}^{+} C_{I \sigma}$. Since the Hamiltonian is a complex matrix, the numerical diagonalization can be done by the driver

ZGEEVX contained in the LAPACK package. ${ }^{14}$ In Fig. 1, we show the time evolution of a wave packet that initially resides at $x_{0}=50$ with the average momentum $k_{0}=\pi / 2$. The single impurity is at $I=100$ with $\beta=1$. Figure 2 compares the reflectance and transmittance of the wave packet with the results from the scattering plane-wave approach for various (average) momenta k_{0}. The scattering plane-wave approach is, in fact, verified by the dynamical calculations. As long as the wave packet is broad enough, the scattering plane-wave approach for a complex square well can be verified in a similar manner.

IV. EFFECTS OF A COMPLEX ABSORBING POTENTIAL ON SPIN TRANSFER

We now examine the interaction of an electron with a spin-flip potential followed by a complex absorbing potential. In the continuum, a simple representative Hamiltonian is $H=p^{2} / 2 m-2 J_{0} \sigma \cdot \mathbf{S} \delta(x)-i \beta \delta(x-a)$, where J_{0} is the coupling constant of a spin-flip interaction between the electron spin σ and a local spin S at $x=0$. The distance between the two interactions, a, is taken to be much larger than the width of an incoming wave packet. Note the conflicting requirements; a broad wave packet is required to have a reasonably welldefined momentum, but a narrow wave packet (on the scale of a) is required to properly observe causal effects. The wave packet interacts with the local spin first and is partially reflected and partially transmitted. (Note that the amplitudes of the transmitted and reflected waves depend on the initial spin configuration.) The transmitted wave later interacts with the complex absorbing potential after completely emerging from the spin-flip potential. (In other words, the wave packet does not simultaneously feel both interactions at any given moment.)

It is numerically feasible to find some eigenvalues for this Hamiltonian; however, the comprehensive search for all complex eigenvalues within some upper modulus bound (given by appropriate truncation limits) is seen to be a formidable task. The analogous problem on the lattice is far more tractable owing to the fact that the Hamiltonian is a

FIG. 2. (Color online) The reflectance and transmittance probabilities as a function of the momentum. The scattering approach is verified by the full dynamics.
complex symmetric matrix, which is diagonalizable by standard numerical routines. The lattice Hamiltonian is

$$
\begin{equation*}
H=-t_{0} \sum_{\langle i, j\rangle \sigma} C_{i \sigma}^{+} C_{j \sigma}-2 J_{0} \sigma_{l} \cdot \mathbf{S}_{l}+\sum_{i \in \mathcal{I}, \sigma} U_{i} C_{i \sigma}^{+} C_{i \sigma}, \tag{18}
\end{equation*}
$$

where the local spin is at site l and the complex absorbing potential sites belong to set \mathcal{I} far from site l. Since we have only one local spin on the lattice, we will drop the site label l from now on.

We will investigate the case wherein the local spin is initially pointing down, $\left(S_{z}=-S\right)$ while the electron spin is pointing up ($\sigma_{z}=1 / 2$). In particular, we wish to monitor the time evolution of $\left\langle S_{z}\right\rangle$ as the electron interacts with the local spin and is subsequently partially absorbed by the complex potential.

The expectation value of a time-independent operator \mathcal{A} is $\langle\mathcal{A}\rangle=\langle\Psi(t)| \mathcal{A}|\Psi(t)\rangle /\langle\Psi(t) \mid \Psi(t)\rangle$. By differentiating with respect to time,

$$
\begin{align*}
\frac{d}{d t}\langle\mathcal{A}\rangle & =\frac{d}{d t} \frac{\langle\Psi| \mathcal{A}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\langle\Psi \mid \Psi\rangle \frac{d}{d t}\langle\Psi| \mathcal{A}|\Psi\rangle-\langle\Psi| \mathcal{A}|\Psi\rangle \frac{d}{d t}\langle\Psi \mid \Psi\rangle}{\langle\Psi \mid \Psi\rangle^{2}}=\frac{i\langle\Psi \mid \Psi\rangle\langle\Psi|\left[H^{+} \mathcal{A}-\mathcal{A} H\right]|\Psi\rangle-i\langle\Psi| \mathcal{A}|\Psi\rangle\langle\Psi|\left[H^{+}-H\right]|\Psi\rangle}{\langle\Psi \mid \Psi\rangle^{2}} \\
& =i\left\langle H^{+} \mathcal{A}-\mathcal{A} H\right\rangle-i\langle\mathcal{A}\rangle\left\langle H^{+}-H\right\rangle . \tag{19}
\end{align*}
$$

Note that $\langle\mathcal{A}\rangle$ is not guaranteed to be constant in time even if $[H, \mathcal{A}]=0$. If H is Hermitian, this equation reduces to the following usual expression: $d\langle\mathcal{A}\rangle / d t=i\langle[H, \mathcal{A}]\rangle$. For example, the z component J_{z} of the total spin $\mathbf{J}=\sigma+\mathbf{S}$ commutes with the Hamiltonian: $\left[H, J_{z}\right]=0$. However, it is clear from Eq. (19) that, in general, $d^{\prime} d t\left\langle J_{z}\right\rangle \neq 0$. Consequently, in general, we cannot utilize $\left\langle J_{z}\right\rangle$ as a conserved quantity. We will further discuss this issue below.

The spin space of this system has a basis of $2(2 S+1)$ spin states: $\left|\sigma_{z}, S_{z}\right\rangle=|+, S\rangle, \ldots,|-,-S\rangle$. We focus on the simplest case, $S=1 / 2$, in which there are four spin basis states: | $+, \uparrow\rangle,|+, \downarrow\rangle,|-, \uparrow\rangle$, and $|-, \downarrow\rangle$. The Hamiltonian matrix is of dimension $4 N \times 4 N$, where N is the number of lattice sites. The initial electron wave packet is also expressed in terms of these basis states:

$$
\begin{align*}
|\Psi(0)\rangle= & \sum_{j} \varphi_{1, j}(0)|+, \uparrow\rangle+\varphi_{2, j}(0)|+, \downarrow\rangle \\
& +\varphi_{3, j}(0)|-, \uparrow\rangle+\varphi_{4, j}(0)|-, \downarrow\rangle \tag{20}
\end{align*}
$$

For most of this investigation, only $\varphi_{2, j}(0)$ is nonzero, with

$$
\begin{equation*}
\varphi_{2, j}(0)=e^{i k_{0}\left(j-j_{0}\right)} e^{-\left(j-j_{0}\right)^{2} / 4 \alpha} \tag{21}
\end{equation*}
$$

We choose $j_{0}=80, k_{0}=\pi / 2, J_{0}=1, \alpha=6$, and $N=220$. The local spin resides at site 120 , and the absorbing potential sites are from 180 to 184 with a constant, $U=-i$, at each site. Figure 3 shows the time evolution of both $\left|\varphi_{2, j}(t)\right|^{2}$ and $\left|\varphi_{3, j}(t)\right|^{2}$. Figure 3(a) shows the spin-up component of the electron. At the initial scattering center (local spin at site 120), a transmitted and small reflected component emerges; the transmitted component then propagates toward the absorbing potential wherein some is reflected, very little is transmitted, and most is absorbed. Figure 3(b) shows the spin-down component of the electron. There is none until the electron interacts with the local spin. [Notice the difference in the vertical scale compared to Fig. 3(a)]. Equal amounts are propagated to the right and to the left, and eventually,

FIG. 3. (Color online) The time evolution of the (a) $\left|\varphi_{2, j}\right|^{2}$ and (b) $\left|\varphi_{3, j}\right|^{2}$ components of a wave packet in the presence of a spin-flip interaction as well as a complex absorbing potential. The initial mean position of the wave packet is $x_{0}=80$ with $k_{0}=\pi / 2$. The lattice size $N=220$. In this case, one can actually use total angular momentum conservation to argue that the other two components are zero.
most of the packet on the right is absorbed by the negative imaginary potential. [As in Fig. 3(a), some is reflected and some is transmitted as well].

Each profile in the plot corresponds to a snapshot of [Fig. $3(\mathrm{a})]\left|\varphi_{2, j}(t)\right|^{2}$ or [Fig. 3(b)] $\left|\varphi_{3, j}(t)\right|^{2}$, which is taken at different times from $t=0$ to $t=65$. The wave packet leaves the local spin at $t=30$ and does not interact with the complex potential until $t=40$. Eventually, the transmitted wave packet from the spin-flip scattering interacts with the complex potentials; by $t=60$, the interaction is complete. No interaction occurs beyond $t=60$.

The important dynamics of the local spin can also be illustrated by $\left\langle S_{z}(t)\right\rangle$, which indicates the degree of spin transfer from the incoming electron to the local spin. ${ }^{15}$ We plot $\left\langle S_{z}(t)\right\rangle$ as a function of t in Fig. 4 for a variety of values of S. In all cases, it is obvious that the first increase in $\left\langle S_{z}(t)\right\rangle$ is induced by spin transfer from the incoming electron to the local spin, as is illustrated well in Fig. 3(b). This is the increase that one will obtain when the Hamiltonian has only real-valued potentials. $\left\langle S_{z}(t)\right\rangle$ remains unchanged from t $=30$ to $t=40$, which is also consistent with the time evolution of the wave packet. It is after $t=40$ that an intriguing feature
takes place when the transmitted wave packet starts interacting with the complex potentials. $\left\langle S_{z}(t)\right\rangle$ considerably increases even though (i) the scattering is spin independent, and more importantly, (ii) the wave packet no longer physically overlaps with the local spin. This phenomenon could be interpreted as a complex potential-driven action at a distance. The equation governing $\left\langle S_{z}(t)\right\rangle$ can be derived based on Eq. (19). Since $H=H_{0}-i V_{0}$, where $H_{0}=H_{0}^{\dagger}$, and V_{0} is real valued, one can show

$$
\begin{equation*}
\frac{d}{d t}\left\langle S_{z}(t)\right\rangle=i\left\langle\left[H_{0}, S_{z}\right]\right\rangle-2\left[\left\langle V_{0} S_{z}\right\rangle-\left\langle V_{0}\right\rangle\left\langle S_{z}\right\rangle\right] . \tag{22}
\end{equation*}
$$

Since the two interactions do not occur at the same time because of their arrangement, we can separately consider the two. The first term gives rise to spin transfer, while the additional increase after $t=40$ is attributed to the second term. As mentioned earlier, if the absorbing potentials were real valued or zero, there would be no additional change in $\left\langle S_{z}(t)\right\rangle$. In Fig. 4, we show $\left\langle S_{z}(t)\right\rangle / S$, where $S=\left|\left\langle S_{z}(0)\right\rangle\right|$, for various values of local spin $S=1 / 2,1,3 / 2$, and 2 . As shown

FIG. 4. (Color online) The dynamics of $\left\langle S_{z}\right\rangle$ for $S=1 / 2,1,3 / 2$, and 2 . The local spin is at site 120 (reached at approximately time $t=20$). The spin- $1 / 2$ electron is coupled to the local spin with coupling $J_{0}=1$. The complex potentials are at five sites from 180 to 184 , which are reached after time 50 ; their strengths are a constant, $U=-i$.
in the plot, the effects of the complex potential are most significant for $S=1 / 2$. On the other hand, for $S \geq 3 / 2$, the effect of the potential is less considerable and, when the electron interacts with the absorbing potential, $\left\langle S_{z}(t)\right\rangle$ of the local spin actually decreases.

Even though the displayed crossover appears for large S, a similar crossover can occur even for $S=1 / 2$, as will be now explained. The definition of $\left\langle S_{z}\right\rangle$ [see above Eq. (19)] includes specific combinations of different components of the wave packet. The relevant components here are those that strike the absorbing potential region; they remain entangled with the local spin, and hence, the spin is affected, too. Let us first examine what happens when a wave packet strikes an absorbing potential. Figure 5 illustrates the flux reduction as a function of impurity potential U for a varying number of impurity sites (or a varying width of the imaginary impurity potential well). Note that we define $U=U_{0}-i V_{0}$, and here, we use pure imaginary potentials only. All imaginary values of the complex potential are taken to be negative ($V_{0}>0$); positive values result in flux increase and are of no interest here.

Analytical expressions can be easily derived for one and two sites by using the expressions in the Appendix of Ref. 13 for $U=-i V_{0}$. In the case of a single site, one obtains

$$
\begin{equation*}
\text { flux }_{1} \equiv|T|^{2}+|R|^{2}=1-\frac{V_{0} \sin k}{\sin k^{2}+V_{0} \sin k+\left(V_{0} / 2\right)^{2}} \tag{23}
\end{equation*}
$$

where k is the wave vector of the plane wave. Note that one obtains unit flux both for $V_{0}=0$ and for $V_{0} \rightarrow \infty$; otherwise, there is a sharp reduction as V_{0} increases from zero, which is followed by a steady recovery for increasing values. This expression is plotted (for $k=\pi / 2$) in Fig. 6 and is indistinguishable from the result obtained with a wave packet with a finite width $(\alpha=6)$. The expression for two-impurity sites shows the same characteristics; for $k=\pi / 2$, it is

$$
\begin{equation*}
\text { flux }_{2}=\frac{4+V_{0}^{4}}{\left(2+2 V_{0}+V_{0}^{2}\right)^{2}} \tag{24}
\end{equation*}
$$

This curve is also indistinguishable from the wave-packet result in Fig. 6, and results for more absorbing potentials

FIG. 5. (Color online) Flux reduction for different numbers of complex potential sites.

FIG. 6. (Color online) Flux reductions at the imaginary potential, which are with and without the local spin. The expected and numerical results are for one and two site impurity potentials. There are five sites with local spin with different orientations.
differ very little from those in the case of two impurities. Thus, it is clear that an optimum imaginary potential strength exists to maximize the flux reduction. In Fig. 6, in addition, we show the flux reductions for five absorbing impurities, which are with and without the local spin, and for two different initial conditions for the local spin. In this plot, the flux is normalized to the flux transmitted through the local spin. Finally, in the interest of completeness, one can ask whether a real component of the absorbing potentials has a strong influence on what has been done so far. In Fig. 7 we show the flux reduction as a function of the potential, U $=U_{0}-i V_{0}$; as before, only positive values of V_{0} are shown. This result is for a single absorbing impurity. Results for more impurities are similar to this one. For $k=\pi / 2$, the result for a single impurity is

$$
\begin{equation*}
\text { flux }=1-\frac{4 V_{0}}{\left(2+V_{0}\right)^{2}+U_{0}^{2}} \tag{25}
\end{equation*}
$$

and perfectly agrees with the corresponding numerical result shown. As Fig. 7 indicates, a large U_{0} serves to skew the $U_{0}=0$ result. For a single impurity, the minimum flux occurs at $V_{0 \min }=\sqrt{4+U_{0}^{2}}$ and the flux reduction slowly goes to zero as U_{0} increases.

Returning to the problem that includes the spin-flip interaction, we can define reflection and transmission magnitudes that leave the local spin in a particular configuration. For example, let $R 1$ and $R 2$ be the reflection coefficients with local spins up and down, respectively, and let $T 1$ and $T 2$ be the transmission coefficients with local spins up and down, respectively. With these magnitudes, the expectation value of the z component of the local spin after interaction can be calculated to be

$$
\begin{equation*}
\left\langle S_{z}(t)\right\rangle=\frac{R 1+T 1-R 2-T 2}{2(R 1+T 1+R 2+T 2)}=\frac{1}{2}-\frac{R 2+T 2}{R 1+T 1+R 2+T 2} . \tag{26}
\end{equation*}
$$

This equation shows that the final value of $\left\langle S_{z}\right\rangle$ depends on a particular combination of these magnitudes. Therefore, initial
conditions and system parameters, which determine these magnitudes, change the value of $\left\langle S_{z}\right\rangle$. An example of this different behavior arises as a function of the J_{0} coupling of the electron spin to the local spin. The expectation value of the z component of the local spin, $\left\langle S_{z}\right\rangle$, is shown as a function of time in Fig. 8 for a variety of values of J_{0}. As illustrated, the change after $t=50$ alters its characteristic around $J_{0}=2.3$; namely, instead of an additional increase, $\left\langle S_{z}\right\rangle$ decreases when the coupling (to the local spin) is sufficiently strong.

As was the case with the varying magnitude of spin (see Fig. 4), the local spin can react in a qualitatively very different way when the transmitted part of the electron reaches the absorbing potential. A summary of the scattering coefficients after interaction with the local spin is displayed in Fig. 9. Note that $J_{0} \approx 2.3$ plays a prominent role; it is the value of the coupling for which the spin-flip component of the transmitted wave packet peaks as a function of J_{0}. One can readily show that the change in $\left\langle S_{z}(t)\right\rangle$ as given by Eq. (26) after scattering from an imaginary potential (compared to the change before scattering) is proportional to $T 2-R 2$. This quantity changes sign at $J_{0} \approx 2.3$ and, therefore, leads to the qualitative change indicated in Fig. 8 independent of the value of the absorbing potential.

FIG. 7. (Color online) Flux reduction for a complex potential with both real and imaginary parts.

FIG. 8. (Color online) Time evolution of $\left\langle S_{z}\right\rangle$ of a local spin with an electron-spin up interacting with the local spin and an imaginary potential with different electron-spin interaction strengths.

The impact of the magnitude of V_{0} (negative imaginary absorbing potential) on the magnitude of change is illustrated in Fig. 10 for a couple of local spin initial configurations, which are [Fig. 10(a)] $\langle S\rangle$ initially in the $-z$ direction and [Fig. 10(b)] $\langle S\rangle$ initially in the x direction.

In Fig. 10(a), $\left\langle S_{z}\right\rangle$ is plotted for a time after the transmitted part of the wave packet interacts with the imaginary potential for the case where the initial local spin configuration was aligned in the negative z direction (the incoming electron is always spin up). For low values of J_{0}, the imaginary potential first causes an increase in the local z-component spin, which is followed by a decrease (for large enough V_{0}, the local spin is not affected, which is consistent with Fig. 5). As already noted, for larger J_{0} (greater than about $J_{0} \approx 2.3$ in the figure), the effect of the absorbing potential is opposite: the local z-component spin first decreases and then increases as a function of V_{0}.

Note that the initial configuration described above is, in many ways, quite unique because the local spin and the electron spin are initially perfectly antialigned. It turns out that for this initial configuration (and for some others), J_{z} is con-
served, which is contrary to the general expectation based on Eq. (19) (with $\mathcal{A}=J_{z}$). In Fig. 10 (b) we show an example wherein J_{z} is not conserved, as one would expect, in general. To show this more explicitly, in Fig. 11, we plot a sequence of results for initial starting configurations that sweep through the $x-z$ plane. At the two end points, J_{z} remains constant as a function of time. For other initial conditions, $\left\langle J_{z}\right\rangle$ changes as a function of time. As Fig. 6 showed, the amount of flux reduction due to the absorption is dependent on the value of V_{0}. For large $V_{0} \rightarrow \infty$, the reduction is diminished by the reflection from the potential, and a full flux is recovered. This effect is visible in $\left\langle S_{z}\right\rangle$ as well. The main change occurs around $V_{0} \approx 1$, and a full recovery (to the V_{0} $=0$ value) occurs for high values of the interaction.

V. SUMMARY

Complex absorbing potentials have been utilized as a source of absorption in the context of dynamical problems (like spin-flip scattering) by investigating the time evolution of a particle wave packet under the influence of such poten-

FIG. 9. (Color online) Magnitudes of each component of the wave packet with respect to the local spin. $R 1$ has the same value as $T 1$ because the created state of electron down, local spin up needs to conserve momentum.

FIG. 10. (Color online) z component of the local spin for different interaction strengths of the electron spin and imaginary potential, with initial configurations of (a) $|+\downarrow\rangle$ and (b) $|+0\rangle$.
tials. The formulation presented in this paper is mathematically equivalent to diagonalizing a complex symmetric matrix because the Hamiltonian we consider is complex symmetric rather than Hermitian in the matrix representation. The structure of the formalism parallels the one in "conventional" quantum mechanics with Hermitian Hamiltonians. However, the diagonalizability of complex symmetric matrices requires some extra attention. Equation (19) is central to the results when a complex potential is considered. This equation indicates that conservation of a physical quantity does not follow from the commutability of its operator with the Hamiltonian in the presence of a complex (i.e., nonHermitian) potential. One of the most remarkable examples is the total angular momentum \mathbf{J}. We showed an example where $\left\langle J_{z}\right\rangle$ is not conserved and shows significant time dependence depending on the initial conditions.

We also studied the interplay between the spin-flip potential and the absorbing potential. The first, while Hermitian, nonetheless displays some unusual properties connected to entanglement. Essentially, the electron wave packet that
emerges from the spin-flip scattering cannot be separated from the local spin state. As a consequence, when the transmitted portion further interacts with an absorbing potential, the state (and expectation values) of the local spin is affected. We also studied the "absorbing power" of a complex potential as a function of its strength (both real and imaginary parts). The remarkable "action at a distance" displayed in Figs. 4 and 5 is a consequence of an imaginary potential. It would be most intriguing if this effect can be observed in a real experiment.

A complex absorbing potential for matter waves can be realized by a standing light wave resonant with a transition between a metastable state and an excited state, which corresponds to an open two-level system. Such a scheme has been used in various experiments ${ }^{16-18}$ in quantum optics.

Theoretically, complex potentials are frequently used in quantum mechanical problems to simulate absorption processes. Nonetheless, all of their effects including the one we illustrate here may not be completely physical. However, this is far from clear and requires an experimental test to delin-

FIG. 11. (Color online) $\left\langle J_{z}\right\rangle$ of the local spin for various local spin initial conditions as a function of time. $J_{0}=1$ and $V_{0}=1$.
eate the possibilities. As mentioned above, the most promising candidate for a physical realization is a quantum optical system.

ACKNOWLEDGMENTS

We would like to thank Lucian Covaci for discussions on various aspects of this work. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by the Canadian Institute for Advanced Research (CIfAR), and by the Robert Welch Foundation (Grant No. E-1146). F.M. is grateful to the Aspen Center for Physics, where some of this work was done.

APPENDIX: COMPLEX SQUARE-WELL POTENTIAL

For a complex square-well potential, $V(x)=V_{0}$ for $|x|<a$, while $V(x)=0$ elsewhere. The general solution to the eigenvalue equation, $H \psi=E \psi$, can be expressed as follows:

$$
\psi(x)=\left\{\begin{array}{cc}
C \cos (k x)+D \sin (k x) & \text { if } x<-a \tag{A1}\\
F \cos (\kappa x)+G \sin (\kappa x) & \text { if }-a<x<a \\
A \cos (k x)+B \sin (k x) & \text { if } x>a
\end{array}\right.
$$

where A, B, C, D, F, and G are complex constants, κ $=\sqrt{2 m\left(E-V_{0}\right)}$, and $k=\sqrt{2 m E}$. As the Hamiltonian is nonHermitian, both k and κ lie in the complex plane. Since the potential $V(x)$ is even, the Hamiltonian operator commutes with the parity operator. Hence, all nondegenerate eigenstates of the Hamiltonian must also be eigenstates of parity.

Consider first the even states. Evenness of ψ implies that $A=C, D=-B$, and $G=0$ in Eq. (A1). The derivative $\partial_{x} \psi$ must be odd, so $\left.\partial_{x} \psi\right|_{L}=-\left.\partial_{x} \psi\right|_{-L}$. However, periodic boundary conditions require that $\left.\partial_{x} \psi\right|_{L}=\left.\partial_{x} \psi\right|_{-L}$. Therefore,

$$
\begin{equation*}
\left.\partial_{x} \psi\right|_{L}=k[-A \sin (k L)+B \cos (k L)]=0 \tag{A2}
\end{equation*}
$$

By the continuity of ψ and $\psi \prime$ at $x=a$,

$$
\begin{equation*}
F \cos (\kappa a)+G \sin (\kappa a)=A \cos (k a)+B \sin (k a) \tag{A3}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa[-F \sin (\kappa a)+G \cos (\kappa a)]=k[-A \sin (k a)+B \cos (k a)] . \tag{A4}
\end{equation*}
$$

It is easy to search for eigenvalues that satisfy $\cos (k L)=0$, $\cos (\kappa a)=0$, or $\cos (k a)=0$ since the zeros of these functions are well known. However, in most configurations, the vast majority of eigenvalues do not satisfy these conditions, so Eq. (20) must be numerically solved in the complex plane. This is done by applying Newton's method to the following function:

$$
\begin{equation*}
f_{n}(k)=\tan ^{-1}\left(\frac{\kappa}{k} \tan (\kappa a)\right)+k(L-a)-n \pi \tag{A5}
\end{equation*}
$$

for each n.
The analysis of the odd states is similar to that of the even states. Oddness implies that $D=B,(C=-A)$, and $F=0$ in Eq. (A1). We apply periodic boundary conditions and require continuity of ψ and $\psi \prime$ at $x=a$ in order to derive the following expression for odd eigenstate momenta k. If $\cos (k L)$ $\neq 0, \cos (\kappa a) \neq 0$, and $\cos (k a) \neq 0$, we obtain

$$
\begin{equation*}
k \tan (\kappa a)=-\kappa \tan k(L-a) \tag{A6}
\end{equation*}
$$

In order to solve Eq. (A6) in the complex plane, Newton's method is applied to the following function:

$$
\begin{equation*}
g_{n}(k)=\tan ^{-1}\left(\frac{k}{\kappa} \tan (\kappa a)\right)+k(L-a)-n \pi \tag{A7}
\end{equation*}
$$

for each n. It can be numerically seen that in most cases, $f_{n}(k)$ and $g_{n}(k)$ each have one zero per value of n. Occasionally, one can expect to find one or two zeros for some n.

Let us consider the time evolution of a Gaussian wave packet with average position $-x_{0}$ and average momentum k_{0} :

$$
\begin{equation*}
\Psi(x, 0)=(2 \pi \alpha)^{-1 / 4} e^{i k_{0}\left(x+x_{0}\right)} e^{-\left(x+x_{0}\right)^{2} / 4 \alpha} \tag{A8}
\end{equation*}
$$

Here, $\left(x_{0}-a\right) / \alpha$ is taken to be sufficiently large so that $\Psi(x, 0) \approx 0$ if $x>-a$. Propagation of this wave packet under the influence of the potential $V(x)$ cannot be described semiclassically due to the discontinuities of V. However, modeling is possible by using the method described so far. The wave packet is expanded in terms of eigenstates, as described in Sec. II with coefficients as follows:

$$
\begin{align*}
C_{n}= & \pm \frac{1}{\sqrt{\mathcal{N}}}\left(\frac{\pi \alpha}{2}\right)^{1 / 4}\left[(A+i B) e^{-i k x_{0}} e^{-\alpha\left(k_{0}+k\right)^{2}}\right. \\
& \left.+(A-i B) e^{i k x_{0}} e^{\alpha\left(k_{0}-k\right)^{2}}\right] \tag{A9}
\end{align*}
$$

where the \pm in front implies " + " for even states and " - " for odd states, and $\mathcal{N}=(n \mid n)$ is a normalization factor. For each configuration, we manually check that $(n \mid n) \neq 0$ for the state involved in the expansion.
${ }^{1}$ J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Phys. Rep. 395, 357 (2004).
${ }^{2}$ R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985).
${ }^{3}$ A. Vibok and G. Balint-Kurt, J. Chem. Phys. 96, 7615 (1992).
${ }^{4}$ C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
${ }^{5}$ S. Midgley and J. B. Wang, Phys. Rev. E 61, 920 (2000).
${ }^{6}$ A. J. Rasmussen, S. J. Jeffrey, and S. C. Smith, Chem. Phys. Lett. 336, 149 (2001).
${ }^{7}$ A. Neumaier and V. A. Mandelshtam, Phys. Rev. Lett. 86, 5031 (2001).
${ }^{8}$ R. Santra and L. S. Cederbaum, Phys. Rep. 368, 1 (2002).
${ }^{9}$ N. Moiseyev, S. Scheit, and L. S. Cederbaum, J. Chem. Phys. 121, 722 (2004).
${ }^{10}$ N. Moiseyev, Phys. Rep. 302, 212 (1998).
${ }^{11}$ U. V. Riss and H.-D. Meyer, J. Phys. B 26, 4503 (1993).
${ }^{12}$ U. V. Riss and H.-D. Meyer, J. Chem. Phys. 105, 1409 (1996).
${ }^{13}$ W. Kim, L. Covaci, and F. Marsiglio, Phys. Rev. B 74, 205120
(2006).
${ }^{14}$ Some modification is needed to make the eigenstates satisfy the c-product normalization because the numerical driver provides the eigenstates with the Euclidean normalization. This procedure is, in fact, helpful in making sure that no eigenstates are selforthogonal.
${ }^{15}$ In order to see the precession of the local spin, one needs to evaluate $\left\langle S_{+}(t)\right\rangle$, where $S_{+}=S_{x}+i S_{y}$.
${ }^{16}$ M. K. Oberthaler, R. Abfalterer, S. Bernet, C. Keller, J. Schmiedmayer, and A. Zeilinger, Phys. Rev. A 60, 456 (1999).
${ }^{17}$ S. Bernet, R. Abfalterer, C. Keller, M. K. Oberthaler, J. Schmiedmayer, and A. Zeilinger, Phys. Rev. A 62, 023606 (2000).
${ }^{18}$ R. Stützle, M. C. Göbel, Th. Hörner, E. Kierig, I. Mourachko, M. K. Oberthaler, M. A. Efremov, M. V. Fedorov, V. P. Yakovlev, K. A. H. van Leeuwen, and W. P. Schleich, Phys. Rev. Lett. 95, 110405 (2005).

