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Electron and spin transport in the presence of a complex absorbing potential
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We examine the impact of a complex absorbing potential on electron transport both in the continuum and on
a lattice. This requires the use of non-Hermitian Hamiltonians; the required formalism is briefly outlined. The
lattice formulation allows us to study the interesting problem of an electron interacting with a stationary spin
and the subsequent time evolution of the electron and spin properties as the electron is absorbed after the initial
interaction. Remarkably, the properties of the localized spin are affected “at a distance” by the interaction of
the �now entangled� electron with a complex potential.

DOI: 10.1103/PhysRevB.77.195107 PACS number�s�: 03.65.Ud, 72.25.Rb, 03.67.Mn

I. INTRODUCTION

Typically, the dynamics of a closed system are described
by a Hamiltonian that is Hermitian and accounts for all pos-
sible interactions and degrees of freedom. However, the task
of merely writing down the full Hamiltonian is hopeless in
many cases and might also be superfluous from a practical
point of view. Following this line of thought, a reduced or
effective Hamiltonian can be introduced to phenomenologi-
cally describe relevant dynamics. As discussed in Ref. 1, for
example, the effective Hamiltonian may or may not be Her-
mitian depending on the phenomena under consideration.
For example, a reduction of the full Hamiltonian often used
in nuclear physics is referred to as the “optical model.” In
order to explain experimental results, this model uses phe-
nomenological potentials such as a complex absorbing po-
tential.

When a complex absorbing potential is introduced into a
system with a real Hamiltonian, the resulting effective
Hamiltonian is not Hermitian but symmetric and complex in
its matrix representation. The mathematical properties of
complex symmetric matrices are a little more complicated
than those of Hermitian matrices, as detailed in, for example,
Ref. 2. There have been many studies of a complex absorb-
ing potential in the continuum limit based on various calcu-
lational schemes.3–12 The approach followed in this paper
requires the diagonalization of a complex symmetric Hamil-
tonian defined on a lattice, as will be described below.

The textbook example is the one-dimensional scattering
problem in which the absorption is modeled with an imagi-
nary Dirac-� potential. The effective Hamiltonian is H
= p2 /2m− i���x�, with ��0. Then, the scattering states are
given by �k�x�= �eikx+Re−ikx���−x�+Teikx��x�, where � is the
Heaviside step function. The reflectance and transmittance
amplitude R and T are determined by matching conditions at
x=0 to be R=−� / �2k+�� and T=2k / �2k+��. Clearly, �R�2
+ �T�2�1. In fact, the absorption probability is defined as
�A�2�1− �R�2− �T�2. A deeper understanding of this “absorp-
tion” can be attained by studying the dynamics of a suffi-
ciently broad wave packet; this will be illustrated below.

It is also possible to consider an absorbing potential in a
�one-dimensional� lattice by allowing the potential Ui at each
site i to be complex. This approach follows that used for
impurity potentials on a lattice, as described in Ref. 13. The
reflectance and transmittance amplitudes in the case of a
complex potential, U=−i����0�, at one site are, respec-
tively,

R = −
�e2ik

2 sin�k� + �
�1�

and

T =
2 sin�k�

2 sin�k� + �
, �2�

with the lattice constant set to unity.These relations are the
basic building blocks for any more complicated complex po-
tential, which will be further examined in this paper. In par-
ticular, spin-flip potentials with the appropriate modifications
can also be described in this way to understand how spin
interactions �along with some decoherence effects� can
modify a spin current. The question of coherence of spin
currents is an important one; in this paper, we make a pre-
liminary attempt to model the decoherence of spin and
charge currents. We find an interesting property that high-
lights the “entanglement” properties of spins, in particular.
These issues are the subject of this investigation.

This paper is organized as follows: In Sec. II we present
the formalism of the dynamics of a wave packet in the pres-
ence of complex absorbing potentials both in the continuum
limit and on a lattice. In Sec. III illustrates how a complex
potential influences the time evolution of a wave packet as a
simple example. In Sec. IV we study the spin-dependent
scattering problem in the presence of a complex absorbing
potential. The time evolution of an expectation value of an
operator is derived when the Hamiltonian is non-Hermitian.
We then demonstrate a highly nontrivial consequence of the
complex potential on spin transfer. This result shows that
quantum entanglement plays an important role in spin trans-
fer in the presence of a complex potential. In Sec. V, we
conclude with a summary.
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II. FORMALISM

We begin by considering a single particle in
d-dimensional space under the influence of a complex poten-
tial. As usual, the state space is L2�Rd� equipped with the
usual inner product:

�f �g�: = 	
Rd

f�g . �3�

The Hamiltonian, H : = p2 /2m+V, where V :Rd→C achieves
nonreal values �on some set of nonzero measure�, is easily
seen to be nonsymmetric �and, therefore, non-Hermitian�.
There are many computational complications due to a non-
Hermitian Hamiltonian; some nuances have been cataloged
in Refs. 8 and 10, for example. We follow Moiseyev10 and
introduce the c product, �� · �·� :L2�Rd��L2�Rd�→C, which is
defined by

��f �g�: = 	
Rd

fg . �4�

�Note that by the Cauchy–Schwarz inequality, ���f �g��
= ��f� �g��� 
f�

g
= 
f

g
�	 for f ,g�L2�Rd�.� We see that
the Hamiltonian exhibits symmetry with respect to the c
product; that is, for all functions f and g in the domain of H
�the Sobolev space H2�Rd��,

��f �Hg� = ��Hf �g� . �5�

This can be easily shown for f �H2�Rd� and g�Cc
	�Rd�, and

a density argument completes the proof. From this symmetry,
it follows that eigenfunctions of H corresponding to distinct
eigenvalues are “orthogonal” with respect to the c product
�rather than the inner product,3 as is usual�. That is, if

 ,��Ł2�Rd�, � ,��C with ���, H
=�
, and H�=��,
then

��
��� = 0. �6�

For convenience, we now restrict our domain to a
d-dimensional cube in Rd and impose periodic boundary
conditions on the edges. In doing so, we force the spectrum
of H to be discrete. We look for solutions to the initial value
problem,

�i�t
t = H
t


0 = 
 .
, �7�

We suppose that, as in the case where H is Hermitian, the
solution is obtained by acting on the initial wave function �
with the time-evolution operator, U�t� : =e−iHt. Then, if the
eigenfunctions of H are denoted by �� j
 j=1

	 , with the corre-
sponding complex eigenvalues Ej, and the initial wave func-
tion is 
=�aj� j, it follows that the solution to Eq. �7� is


t = �
j=1

	

aje
−iEjt� j . �8�

See the Appendix for a sample calculation of wave-packet
evolution under the influence of a complex potential.

In a lattice with N sites, we use the tight-binding Hamil-
tonian:

H = − t0 �
�i,j��

Ci�
+ Cj� + �

j�I,�
UjCj�

+ Cj�, �9�

where Ci�
+ creates an electron with a spin � at a site i, t0 is a

hopping amplitude between the nearest neighbor sites and is
set to unity, Uj is a complex potential at site j, and I repre-
sents a set of the potential sites. For complex absorbing po-
tentials, Uj =−i� j, with � j �0. By varying Ui and I, one can
build various effective potentials. For example, in order to
study the dynamics of a wave packet and compare the reflec-
tance �Eq. �1�� and the transmittance �Eq. �2�� given in the
Sec. I, we choose a single-site potential with Uj =−i��0,j.

In the lattice, the state space is finite dimensional; the
Hamiltonian can be represented by a complex symmetric
matrix. Recall that an N�N matrix with entries in a field �C�
is diagonalizable if and only if it has N linearly independent
eigenvectors.

An initial electron wave packet with spin up can be writ-
ten as

�
�0�� = �
i=1

N

�iCi↑
+ �0� , �10�

where Ci↑
+ acts on the vacuum �0� to create an electron with

spin up and ��i�2 is the initial probability to find such an
electron at site i. Thus, in the matrix representation,

�
�0�� ��
�1�0�
�2�0�
]

�N�0�
� . �11�

For the purposes of this paper, �
�0�� is a Gaussian wave
packet that is far from �and broad when compared to� the
region of nonzero potential. In order to find the time evolu-
tion of this wave packet, we solve for all eigenvectors �n�
and corresponding eigenvalues En of the Hamiltonian matrix
�and, hence, verify its diagonalizability�. Now, the time evo-
lution of the wave packet on the lattice is given by

�
�t�� = �
n=1

N

�n�
�0���e−iEnt�n� , �12�

where ��n�� is the matrix transpose of �n�. This can be seen by
noting that the eigenvectors �n� form an orthogonal set with
respect to the finite-dimensional analog of the c product:

�n�m�� = �mn �13�

for all m ,n� �0, . . . ,N
.
The reflection and transmission probabilities are defined

as �R�2 : = limt→	 �i�min I��i�t��2 and �T�2 : = limt→	

��i�max I��i�t��2, respectively. Here, �i�t� is the ith compo-
nent of �
�t��, and I is the region of the nonzero potential.

So far, we have acquired the machinery to describe the
dynamics of a given initial wave function in the presence of
a complex potential by solving the Schrödinger equation. In
Secs. III and IV, we will utilize it to examine various physi-
cal systems.
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III. COMPLEX POTENTIALS AS ABSORBERS

For illustrative purposes, a good example is the complex
Dirac-� potential, V�x�=���x�, where ��C with Im����0
for an absorbing potential. �The complex square-well poten-
tial is also described in detail in the Appendix.� Suppose that
the one-dimensional space spans from x=−L to x=L. Then,
eigenfunctions of the Hamiltonian, H= p2 /2m+V�x�, can be
classified according to their parity. These eigenfunctions
must have the following form:


�x� = �C cos�kx� + D sin�kx� if − L � x � 0

A cos�kx� + B sin�kx� �if 0 � x � L� ,
� �14�

where, if E is the corresponding eigenvalue, k=�2mE. For
even eigenfunctions, C=A and D=−B. We impose open
boundary conditions at x= �L �namely, 
�−L�=
�L�=0�.
By using the usual matching conditions for the eigenstates at
x=0, we find that

tan�kL� = −
2k

�
. �15�

For the odd channel, C=−A and D=B, and the eigenstates
should vanish at x=0, which requires that A=0. As expected,
the odd-channel eigenstates are independent of �. These
states are given by 
�x�=sin�pnx�, with pn=n� /L.

The initial wave packet,


0�x� = �2���−1/4eik0�x+x0�e−�x + x0�2/4�, �16�

can then be expanded in terms of the eigenfunctions of H by
exploiting their c-product orthogonality: 
0=�kck
k, where

ck = ��
k�
0� . �17�

The time evolution is then given by Eq. �8�.
For the lattice problem, as described in Sec. II, one can

consider a complex potential with U=−i� at a single site,
say, I. Then, the Hamiltonian becomes H=−t0��i,j��Ci�

+ Cj�
− i���CI�

+ CI�. Since the Hamiltonian is a complex matrix,
the numerical diagonalization can be done by the driver

ZGEEVX contained in the LAPACK package.14 In Fig. 1, we
show the time evolution of a wave packet that initially re-
sides at x0=50 with the average momentum k0=� /2. The
single impurity is at I=100 with �=1. Figure 2 compares the
reflectance and transmittance of the wave packet with the
results from the scattering plane-wave approach for various
�average� momenta k0. The scattering plane-wave approach
is, in fact, verified by the dynamical calculations. As long as
the wave packet is broad enough, the scattering plane-wave
approach for a complex square well can be verified in a
similar manner.

IV. EFFECTS OF A COMPLEX ABSORBING POTENTIAL
ON SPIN TRANSFER

We now examine the interaction of an electron with a
spin-flip potential followed by a complex absorbing poten-
tial. In the continuum, a simple representative Hamiltonian is
H= p2 /2m−2J0� ·S��x�− i���x−a�, where J0 is the coupling
constant of a spin-flip interaction between the electron spin �
and a local spin S at x=0. The distance between the two
interactions, a, is taken to be much larger than the width of
an incoming wave packet. Note the conflicting requirements;
a broad wave packet is required to have a reasonably well-
defined momentum, but a narrow wave packet �on the scale
of a� is required to properly observe causal effects. The wave
packet interacts with the local spin first and is partially re-
flected and partially transmitted. �Note that the amplitudes of
the transmitted and reflected waves depend on the initial spin
configuration.� The transmitted wave later interacts with the
complex absorbing potential after completely emerging from
the spin-flip potential. �In other words, the wave packet does
not simultaneously feel both interactions at any given mo-
ment.�

It is numerically feasible to find some eigenvalues for this
Hamiltonian; however, the comprehensive search for all
complex eigenvalues within some upper modulus bound
�given by appropriate truncation limits� is seen to be a for-
midable task. The analogous problem on the lattice is far
more tractable owing to the fact that the Hamiltonian is a

0.00
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0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160 180

|Ψ
i|2

site index

FIG. 1. �Color online� The time evolution of a
wave packet in the presence of a complex absorb-
ing potential.
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complex symmetric matrix, which is diagonalizable by stan-
dard numerical routines. The lattice Hamiltonian is

H = − t0 �
�i,j��

Ci�
+ Cj� − 2J0�l · Sl + �

i�I,�
UiCi�

+ Ci�, �18�

where the local spin is at site l and the complex absorbing
potential sites belong to set I far from site l. Since we have
only one local spin on the lattice, we will drop the site label
l from now on.

We will investigate the case wherein the local spin is ini-
tially pointing down, �Sz=−S� while the electron spin is
pointing up ��z=1 /2�. In particular, we wish to monitor the
time evolution of �Sz� as the electron interacts with the local
spin and is subsequently partially absorbed by the complex
potential.

The expectation value of a time-independent operator A
is �A�= �
�t��A�
�t�� / �
�t� �
�t��. By differentiating with
respect to time,

d

dt
�A� =

d

dt

�
�A�
�
�
�
�

=
�
�
� d

dt �
�A�
� − �
�A�
� d
dt �
�
�

�
�
�2 =
i�
�
��
��H+A − AH��
� − i�
�A�
��
��H+ − H��
�

�
�
�2

= i�H+A − AH� − i�A��H+ − H� . �19�

Note that �A� is not guaranteed to be constant in time even if
�H ,A�=0. If H is Hermitian, this equation reduces to the
following usual expression: d�A� /dt= i��H ,A��. For ex-
ample, the z component Jz of the total spin J=�+S com-
mutes with the Hamiltonian: �H ,Jz�=0. However, it is clear
from Eq. �19� that, in general, d / dt �Jz��0. Consequently, in
general, we cannot utilize �Jz� as a conserved quantity. We
will further discuss this issue below.

The spin space of this system has a basis of 2�2S+1� spin
states: ��z ,Sz�= �+,S� , . . . , �−,−S�. We focus on the simplest
case, S=1 /2, in which there are four spin basis states: �
+,↑�, �+,↓�, �−,↑�, and �−,↓�. The Hamiltonian matrix is of
dimension 4N�4N, where N is the number of lattice sites.
The initial electron wave packet is also expressed in terms of
these basis states:

�
�0�� = �
j

�1,j�0��+ ,↑� + �2,j�0��+ ,↓�

+ �3,j�0��− ,↑� + �4,j�0��− ,↓� . �20�

For most of this investigation, only �2,j�0� is nonzero,
with

�2,j�0� = eik0�j−j0�e−�j − j0�2/4�. �21�

We choose j0=80, k0=� /2, J0=1, �=6, and N=220. The
local spin resides at site 120, and the absorbing potential
sites are from 180 to 184 with a constant, U=−i, at each site.
Figure 3 shows the time evolution of both ��2,j�t��2 and
��3,j�t��2. Figure 3�a� shows the spin-up component of the
electron. At the initial scattering center �local spin at site
120�, a transmitted and small reflected component emerges;
the transmitted component then propagates toward the ab-
sorbing potential wherein some is reflected, very little is
transmitted, and most is absorbed. Figure 3�b� shows the
spin-down component of the electron. There is none until the
electron interacts with the local spin. �Notice the difference
in the vertical scale compared to Fig. 3�a��. Equal amounts
are propagated to the right and to the left, and eventually,
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FIG. 2. �Color online� The reflectance and
transmittance probabilities as a function of the
momentum. The scattering approach is verified
by the full dynamics.
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most of the packet on the right is absorbed by the negative
imaginary potential. �As in Fig. 3�a�, some is reflected and
some is transmitted as well�.

Each profile in the plot corresponds to a snapshot of �Fig.
3�a�� ��2,j�t��2 or �Fig. 3�b�� ��3,j�t��2, which is taken at dif-
ferent times from t=0 to t=65. The wave packet leaves the
local spin at t=30 and does not interact with the complex
potential until t=40. Eventually, the transmitted wave packet
from the spin-flip scattering interacts with the complex po-
tentials; by t=60, the interaction is complete. No interaction
occurs beyond t=60.

The important dynamics of the local spin can also be il-
lustrated by �Sz�t��, which indicates the degree of spin trans-
fer from the incoming electron to the local spin.15 We plot
�Sz�t�� as a function of t in Fig. 4 for a variety of values of S.
In all cases, it is obvious that the first increase in �Sz�t�� is
induced by spin transfer from the incoming electron to the
local spin, as is illustrated well in Fig. 3�b�. This is the in-
crease that one will obtain when the Hamiltonian has only
real-valued potentials. �Sz�t�� remains unchanged from t
=30 to t=40, which is also consistent with the time evolution
of the wave packet. It is after t=40 that an intriguing feature

takes place when the transmitted wave packet starts interact-
ing with the complex potentials. �Sz�t�� considerably in-
creases even though �i� the scattering is spin independent,
and more importantly, �ii� the wave packet no longer physi-
cally overlaps with the local spin. This phenomenon could be
interpreted as a complex potential-driven action at a distance.
The equation governing �Sz�t�� can be derived based on Eq.
�19�. Since H=H0− iV0, where H0=H0

†, and V0 is real valued,
one can show

d

dt
�Sz�t�� = i��H0,Sz�� − 2��V0Sz� − �V0��Sz�� . �22�

Since the two interactions do not occur at the same time
because of their arrangement, we can separately consider the
two. The first term gives rise to spin transfer, while the ad-
ditional increase after t=40 is attributed to the second term.
As mentioned earlier, if the absorbing potentials were real
valued or zero, there would be no additional change in
�Sz�t��. In Fig. 4, we show �Sz�t�� /S, where S= ��Sz�0���, for
various values of local spin S=1 /2, 1, 3/2, and 2. As shown
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FIG. 3. �Color online� The time evolution of
the �a� ��2,j�2 and �b� ��3,j�2 components of a
wave packet in the presence of a spin-flip inter-
action as well as a complex absorbing potential.
The initial mean position of the wave packet is
x0=80 with k0=� /2. The lattice size N=220. In
this case, one can actually use total angular mo-
mentum conservation to argue that the other two
components are zero.
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in the plot, the effects of the complex potential are most
significant for S=1 /2. On the other hand, for S�3 /2, the
effect of the potential is less considerable and, when the
electron interacts with the absorbing potential, �Sz�t�� of the
local spin actually decreases.

Even though the displayed crossover appears for large S, a
similar crossover can occur even for S=1 /2, as will be now
explained. The definition of �Sz� �see above Eq. �19�� in-
cludes specific combinations of different components of the
wave packet. The relevant components here are those that
strike the absorbing potential region; they remain entangled
with the local spin, and hence, the spin is affected, too. Let
us first examine what happens when a wave packet strikes an
absorbing potential. Figure 5 illustrates the flux reduction as
a function of impurity potential U for a varying number of
impurity sites �or a varying width of the imaginary impurity
potential well�. Note that we define U=U0− iV0, and here,
we use pure imaginary potentials only. All imaginary values
of the complex potential are taken to be negative �V0�0�;
positive values result in flux increase and are of no interest
here.

Analytical expressions can be easily derived for one and
two sites by using the expressions in the Appendix of Ref. 13
for U=−iV0. In the case of a single site, one obtains

flux1 � �T�2 + �R�2 = 1 −
V0 sin k

sin k2 + V0 sin k + �V0/2�2 ,

�23�

where k is the wave vector of the plane wave. Note that one
obtains unit flux both for V0=0 and for V0→	; otherwise,
there is a sharp reduction as V0 increases from zero, which is
followed by a steady recovery for increasing values. This
expression is plotted �for k=� /2� in Fig. 6 and is indistin-
guishable from the result obtained with a wave packet with a
finite width ��=6�. The expression for two-impurity sites
shows the same characteristics; for k=� /2, it is

flux2 =
4 + V0

4

�2 + 2V0 + V0
2�2 . �24�

This curve is also indistinguishable from the wave-packet
result in Fig. 6, and results for more absorbing potentials
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FIG. 4. �Color online� The dynamics of �Sz�
for S=1 /2, 1, 3/2, and 2. The local spin is at site
120 �reached at approximately time t=20�. The
spin-1/2 electron is coupled to the local spin with
coupling J0=1. The complex potentials are at five
sites from 180 to 184, which are reached after
time 50; their strengths are a constant, U=−i.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

F
lu

x

V0

# of sites= 1
2
3
5

20

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

FIG. 5. �Color online� Flux reduction for dif-
ferent numbers of complex potential sites.

DOĞAN et al. PHYSICAL REVIEW B 77, 195107 �2008�

195107-6



differ very little from those in the case of two impurities.
Thus, it is clear that an optimum imaginary potential strength
exists to maximize the flux reduction. In Fig. 6, in addition,
we show the flux reductions for five absorbing impurities,
which are with and without the local spin, and for two dif-
ferent initial conditions for the local spin. In this plot, the
flux is normalized to the flux transmitted through the local
spin. Finally, in the interest of completeness, one can ask
whether a real component of the absorbing potentials has a
strong influence on what has been done so far. In Fig. 7 we
show the flux reduction as a function of the potential, U
=U0− iV0; as before, only positive values of V0 are shown.
This result is for a single absorbing impurity. Results for
more impurities are similar to this one. For k=� /2, the result
for a single impurity is

flux = 1 −
4V0

�2 + V0�2 + U0
2 �25�

and perfectly agrees with the corresponding numerical result
shown. As Fig. 7 indicates, a large U0 serves to skew the
U0=0 result. For a single impurity, the minimum flux occurs
at V0 min=�4+U0

2 and the flux reduction slowly goes to zero
as U0 increases.

Returning to the problem that includes the spin-flip inter-
action, we can define reflection and transmission magnitudes
that leave the local spin in a particular configuration. For
example, let R1 and R2 be the reflection coefficients with
local spins up and down, respectively, and let T1 and T2 be
the transmission coefficients with local spins up and down,
respectively. With these magnitudes, the expectation value of
the z component of the local spin after interaction can be
calculated to be

�Sz�t�� =
R1 + T1 − R2 − T2

2�R1 + T1 + R2 + T2�
=

1

2
−

R2 + T2

R1 + T1 + R2 + T2
.

�26�

This equation shows that the final value of �Sz� depends on a
particular combination of these magnitudes. Therefore, initial

conditions and system parameters, which determine these
magnitudes, change the value of �Sz�. An example of this
different behavior arises as a function of the J0 coupling of
the electron spin to the local spin. The expectation value of
the z component of the local spin, �Sz�, is shown as a func-
tion of time in Fig. 8 for a variety of values of J0. As illus-
trated, the change after t=50 alters its characteristic around
J0=2.3; namely, instead of an additional increase, �Sz� de-
creases when the coupling �to the local spin� is sufficiently
strong.

As was the case with the varying magnitude of spin �see
Fig. 4�, the local spin can react in a qualitatively very differ-
ent way when the transmitted part of the electron reaches the
absorbing potential. A summary of the scattering coefficients
after interaction with the local spin is displayed in Fig. 9.
Note that J0�2.3 plays a prominent role; it is the value of
the coupling for which the spin-flip component of the trans-
mitted wave packet peaks as a function of J0. One can
readily show that the change in �Sz�t�� as given by Eq. �26�
after scattering from an imaginary potential �compared to the
change before scattering� is proportional to T2−R2. This
quantity changes sign at J0�2.3 and, therefore, leads to the
qualitative change indicated in Fig. 8 independent of the
value of the absorbing potential.
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The impact of the magnitude of V0 �negative imaginary
absorbing potential� on the magnitude of change is illustrated
in Fig. 10 for a couple of local spin initial configurations,
which are �Fig. 10�a�� �S� initially in the −z direction and
�Fig. 10�b�� �S� initially in the x direction.

In Fig. 10�a�, �Sz� is plotted for a time after the transmit-
ted part of the wave packet interacts with the imaginary po-
tential for the case where the initial local spin configuration
was aligned in the negative z direction �the incoming elec-
tron is always spin up�. For low values of J0, the imaginary
potential first causes an increase in the local z-component
spin, which is followed by a decrease �for large enough V0,
the local spin is not affected, which is consistent with Fig. 5�.
As already noted, for larger J0 �greater than about J0�2.3 in
the figure�, the effect of the absorbing potential is opposite:
the local z-component spin first decreases and then increases
as a function of V0.

Note that the initial configuration described above is, in
many ways, quite unique because the local spin and the elec-
tron spin are initially perfectly antialigned. It turns out that
for this initial configuration �and for some others�, Jz is con-

served, which is contrary to the general expectation based on
Eq. �19� �with A=Jz�. In Fig. 10�b� we show an example
wherein Jz is not conserved, as one would expect, in general.
To show this more explicitly, in Fig. 11, we plot a sequence
of results for initial starting configurations that sweep
through the x-z plane. At the two end points, Jz remains
constant as a function of time. For other initial conditions,
�Jz� changes as a function of time. As Fig. 6 showed, the
amount of flux reduction due to the absorption is dependent
on the value of V0. For large V0→	, the reduction is dimin-
ished by the reflection from the potential, and a full flux is
recovered. This effect is visible in �Sz� as well. The main
change occurs around V0�1, and a full recovery �to the V0
=0 value� occurs for high values of the interaction.

V. SUMMARY

Complex absorbing potentials have been utilized as a
source of absorption in the context of dynamical problems
�like spin-flip scattering� by investigating the time evolution
of a particle wave packet under the influence of such poten-

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0 10 20 30 40 50 60 70

S
z

Time

J0=0.5
1.0
2.0
2.1
2.2
2.3
2.4
2.5

-0.04
-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03
0.04

40 45 50 55 60 65
FIG. 8. �Color online� Time evolution of �Sz�

of a local spin with an electron-spin up interact-
ing with the local spin and an imaginary potential
with different electron-spin interaction strengths.

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

M
ag

ni
tu

de
s

J0

R1
R2
T1
T2

0.20

0.25

0.30

2 2.1 2.2 2.3 2.4 2.5

FIG. 9. �Color online� Magnitudes of each
component of the wave packet with respect to the
local spin. R1 has the same value asT1 because
the created state of electron down, local spin up
needs to conserve momentum.

DOĞAN et al. PHYSICAL REVIEW B 77, 195107 �2008�

195107-8



tials. The formulation presented in this paper is mathemati-
cally equivalent to diagonalizing a complex symmetric ma-
trix because the Hamiltonian we consider is complex
symmetric rather than Hermitian in the matrix representa-
tion. The structure of the formalism parallels the one in “con-
ventional” quantum mechanics with Hermitian Hamilto-
nians. However, the diagonalizability of complex symmetric
matrices requires some extra attention. Equation �19� is cen-
tral to the results when a complex potential is considered.
This equation indicates that conservation of a physical quan-
tity does not follow from the commutability of its operator
with the Hamiltonian in the presence of a complex �i.e., non-
Hermitian� potential. One of the most remarkable examples
is the total angular momentum J. We showed an example
where �Jz� is not conserved and shows significant time de-
pendence depending on the initial conditions.

We also studied the interplay between the spin-flip poten-
tial and the absorbing potential. The first, while Hermitian,
nonetheless displays some unusual properties connected to
entanglement. Essentially, the electron wave packet that

emerges from the spin-flip scattering cannot be separated
from the local spin state. As a consequence, when the trans-
mitted portion further interacts with an absorbing potential,
the state �and expectation values� of the local spin is af-
fected. We also studied the “absorbing power” of a complex
potential as a function of its strength �both real and imagi-
nary parts�. The remarkable “action at a distance” displayed
in Figs. 4 and 5 is a consequence of an imaginary potential.
It would be most intriguing if this effect can be observed in
a real experiment.

A complex absorbing potential for matter waves can be
realized by a standing light wave resonant with a transition
between a metastable state and an excited state, which cor-
responds to an open two-level system. Such a scheme has
been used in various experiments16–18 in quantum optics.

Theoretically, complex potentials are frequently used in
quantum mechanical problems to simulate absorption pro-
cesses. Nonetheless, all of their effects including the one we
illustrate here may not be completely physical. However, this
is far from clear and requires an experimental test to delin-
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eate the possibilities. As mentioned above, the most promis-
ing candidate for a physical realization is a quantum optical
system.
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APPENDIX: COMPLEX SQUARE-WELL POTENTIAL

For a complex square-well potential, V�x�=V0 for �x��a,
while V�x�=0 elsewhere. The general solution to the eigen-
value equation, H
=E
, can be expressed as follows:


�x� = �C cos�kx� + D sin�kx� if x � − a

F cos��x� + G sin��x� if − a � x � a

A cos�kx� + B sin�kx� if x � a ,
�

�A1�

where A, B, C, D, F, and G are complex constants, �
=�2m�E−V0�, and k=�2mE. As the Hamiltonian is non-
Hermitian, both k and � lie in the complex plane. Since the
potential V�x� is even, the Hamiltonian operator commutes
with the parity operator. Hence, all nondegenerate eigen-
states of the Hamiltonian must also be eigenstates of parity.

Consider first the even states. Evenness of 
 implies that
A=C, D=−B, and G=0 in Eq. �A1�. The derivative �x
 must
be odd, so ��x
�L= �−�x
�−L. However, periodic boundary
conditions require that ��x
�L= ��x
�−L. Therefore,

��x
�L = k�− A sin�kL� + B cos�kL�� = 0. �A2�

By the continuity of 
 and 
� at x=a,

F cos��a� + G sin��a� = A cos�ka� + B sin�ka� �A3�

and

��− F sin��a� + G cos��a�� = k�− A sin�ka� + B cos�ka�� .

�A4�

It is easy to search for eigenvalues that satisfy cos�kL�=0,
cos��a�=0, or cos�ka�=0 since the zeros of these functions
are well known. However, in most configurations, the vast
majority of eigenvalues do not satisfy these conditions, so
Eq. �20� must be numerically solved in the complex plane.
This is done by applying Newton’s method to the following
function:

fn�k� = tan−1��

k
tan��a�� + k�L − a� − n� �A5�

for each n.
The analysis of the odd states is similar to that of the even

states. Oddness implies that D=B, �C=−A�, and F=0 in Eq.
�A1�. We apply periodic boundary conditions and require
continuity of 
 and 
� at x=a in order to derive the follow-
ing expression for odd eigenstate momenta k. If cos�kL�
�0, cos��a��0, and cos�ka��0, we obtain

k tan��a� = − � tan k�L − a� . �A6�

In order to solve Eq. �A6� in the complex plane, Newton’s
method is applied to the following function:

gn�k� = tan−1� k

�
tan��a�� + k�L − a� − n� �A7�

for each n. It can be numerically seen that in most cases,
fn�k� and gn�k� each have one zero per value of n. Occasion-
ally, one can expect to find one or two zeros for some n.

Let us consider the time evolution of a Gaussian wave
packet with average position −x0 and average momentum k0:
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�x,0� = �2���−1/4eik0�x+x0�e−�x + x0�2/4�. �A8�

Here, �x0−a� /� is taken to be sufficiently large so that

�x ,0��0 if x�−a. Propagation of this wave packet under
the influence of the potential V�x� cannot be described semi-
classically due to the discontinuities of V. However, model-
ing is possible by using the method described so far. The
wave packet is expanded in terms of eigenstates, as described
in Sec. II with coefficients as follows:

Cn = �
1

�N
���

2
�1/4

��A + iB�e−ikx0e−��k0 + k�2

+ �A − iB�eikx0e��k0 − k�2
� , �A9�

where the � in front implies “+” for even states and “−” for
odd states, and N= ��n�n� is a normalization factor. For each
configuration, we manually check that ��n�n��0 for the state
involved in the expansion.
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