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MCHM (4-METHYLCYLOCHEXANE METHANOL) INFLUENCES THE PREDATOR-

PREY INTERACTION BETWEEN DANIO RERIO AND DAPHNIA MAGNA 

by 

ANNA WAGNER 

(Under the Direction of Risa A. Cohen) 

ABSTRACT 

Chemical contamination alters organism-level traits, such as activity and feeding, that can 

ultimately affect aquatic trophic interactions. Despite the importance of predator-prey 

relationships in aquatic communities, chemical toxicity is often tested on single species prior to 

use. For example, 4-methylcyclohexane methanol (MCHM) used in industrial coal-cleaning 

enters the environment regularly from low-level contamination during disposal and occasionally 

in high concentrations following accidental spills, but its effects on fish-zooplankton interactions 

remain unknown. It was hypothesized MCHM exposure affects zebrafish and D. magna 

swimming behavior differently when exposed individually or together, and ultimately affects 

their relationship. Zebrafish and D. magna were exposed individually and together to various 

environmentally relevant concentrations of MCHM. In the single-species experiments, zebrafish 

and D. magna swimming distance, velocity, and activity, as well as D. magna mortality, were 

quantified 1, 3, 5, and 7 days post-exposure to 0, 0.5, 1, 3, or 5 ppm MCHM. In single species 

tests, zebrafish in all MCHM treatments experienced an immediate and consistent decrease in all 

measured parameters.  Daphnia magna swimming distance, velocity and activity also decreased 

by approximately 30-50%; however, unlike the zebrafish, mortality occurred after 3 days, 

reaching 100% by the end of the experiment. When exposed together, D. magna exhibited 

similar results to the individual test. In contrast, only zebrafish in the 1 and 5 ppm concentrations 

experienced decreased swimming distance and velocity when prey was present. To examine how 

decreased mobility in both organisms affected their predator-prey interaction, a feeding study 



 
 

 
 
 

was conducted. Zebrafish were exposed to MCHM concentrations of 0, 0.5, 1, 3, or 5 ppm. After 

1, 3, 5, and 7 days, 15 live D. magna were released into a tank containing one fish. The number 

of D. magna remaining after 30 minutes and one hour was used to calculate feeding rate. The 

number of strikes performed by each zebrafish was also quantified. Zebrafish feeding rate 

decreased by 40% in the 1, 3 and 5 ppm MCHM treatments compared to the control throughout 

the exposure period. Zebrafish in those MCHM treatments also performed more strikes per D. 

magna consumed. The individual species tests suggest MCHM exposures longer than three days 

could lead to loss of zebrafish food resources. Short-term exposures led to decreased mobility in 

both organisms, and the feeding study results indicated these changes altered the zebrafish-D. 

magna predator-prey relationship. 

 

INDEX WORDS: Predator-prey, 4-methylcylcohexane methanol, Zebrafish, Daphnia magna, 

Feeding, Toxicity  
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CHAPTER 1 

 

INTRODUCTION 

 

Chemical pollution is one of the most common disturbances to aquatic ecosystems (Miller 

et al. 1989, NRC 2017). Industrial effluent, such as waste from manufacturing, frequently enter 

aquatic environments via spills or waste disposal, where they can negatively affect aquatic 

organisms (Samuelson, 2009). For example, populations of primary producers or consumers may 

experience direct lethal effects of chemical exposure, causing an immediate decrease in 

population size (Kuyvenhoven, 2016). A mixture of industrial detergents and corrosion inhibitors 

increased mortality in larval fish (Tilapia sp) due to respiratory failure (Ezemonye et al., 2007). 

Decreased abundance of one type of organism can then induce density-mediated indirect effects 

on other populations (Relyea & Hoverman, 2006). The herbicide terbutryn decreased periphyton 

growth, thereby reducing food availability to grazers (Rybicki and Jungmann, 2018). Chemicals 

can also cause trait-mediated indirect effects by altering behavior that ultimately affects an 

organism’s ability to survive. Organophosphates caused erratic swimming in crayfish, making 

them unable to feed and creating an increase in the abundance of their white shrimp prey source 

(Pandey et al., 2011). Altered population densities and traits, including movement and feeding, 

can ultimately affect the composition of an aquatic community by changing species interactions 

such as those between predators and prey (Newman, 2009).  

Altered predator-prey relationships influence energy movement between trophic levels 

within food webs (Carpenter et al., 2001). Salt marsh fish (Fundulus heteroclitus) exposed to 

mercury consumed less shrimp due to decreased mobility, resulting in a population decrease, 

followed by decreased abundance of piscivorous predators (Smith & Weis, 1997). Additionally, 

Rasmussen et al. (2013) observed similar effects on the predator-prey interaction between the 
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crustacean G. pulex and brown trout S. trutta; G. pulex exhibited erratic swimming and 

consumed fewer prey after exposure to a pyrethroid pesticide, ultimately causing a decrease in 

the brown trout population. Decreased prey activity after exposure to chemicals can also alter 

predator-prey interactions (Abdel-Moneim et al., 2015). Cadmium decreased the mobility of 

brine shrimp, increasing ease of capture by larger grass shrimp (Wallace et al., 2000). In contrast, 

decreased Daphnia magna mobility after exposure to copper led to decreased feeding on the D. 

magna by larval freshwater zebrafish (Danio rerio) and ultimately increased mortality in the 

zebrafish population (Abdel-Moneim et al., 2015). Thus, testing chemical effects on interacting 

organisms is key to understanding how aquatic ecosystems may be affected (McPartland et al., 

2015). 

The alicyclic primary alcohol 4-methylcyclohexane methanol (MCHM) used to clean coal 

commonly enters freshwater rivers (He et al., 2015). From here forward, MCHM will refer 

specifically to 4-methylcylohexane methanol rather than any of its isomers or other forms. This 

chemical MCHM is used as a foaming agent to separate usable coal from clay and rock 

(Foreman et al., 2015), resulting in a MCHM-debris waste mixture that is released into small 

tributaries (Wills 2006, He et al. 2015, Toxnet 2017). Routine disposal results in MCHM 

concentrations of 0.5-1 ppm in freshwater systems, but spill concentrations can be much higher. 

Approximately 10,000 gallons of MCHM spilled into the Elk River in West Virginia in January 

2014, contaminating the drinking water supply with a maximum concentration of 13.7 ppm 

(Rosen et al. 2014, Scaggs et al. 2015, US Chemical Safety and Hazard Investigation Board 

2016,). Although MCHM has been used in the coal industry since the mid-20th century (Osnos 

2014), relatively little is known about the potential consequences of MCHM contamination on 

aquatic organisms and their interactions. 
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Despite the potential for regular MCHM entry into aquatic ecosystems, existing toxicity 

data are derived from short-term, high-concentration testing (Eastman 1998, Whelton et al. 

2014). After exposing D. magna to MCHM for 48 hours, a commonly used acute time frame, 

concentrations greater than 50 ppm decreased mobility (Eastman, 1998). Subsequent 

experiments revealed that concentrations greater than 40 ppm decreased mobility, 20% lower 

than the previous study (Eastman, 2014). However, Whelton et al. (2014) found that 

concentrations greater than 6.25 ppm increased D. magna immobility after 48 hours. The cause 

of the discrepancies between the Eastman (2014) and Whelton et al. (2014) studies is unclear. 

Environmental test conditions may have differed between the two experiments; specifically, the 

amount of ventilation allowed by the containers holding the D. magna may influence the effects 

of MCHM. The high concentrations used in both studies also make it difficult to apply the results 

to real-world aquatic ecosystems. To investigate effects of MCHM at environmentally relevant 

concentrations and exposure duration, I performed a pilot study examining D. magna responses 

to 6-day exposures of 0.5, 1, or 3 ppm of MCHM in ventilated containers. Decreased mobility 

(by ≥ 42%) occurred in all concentrations after 96 hours, in addition to ≥ 6-fold higher mortality 

relative to the control. These results suggest that MCHM may be more harmful than previously 

thought, particularly over chronic exposure times, affecting D. magna populations and the 

abundance of their predators.  

Fish predators of D. magna may be affected by MCHM exposure at commonly found 

environmental concentrations, as well as similar concentrations as the D. magna. Photomotor 

responses of larval zebrafish (Danio rerio) were reduced when exposed to 4.5 ppm MCHM for 

24 hours (National Toxicology Program 2016). Larval zebrafish may be affected by lower 

concentrations; exposing 5-day old zebrafish to MCHM for 3 hours reduced activity by 
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approximately 50% during light periods at 1 ppm (V. Sittaramane, unpublished data). Zebrafish 

and D. magna are both affected by low concentrations of MCHM measured in the environment 

but the mortality observed in preliminary studies suggest that D. magna may be more sensitive 

than zebrafish. This difference may alter the predator-prey relationship between the two 

organisms, and therefore investigating their interaction in the presence of MCHM is warranted.  

Single-species toxicity tests are often easier to reproduce and interpret than microcosm 

tests, but the results are more difficult to extrapolate to aquatic environments (Pascoe et al., 

2000). For example, while mobility in catfish and snails exposed separately to the pesticide 

endosulfan is unaffected, catfish feeding rate on the snails decreased to zero (Monde et al., 

2016). Similarly, prawns (crustacean M. borellii) and zooplankton exposed to the pesticide 

chlorpyrifos separately experienced mortality at concentrations ≥ 0.01 µg l-1 while prawn 

predation on the zooplankton was decreased between 0.002 - 0.01 µg l-1 (Gutierrez & Negro, 

2014). Clearly testing predator-prey relationships may reveal toxic effects in addition to those 

observed in single species studies. In both single species and mesocosm experiments containing 

primary producers, invertebrates and vertebrates exposed to the herbicide diquat, mortality 

occurred at a concentration 2-fold lower for organisms in the mesocosm experiments than the 

single species tests due to change in food availability (Van den Brink et al., 2006). In these 

studies, testing organisms together revealed effects that were not observed in single species tests, 

and were necessary to understand the toxicity of the chemicals on species interactions.  

To make predictions about MCHM effects on aquatic communities, testing responses of 

both single species and species interactions is essential. The effects of MCHM exposure on 

zebrafish, D. magna, and their predator-prey interactions were examined. I hypothesized that 

MCHM exposure affects zebrafish and D. magna swimming behavior differently when exposed 
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individually or together. Daphnia magna and zebrafish were separately exposed to MCHM for 

seven days, and it was predicted that as MCHM concentration increases, zebrafish and D. magna 

swimming activity should decrease. To examine swimming behavior in a multi-species setting, 

zebrafish exposed to MCHM were fed MCHM treated D. magna. Zebrafish feeding rate was 

expected to decrease, and swimming mobility in both organisms should differ when they are 

tested together and separately. The results from this study show the importance of utilizing 

multiple interacting organisms to understand a chemical’s potential effects on predator-prey 

relationships within a food web.   
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CHAPTER 2 

 

METHODS 

 

Experimental Setup 

To evaluate the effects of MCHM on the swimming behavior of zebrafish and D. magna 

individually, a behavioral experiment was conducted. Organisms were exposed to one of five 

treatments: 0 (control), 0.5, 1, 3, or 5 ppm MCHM for 7 days. MCHM commonly enters the 

environment as a single pulse during routine disposal and spills (Rosen et al., 2014), and the 7-

day exposure period is similar to the length of time high MCHM concentrations were observed 

in the 2014 spill; MCHM was still found in drinking water 10 days after the spill occurred 

(Rosen et al., 2014). Treatment solutions for zebrafish were made with filtered water treated with 

100 g L-1 of calcium chloride, sodium bicarbonate, and Instant Ocean solution (Instant Ocean, 

Blacksburg, VA) to maintain appropriate osmotic pressure for zebrafish, followed by mixing 

with calculated amounts of 98% crude 4 methyl-cyclohexane methanol (CAS: 34885-03-5, TCI 

America, Portland OR). Treatment solutions for D. magna were made using the same amounts of 

MCHM mixed with spring water. Initial and final MCHM concentrations were verified 

according to methods 8270C and 8270D (EPA 1998); MCHM was extracted from aqueous 

solutions with methylene chloride using a separatory funnel and analyzed using GC/MS 

(TestAmerica Laboratories, Inc., Canton, OH) (Table 1).  

Study Organisms and Care 

Male, adult wildtype zebrafish reared at Georgia Southern University (V. Sittaramane, 

pers. comm.) were used for the experiments. The fish were approximately 6 months old, and 

averaged 2.5 ± 0.2 cm standard length and 0.32 ± 0.1 g wet weight. Male fish were used to avoid 

possible differences in mobility due to sex (Engeszer et al., 2007). Water changes were 
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performed daily to maintain adequate oxygen and tank cleanliness for the zebrafish. A large 

volume of each MCHM solution was mixed at the beginning of the exposure period and stored in 

ventilated containers; this allowed MCHM to volatilize out of solution over time, and tank 

cleanliness could be maintained without sacrificing the single pulse design. All experiments took 

place in the department of Biology aquarium facility at Georgia Southern University (Statesboro, 

GA, USA). Zebrafish were maintained on a 12:12 hour light-dark cycle with an average 

irradiance intensity of 49.6 ± 5.1 µmol m-2 s-1, and a mean temperature of 19 ± 0.4 °C.  

Individual Daphnia magna (10 days old, 2-5 mm; Carolina Biological, Burlington, NC) 

were exposed to 5 ml of MCHM solution in well plates. Each daphnid received a nonlimiting 

concentration (approximately 3.2 x 105 cells ml-1) of green algae (Chlorella sp., Carolina 

Biological, Burlington, NC) as a food source at the beginning of the experiment (Barata et al. 

2008, Pablos et al. 2015). Cell density was verified using a BD Accuri C6 flow cytometer 

(Becton-Dickinson, CA, U.S.A.), which passes individual algal cells by lasers, which counts the 

cells based on their chlorophyll autofluoresence (Veldhuis and Kraay, 2000). The plates were 

kept on a 12 hr light-dark cycle under daylight with an average intensity of 52.6 ± 0.6 µmol m-2 

s-1 (Natural Daylight 5000K, Sylvania, Wilmington, MA). 

Experiment 1: Zebrafish behavior during MCHM exposure 

To determine whether MCHM exposure affected zebrafish mobility over time, individual 

zebrafish (n = 9) were immersed in 0.8 L of treatment solution in clear, 1 liter plastic tanks with 

ventilated lids from 6-27 July 2017 (Figure 1). Zebrafish activity is stimulated by light and 

decreases in the dark (Dai et al., 2014). Light stimulus was applied after exposure to MCHM 

treatments on day 0 and then after 1, 3, 5, and 7 days. At each sampling time, the tanks were 
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illuminated and zebrafish swimming was video recorded (ICD-49: 1/2″ CCD Super Cube DSP 

Monochrome Camera, Ikegami) for one hour to determine average zebrafish swimming distance 

and velocity (Cachat et al., 2010). The experiment was repeated three times (n = 3) for a total of 

9 replicates of each treatment. The fish were provided 2 grams of egg yolk flake fish food 7 

hours prior to filming, allowed to feed for two hours, and then the tank water was replaced with 

clean MCHM treatment solution.  

Experiment 2: Effects of MCHM on Daphnia magna Behavior 

The goal of this experiment was to determine whether MCHM exposure decreases D. 

magna swimming distance, velocity, and activity. Daphnia magna initiate escape behaviors in 

response to predatory cues such as vibrations in the water caused by fish swimming and striking 

at prey (Sarma & Nandini 2006). Therefore, a standardized vibration was administered by 

dropping a 1.3 kg weight from 25 centimeters above the countertop after exposure to MCHM 

treatments on day 0 and after 1, 3, 5, and 7 days. Daphnia magna (n = 6) swimming distance, 

velocity, and activity in response to the vibration were video recorded for 10 minutes (von Elert 

& Pohnert, 2000).  

Experiment 3: MCHM effects on zebrafish predation of D. magna  

The effect of MCHM exposure on the predator-prey interaction between zebrafish and D. 

magna was tested by observing the organisms together. The experiment consisted of two trials 

(n=2) performed over two weeks. After zebrafish (n=6) were exposed to MCHM treatments for 

24 hours, 15 D. magna that were exposed to the same treatments were placed into each tank. 

Feeding occurred again on days 3, 5, and 7 post exposure. Fish were not fed the day between 
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trials to ensure hunger (Abdel-Moneim et al., 2015). The number of D. magna remaining were 

visually confirmed after 30 and 60 minutes.  

𝐹𝑒𝑒𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑣𝑒 𝐷.  𝑚𝑎𝑔𝑛𝑎 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑡𝑖𝑚𝑒
 

Each bout of feeding was recorded with a video camera (ICD-49: 1/2″ CCD Super Cube DSP 

Monochrome Camera, Ikegami), and the number of strikes performed by each fish in that hour 

was scored visually. A strike was defined as an approach and attempt to capture prey (New & 

Kang, 2000). The number of D. magna consumed by each fish and the number of strikes 

performed were used to calculate the number of strikes D. magna consumed-1.  

Ethovision Analysis 

The video recordings from each experiment were used to analyze swimming distance, 

velocity, and activity for each zebrafish and D. magna with Ethovision XT behavioral software 

(Ethovision XT, Noldus, Leesburg, VA). The EthoVision program was used to distinguish 

tracked objects from their background based on their brightness.  

To obtain swimming distance and velocity, the center of each object was determined and 

its position tracked in each frame of the video. Ethovision determined the position of the fish 25 

times in one second, and detection thresholds were set with the dynamic subtraction center point 

detection (range 160-255).  

Swimming activity conveys the amount of movement in a given time frame, as a 

percentage, and can be a more accurate measurement when analyzing shorter time frames (< 15 

minutes) (Prober et al., 2008). To obtain swimming activity, fifteen minutes of the hour-long 

zebrafish recording and the entire 10 minute D. magna post-stimulus recording was analyzed. To 
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calculate swimming activity, every pixel in the video was compared between the current frame 

and the previous one for the duration of the recording.  

 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒
 

Swimming activity was only obtained for D. magna swimming behavior without a predator 

present; Ethovision behavioral software was unable to detect swimming activity with multiple D. 

magna present in one tank. 

Statistical Analysis 

The data were tested for assumptions of normality and homogeneity of variances using 

the Shapiro-Wilk W Test and Levene’s Test, respectively. Sphericity of the data was determined 

using Mauchly’s test. Only swimming activity for zebrafish and D. magna required a square root 

transformation to meet assumptions of parametric tests. Zebrafish swimming, feeding rate, and 

striking were analyzed for the entire duration of the experiment both with and without D. magna 

present. Due to D. magna mortality, the sample size became too small for statistical analysis 

after day 3; therefore, D. magna swimming velocity, distance, and activity were analyzed from 

day 0 to day 3 when tested alone. The D. magna used in the feeding study were only analyzed at 

one time point (24 hours post exposure) to avoid complications due to mortality. Therefore, 

change over time was not a factor when analyzing D. magna mobility with a predator present.  

With zebrafish present, D. magna were only observed 24 hours post exposure. Effects of 

MCHM treatment on zebrafish or D. magna swimming distance, velocity, and square root of 

activity over time were analyzed using two-way repeated measures ANOVA, followed by 

Tukey-Kramer post-hoc multiple comparisons (JMP Pro 10.0.0, SAS Institute Inc., Cary, NC). 

Significance level was set at α = 0.05 for all tests. Only significant interactions are reported. 
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CHAPTER 3 

 

RESULTS 

 

Zebrafish movement during MCHM exposure  

Zebrafish exposed to MCHM exhibited reduced swimming distance (Table 2, Figure 2). 

The severity of the decrease, as well as the magnitude of the distance travelled, was dependent 

on the presence or absence of prey; furthermore, MCHM concentration was affected swimming 

distance when both organisms were tested together. All fish travelled farther with prey present 

(Table 3). Control zebrafish traveled an average of 152.8 ± 7.5 m without prey, 18% less than the 

distance travelled with D. magna present (Figure 2). All MCHM treated fish exhibited a 35% 

decrease in swimming distance when exposed alone (All Pairs, Tukey-Kramer post-hoc multiple 

comparisons, p < 0.01). In contrast, when D. magna were present, only swimming distance for 

fish in the 1 and 5 ppm treatments was reduced by 37% compared to the control (All Pairs, 

Tukey-Kramer post-hoc multiple comparisons, p < 0.02). Both individually and together, the 

reduction in swimming distance was seen at least 24 hours after exposure and remained 

consistent over time (Table 2) 

Swimming velocity decreased due to MCHM exposure, both in the presence and absence 

of prey (Table 2, Figure 3). Swimming velocity increased in all fish with D. magna present 

(Table 3). Control zebrafish swam an average 5.85 ± 0.18 cm s-1 without prey, and an average of 

7.46 ± 0.1 cm s-1 after D. magna were introduced. When tested alone, all treated fish had an 

average decrease of 34% compared to the control and there was no difference in swimming 

velocity among treatments containing MCHM (All Pairs, Tukey-Kramer post-hoc multiple 

comparisons, p < 0.03, Figure 3). After D. magna were fed to the zebrafish, all treated fish 

except those in the 3 ppm concentration had an average 4.86 ± 0.7 cm s-1, a 35% decrease 
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compared to the control (All Pairs, Tukey-Kramer post-hoc multiple comparisons, p > 0.05). The 

decrease in velocity occurred at least 24 hours after exposure with and without prey present, and 

remained the same throughout the experiment.  

Swimming activity decreased in MCHM exposed fish (Table 2, Figure 4). While 

swimming activity was higher in all fish when prey was introduced (Table 3), zebrafish 

swimming activity declined in all MCHM treatments whether prey was present or absent. 

Without D. magna, control fish averaged 12.7 ± 2% swimming activity on day 0; with prey 

present, control zebrafish exhibited an average 18.9 ± 1.2% swimming activity. In both tests, 

zebrafish exposed to 0.5, 1, and 5 ppm had an average 8.7 ± 1.6% (All Pairs, Tukey-Kramer 

post-hoc multiple comparisons, p < 0.02). However, zebrafish in the 3 ppm treatment had a 

higher swimming activity than the other concentrations when prey was present, with an average 

13.2 ± 0.6% swimming activity. The decrease in swimming activity was observed at least 24 

hours after exposure both with and without prey. Swimming activity decreased by approximately 

50% between day 5 and day 7 in the zebrafish exposed to 0.5, 1, and 5 ppm treatments when D. 

magna was not present (All Pairs, Tukey-Kramer post-hoc multiple comparisons, p > 0.05, 

Figure 4, Table 2). However, with prey present there was no change in activity over time (Table 

5, Figure 4).  

Effects of MCHM on Daphnia magna Swimming Behavior and Mortality  

Determining MCHM effects on swimming distance, velocity, and activity, was 

complicated by mortality. During the single species test, no D. magna mortality occurred in the 

control during the 7 day exposure period, but 100% mortality was observed in MCHM 

treatments by the end of the experiment (Table 4, Figure 5). All MCHM treatments averaged 
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20.8 ± 8.3% mortality by day 3, which increased to 58.3 ± 21.5% on day 5 (Figure 5). The 

resulting decrease in sample size required that analysis be performed for the measured variables 

through day 3. The D. magna used in the feeding study were only analyzed at one time point (24 

hours post exposure), and swimming activity was not analyzed.  

Daphnia magna swimming distance decreased due to MCHM exposure (Table 4, Figure 

6, Figure 7). Daphnia magna mobility was not affected by the presence or absence of predators 

(Table 5, Figure 8). In both experiments, control D. magna travelled approximately 87 

centimeters in one minute. After 24 hours of MCHM exposure, treated D. magna moved an 

average of 55.3 ± 4.4 cm with a predator present (Figure 7), and this 38% decrease compared to 

the control was seen in all MCHM treatments (All Pairs, Tukey-Kramer post-hoc multiple 

comparisons, p < 0.01). Similarly, D. magna exposed to MCHM swam an average distance of 

58.4 ± 19.6 cm in the absence of a predator, an approximately 30% decrease compared to the 

control (Figure 6). A change over time was seen when D. magna were tested alone; swimming 

distance decreased immediately on day 0, and was lowest on day 3 for MCHM treated Daphnia 

magna (Table 4, Figure 6).  

Daphnia magna swimming velocity decreased due to MCHM exposure (Table 4, Figure 

9, Figure 10). Both with and without a predator present, control D. magna swam approximately 

3.5 mm s-1 throughout the exposure period (Table 5, Figure 11). With a predator, all MCHM 

treated D. magna moved with an average velocity of 2.4 ± 0.2 mm s-1 (Figure 9). Without 

zebrafish, MCHM-treated D. magna had a 23.8% reduced swimming velocity compared to the 

control immediately upon exposure, swimming an average of 2.6 ± 1.3 mm s-1 on days 0 and 1 

(Figure 10). In both tests, there was no difference in swimming velocity across treatments 

containing MCHM (All Pairs, Tukey-Kramer post-hoc multiple comparisons, p > 0.05). Similar 



20 
 

 
 
 

to swimming distance, swimming velocity decreased immediately after exposure, but decreased 

over time. Without zebrafish, D. magna swimming velocity decreased by 40% between day 1 

and day 3, resulting in an average swimming velocity of 1.5 ± 0.5 mm s-1 (Figure 10).  

After 1 day of exposure, swimming activity decreased in all MCHM treated D. magna 

(Table 4, Figure 12). Control D. magna had an average 8.45 ± 3.27% swimming activity 

throughout the exposure period. While D. magna in the 3 ppm treatment exhibited a similar 

swimming activity to the control on day 0, by day 1 that similarity was gone and D. magna in all 

treatments had an average 5.5 ± 3.8% swimming activity. Swimming activity continued to 

decrease in D. magna exposed to MCHM as time passed, resulting in an average 4.7 ± 2.2% 

swimming activity by day 3 of exposure (Figure 12). This is an approximately 50% reduction in 

swimming activity compared to the control.  

MCHM effects on zebrafish predation of D. magna 

MCHM exposure decreased feeding rate in zebrafish (Table 6, Figure 13). Zebrafish in 

the 0.5, 1, and 3 ppm treatments consumed 35% fewer D. magna than the control. There was no 

difference between these treatments (All Pairs, Tukey-Kramer post-hoc multiple comparisons, p 

< 0.05). Zebrafish in the 5 ppm treatment consumed approximately 57% less D. magna than the 

control (Figure 13). Effects were observed immediately upon exposure to treatments, and there 

was no change in feeding rate over time.  

There was no difference in the number of strikes exhibited by MCHM treated zebrafish 

and the control fish (Table 6). The control fish averaged 33.8 ± 6.3 strikes hr-1, while treated fish 

used an average 27.4 ± 7.8 strikes hr-1 (Table 6, Figure 14). The high variation in number of 

strikes likely prevented any distinction between MCHM treated and control fish. However, fish 
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in the 1 and 3 ppm treatments performed 50% more strikes D. magna consumed-1 than the 

control (Table 6, Figure 15). Zebrafish in the 5 ppm treatments used an average of 5.6 ± 1.5 

strikes D. magna consumed-1, 78% more strikes than the control needed to consume almost 

double the amount of D. magna (Figure 15). There was no change in the number of strikes D. 

magna consumed-1 due to time, and the increase observed in the MCHM treatments was 

immediate.  
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CHAPTER 4  

DISCUSSION 

The hypothesis that MCHM affects the mobility of zebrafish and Daphnia magna was 

supported. Without prey, the decrease in zebrafish swimming distance, swimming velocity, and 

swimming activity in the presence of MCHM was not concentration dependent; there was no 

difference in magnitude of decrease across treatments. In previous photomotor response tests, 

larval zebrafish experienced an approximate 50% decrease in mobility after 3 hours of exposure 

and continued to decrease as concentrations increased (Sittaramane, pers. comm). In the present 

study, no dose-dependent response occurred. This difference may be attributed to the age of the 

zebrafish used (larval vs. adult); the smaller larval zebrafish take up chemicals through both the 

skin and the gills, and therefore could be more severely affected by MCHM exposure 

(Rubinstein, 2006). Additionally, Sittaramane (unpubl.) used a larger range of concentrations (1-

25 ppm) than the current study, which may have led to the dose-dependent response. In contrast, 

Horzmann et al. (2017) found that larval zebrafish increased their swimming distance and 

velocity at 1 ppm after 5 days of exposure. These opposing results could be attributed to a wide 

range of possible disruptions in neural or muscular systems caused by MCHM exposure during 

larval development. The time frame used could also contribute to the differing results; Horzmann 

et al. (2017) utilized a 5 day exposure period, while Sittaramane (unpubl.) exposed larvae for 3 

hours.  

In addition to decreased swimming distance, velocity, and activity, D. magna exposed to 

MCHM experienced 100% mortality by day 7 at much lower concentrations than those observed 

in previous acute studies. The LC50 of D. magna exposed to MCHM was 98.1 ppm after 48 hours 

of exposure (Eastman, 2004), and a replication of that same study resulted in an LC50 of 50 ppm 
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(Whelton et al., 2014). While decreases in D. magna mobility would be evident during acute 

exposure to MCHM, mortality at lower concentrations would not have been observed. For 

example, Daphnia magna experienced no negative effects after 48 hours of exposure to 

antibiotics, but reproduction decreased and mortality increased over the course of 3 weeks at the 

lowest tested concentration (Wollenberger et al., 2000). Acute studies are often used to 

determine the amount of a toxin needed to kill or immediately alter an organism, while chronic 

studies can examine effects seen at lower concentrations over time (Barry & Meehan 2000). 

Amphipods experienced 50% mortality after 96 hours of exposure to 3, 045 µg l-1; after 7 days of 

exposure, amphipods experienced increased mortality at concentrations 97% lower than detected 

in the acute study (Keithly et al., 2004). Studies with longer exposure periods are key to 

understanding how environmentally relevant concentrations may affect aquatic organisms.  

When performing chronic tests, it is possible to investigate possible organism recovery 

from chemical effects. Daphnia magna exposed to 80 mg l-1 ibuprofen for 10 days experienced a 

60% decrease in reproduction, but had a similar reproduction rate to the control after 10 days in 

20 mg l-1 ibuprofen (Hayashi et al., 2008).  In both experiments, MCHM concentration was 

decreasing throughout the exposure period. Daphnia magna swimming mobility worsened over 

time until all D. magna exposed to MCHM experienced 100% mortality. This effect did not 

occur in the zebrafish; the reduction in zebrafish mobility was consistent throughout the 

exposure period. Studies found that zebrafish embryos washed with clean medium appeared to 

recover from the effects of MCHM (Sittaramane, unpubl), suggesting that adult zebrafish may 

have regained normal mobility over time because the MCHM concentration would decrease to 

zero. The MCHM treated D. magna experienced mortality before recovery was possible, 

potentially causing a change in the interaction between the two species.  
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The hypothesis that response to MCHM would differ when zebrafish and D. magna were 

tested alone and together was supported. Without prey, all zebrafish exposed to MCHM 

exhibited reductions in both swimming distance and velocity; with prey, only fish in the 1 and 5 

ppm treatments decreased in both parameters. However, all MCHM treated fish exhibited a 

lower swimming activity than the control regardless of whether prey was present. Low 

swimming activity, but similar swimming distance and velocity to the control, suggests that 

bursts of swimming were performed to catch prey; these bursts could have attributed to distance 

travelled and velocity, while remaining still for the duration of the analyzed recording and 

keeping swimming activity low. The change in zebrafish mobility in the presence of D. magna 

may be attributed to how fish respond to environmental cues that require a quick response, such 

as prey or predators, differently than environmental cues (Daggett et al., 2018). Zebrafish 

increased mobility when exposed to flake fish food, but exhibited even greater increases when 

exposed to a predator (Kim et al., 2015). Renick et al. (2016) found that killifish exposed to 

chlorpyrifos experienced no change in swimming performance when provoked with a change in 

lighting outside their tank, but did show concentration-dependent changes in mobility with a 

predator present. 

 Daphnia magna did not exhibit any difference in movement due to the presence or absence 

of a predator. The small size and physiological simplicity of D. magna compared to adult 

zebrafish, coupled with the increased mortality and decrease in swimming mobility over time 

due to MCHM exposure observed in the current study, implies that D. magna are more sensitive 

to MCHM than the zebrafish (Hanazato, 2001). It is possible that a predator was not sufficient to 

induce an increase in D. magna swimming. Daphnia magna exposed to silver nanoparticles 

experienced decreased mobility when tested individually, and did not increase mobility or 
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attempt to escape when a predatory dragonfly was introduced (Pokhrel & Dubey, 2012).In 

contrast, D. magna exposed to carbon nanomaterials experienced decreased mobility alone, but 

increased mobility after being exposed with a predator, brown trout (Brausch et al., 2011). Multi-

species testing is needed to reveal real-world effects of a toxin due to an organism’s behavioral 

response to predators or prey.  

With both organisms present, zebrafish treated with MCHM consumed fewer D. magna 

than the control zebrafish. In a similar study utilizing juvenile fathead minnows, exposure to the 

antidepressant fluoxetine for 7 days resulted in a 50% decrease in feeding on brine shrimp and 

25% decrease in growth rate (Stanley, 2007). This reduction in growth rate demonstrates that 

MCHM-exposed fish may get less nutrition to contribute to their growth or health maintenance. 

Despite consuming fewer D. magna, zebrafish exposed to MCHM performed a similar number 

of strikes at prey as the control. Perch strike rate on zooplankton was unaffected by exposure to 

toxic cyanobacteria for 30 days, but fewer zooplankton were consumed and fish exhibited lower 

overall fitness; reduced attack efficiency causes higher energy expenditure, possibly explaining 

the reduced fitness compared to the control (Persson et al., 2011). The observed decrease in 

zebrafish hunting efficiency in the current study may be linked to the way MCHM affects 

mobility. Previous experiments suggest that MCHM may interfere with the H+-ATPase 

ionocytes, which are responsible for ion homeostasis and Na+ accumulation (Sittaramane, 

unpubl.).   

To determine chemical effects on aquatic ecosystems, it is necessary to consider how 

organisms interact with one another. Zooplankton may experience a 100% mortality rate after 

exposure to MCHM, depleting a food source that small freshwater fish are dependent on 

(McCann 2012). For example, when zooplankton were exposed to toxic phytoplankton, 
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decreased zooplankton abundance was followed by a decrease in planktivorous fishes (Turner 

and Tester, 1997). These results demonstrate that the effects of a toxin on one trophic level 

affects others within the food web. This can occur through direct population decrease or 

behavioral changes. Small freshwater fish exposed to low concentrations of MCHM may 

undergo changes in behavior that affect their ability to feed, and therefore affect their predators. 

When organisms on three trophic levels (brine shrimp, white-leg shrimp, and grunt fish) were 

exposed to lead, exposed brine shrimp had an increase in mortality, while white-leg shrimp 

began swimming erratically and decreased feeding; this ultimately reduced grunt fish feeding 

rate (Soto‐Jiménez, 2011). Less available small fish may cause an increase in competition for 

food between piscivorous fish and birds, thereby causing a decreased abundance in other prey 

organisms that these predators consume. Kvitek and Bretz (2005) found that shorebirds changed 

their target prey type from aquatic snails to sand crabs when the snails became scarce, thereby 

lowering the sand crab population. If several prey populations are depleted, a density mediated 

indirect effect may be seen through a decrease in prey population abundance (Belgrano 2005). 

The results from both single and multiple interacting species toxicity tests are important for 

making predictions about aquatic community responses to MCHM. While the single species tests 

showed how mobility and mortality was affected in both organisms, investigating their predator-

prey relationship revealed information about zebrafish feeding rate and hunting behavior. 

Without looking at both zebrafish and D. magna together, the results from the single species test 

would have been insufficient to make accurate predictions about the effects of MCHM exposure 

on an aquatic community. This study demonstrates the importance of utilizing a combination of 

single and interacting species studies when investigating chemical toxicity, in order to 

understand potential changes in an ecosystem. Utilizing organisms that have a predator-prey 
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relationship allows toxicologists to gain insight into the effects of a toxin on not only single 

populations, but the food web as a whole. 
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Experiment Nominal 

Concentration 

(ppm) 

Initial 

Concentration 

(ppm) 

Final 

Concentration 

(ppm) 

% 

Loss 

Zebrafish & D. magna Behavior 0.5 0.49 0.11 77.6 

1 1.10 0.26 76.4 

3 3.00 0.70 76.7 

5 4.95 1.20 75.8 

Zebrafish Feeding 0.5 0.47 0.13 72.3 

3 2.80 0.65 76.8 

5 4.89 1.40 71.3 

Table 1. Analysis of Initial and Final MCHM Concentration
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Table 2. Analysis of zebrafish swimming behavior (two-way repeated measures ANOVA) during 

MCHM exposure with and without prey present 

Factor df (Effect, 

Total) 

F Ratio p Value 

Prey Absent 

Zebrafish Swimming Distance MCHM 

Time 

Time*MCHM 

4, 20 

4, 160 

16,160 

11.13 

1.05 

1.23 

<0.0001 

0.3821 

0.2505 

Zebrafish Swimming Velocity MCHM 

Time 

Time*MCHM 

4, 20 

4, 160 

16, 160 

2.71 

1.23 

0.61 

0.0317 

0.3132 

0.8678 

Zebrafish Swimming Activity MCHM 

Time 

Time*MCHM 

   4, 20 

4, 160 

16, 160 

18.7 

3.0 

0.37 

<0.0001 

0.0203 

0.9857 

Prey Present 

Zebrafish Swimming Distance MCHM 

Time 

Time*MCHM 

4, 20 

4, 160 

16,160 

9.58 

0.34 

0.18 

<0.0001 

0.7978 

0.9988 

Zebrafish Swimming Velocity MCHM 

Time 

Time*MCHM 

4, 20 

4, 160 

16, 160 

12.70 

0.46 

0.42 

<0.0001 

0.7109 

0.9531 

Zebrafish Swimming Activity MCHM 

Time 

Time*MCHM 

   4, 20 

4, 160 

16, 160 

72.97 

0.25 

0.63 

<0.0001 

0.8644 

0.8137 
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Table 3. Analysis of the difference in zebrafish swimming behavior during MCHM exposure 

with and without prey (two-way repeated measures ANOVA) 

Factor df 

(Effect, 

Total) 

F Ratio p Value 

Zebrafish swimming distance Presence of Prey 

Presence of Prey*MCHM 

Presence of Prey *Time 

1, 299 

4, 299 

   3, 299 

    86.4 

1.87 

0.17 

<0.0001 

0.1233 

0.9146 

Zebrafish swimming velocity Presence of Prey 

Presence of Prey *MCHM 

Presence of Prey *Time 

1, 299 

4, 299 

   3, 299 

    66.1 

1.62 

0.27 

<0.0001 

0.1695 

0.8449 

Zebrafish swimming activity Presence of Prey 

Presence of Prey *MCHM 

Presence of Prey *Time  

1, 299 

4, 299 

   3, 299 

    106 

1.56 

1.65 

<0.0001 

0.1014 

0.1769 
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Table 4. Analysis of Daphnia magna swimming behavior (two-way repeated measures and one-

way ANOVA) during MCHM exposure with and without a predator present 

Factor df (effect, total) F ratio p Value 

Without Predator 

D. magna swimming distance MCHM

Time 

Time*MCHM 

4, 20 

3, 60 

12, 60 

5.96 

4.49 

1.01 

0.0015 

0.0165 

0.4387 

D. magna swimming velocity  MCHM

Time 

Time*MCHM 

4, 20 

3, 60 

12, 60 

14.65 

18.29 

1.03 

<0.0001 

<0.0001 

0.4220 

D. magna swimming activity MCHM

Time 

Time*MCHM 

   4,20 

   3,60 

12,60 

3.31 

7.02 

0.70 

0.0262 

0.0021 

0.6889 

D. magna mortality MCHM 

Time 

Time*MCHM 

   4,20 

   3,60 

12,60 

3.11 

5.83 

1.25 

0.0271 

0.0003 

0.4652 

With Predator 

D. magna swimming distance MCHM 4, 20 19.2 <0.0001 

D. magna swimming velocity  MCHM 4, 20 7.09 <0.0001 
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Table 5. Analysis of the difference in D. magna swimming behavior during MCHM exposure 

with and without prey (two-way repeated measures ANOVA) 

Factor df 

(Effect, 

Total) 

F Ratio p Value 

D. magna swimming distance Presence of Predator

Presence of Predator*MCHM 

1,118 

4,118 

0.07 

0.27 

0.7862 

0.8980 

D. magna swimming velocity Presence of Predator

Presence of Predator*MCHM 

1,118 

4,118 

0.19 

0.21 

0.6619 

0.9315 
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Table 6. Analysis of zebrafish feeding rate and striking (two-way repeated measures ANOVA) 

during MCHM exposure  

Experiment Factor df (Effect, Total) F Ratio  P Value 

Zebrafish 

Feeding Rate 

# of Strikes 

hour-1 

MCHM 

Time  

Time*MCHM 

MCHM 

Time 

Time*MCHM 

3, 20 

3, 60 

9, 60 

   3,20 

   3,60 

   9,60 

22.25 

1.45 

0.72 

1.69 

0.88 

0.50 

<0.0001 

0.2364 

0.7259 

0.1844 

0.4514 

0.9084 

# strikes D. 

magna 

consumed-1 

MCHM 

Time 

Time*MCHM 

   3,20 

   3,60 

   9,60 

7.86 

0.93 

1.01 

0.0003 

0.4290 

0.4570 



39 

Figure 1. Example of experimental tank set-up for analysis of zebrafish mobility 
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Figure 2. Average zebrafish swimming distance (m) over 7 days of exposure to one of 5 

MCHM concentrations without (A) or with (B) prey. Error bars are ± one standard error of the 

mean (SEM) and n = 9. 

B) 

0

50

100

150

200

0 1 2 3 4 5 6 7

0 ppm

0.5 ppm

1 ppm

3 ppm

5 ppm

0

50

100

150

200

0 1 2 3 4 5 6 7

Time (Days)

Prey Present 

Prey Absent 



41 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) 

A
v

er
ag

e 
S

w
im

m
in

g
 V

el
o

ci
ty

 (
cm

 s
-1

) 

A) 

Figure 3. Average zebrafish swimming velocity (cm s-1) over 7 days of exposure to one of 5 

MCHM concentrations without (A) or with (B) prey. Error bars are ± one standard error of the 

mean (SEM) and n = 9. 
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Figure 4. Average zebrafish swimming activity (%) over 7 days of exposure to one of 5 

MCHM concentrations without (A) or with (B) prey. Error bars are ± one standard error of the 

mean (SEM) and n = 9. 
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Figure 5. Average Daphnia magna percent mortality (%) over 3 days of exposure to one of 5 

MCHM concentrations. Error bars are ± SEM and n = 6. 
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Figure 6. Average Daphnia magna swimming distance (cm) over 3 days of exposure to one of 

5 MCHM concentrations. Error bars are ± SEM and n = 6. 
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Figure 7. Average Daphnia magna distance travelled in one minute (cm) after 24 hours of 

exposure to one of 5 MCHM concentrations with a predator present. Error bars are ± SEM 

and n = 6. 
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Figure 8. Average Daphnia magna distance travelled in one minute (cm) after 24 hours of 

exposure to one of 5 MCHM concentrations with and without a predator present. Error bars 

are ± SEM and n = 6. 
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Figure 9. Average Daphnia magna swimming velocity (mm s-1) after 24 hours of exposure to 

one of 5 MCHM concentrations with a predator present. Error bars are ± SEM and n = 6. 
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Figure 10. Average Daphnia magna swimming velocity (mm s-1) over 3 days of exposure to 

one of 5 MCHM concentrations. Error bars are ± SEM and n = 6. 
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Figure 11. Average Daphnia magna swimming velocity (mm s-1) after 24 hours of exposure to 

one of 5 MCHM concentrations with and without a predator present. Error bars are ± SEM 

and n = 6. 
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Figure 12. Average Daphnia magna swimming activity (%) over 3 days of exposure to one of 

5 MCHM concentrations. Error bars are ± SEM and n = 6. 
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Figure 13. Average zebrafish feeding rate (# D. magna hr-1) over 7 days of exposure to one of 5 

MCHM treatments. Error bars are ± SEM and n = 6. 
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Figure 14. Average number of strikes hour-1 used by zebrafish over 7 days of exposure to one of 

5 MCHM concentrations. Error bars are ± SEM and n = 6. 
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Figure 15. Average number of strikes D. magna consumed-1 used by zebrafish over 7 days of 

exposure to one of 5 MCHM concentrations. Error bars are ± one standard error of the mean 

(SEM) and n = 6. 



54 
 

 
 
 

Appendix 1 

 

 A preliminary feeding study was conducted in February 2018. The same 

methodology was used to conduct this experiment and the feeding study described in the 

methods section of this thesis, with minor alterations. The 1 ppm MCHM treatment was not used 

in the preliminary study, and I was unable to obtain striking or mobility data for the zebrafish 

and the D. magna.  

The results from the preliminary study show that MCHM exposure decreased feeding rate 

in zebrafish (Table 1, Figure 1). Control zebrafish consumed an average of 10.5 ± 0.9 D. magna 

in one hour. Zebrafish in the 0.5 and 3 ppm treatments consumed 3% less than the control. There 

was no difference between these treatments (All Pairs, Tukey-Kramer post-hoc multiple 

comparisons, p < 0.05). Zebrafish in the 5 ppm treatment consumed an average of 3.16 ± 0.6 D. 

magna in one hour, eating approximately 60% less D. magna than the control. Effects were seen 

immediately when the zebrafish were exposed, and there was no change in feeding rate over 

time.  
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Table 1. Analysis of zebrafish feeding rate (two-way repeated measures ANOVA) during 

MCHM exposure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment Factor df (Effect, Total) F Ratio             P Value 

     

Zebrafish 

Feeding Rate 

 

 

 

 

MCHM 

Time  

Time*MCHM 

 

3, 20 

3, 60 

9, 60 

    

24.39 

2.8 

0.5 

 

<0.0001 

0.0657 

0.87 
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Figure 1. Average zebrafish feeding rate (# D. magna hr-1) over 7 days of exposure to one of 4 

MCHM treatments. Error bars are ± SEM and n = 6. 
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