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Effect of angular momentum on the relaxation time in a 
multicomponent gas mixture 

Louis Biolsi 

Department of Chemistry. University of Missouri-Rolla. Rolla. Missouri 65401 
(Received 19 January 1976) 

The effects of molecular angular momentum (spin polarization) on the bulk viscosity and relaxation time in 
a multicomponent gas mixture are considered. Formal theoretical results are obtained. using the Wang 
Chang-Uhlenbeck approach to the kinetic theory of gases with internal states. The results are given in 
terms of integrals over the weighted quantum mechanical degeneracy averaged cross section. 

The kinetic theory of a single component polyatomic 
gas was developed by Wang Chang and Uhlenbeck1 and 
extended to gas mixtures by Monchick, Yun, and Mason.2 

Since molecules possess rotational degrees of freedom, 
there are two independent vector quantities associated 
with the transport properties; the linear momentum and 
the angular momentum. 3 Contributions to the transport 
properties due to their dependence on the angular mo­
mentum vector are called spin polarization effects. 
These effects account for the polarization of molecular 
angular momentum caused by the partial alignment of 
the angular momentum vectors of the rotating molecules 
owing to gradients in the gaS.4 

McCourt and Sniders developed a formal quantum 
mechanical approach to the spin polarization effect on 
thermal conductivity for a single-component polyatomic 
gas. Formal quantum mechanical results for the spin 
polarization effect on thermal conductivity in a poly­
atomic gas mixture at uniform composition6 and in a 
steady state7 and on thermal diffusion7 have also been 
obtained. 

Classical model calculations4,6 indicate that spin po­
larization contributes Significantly to transport proper­
ties, such as thermal conductivity and thermal diffu­
sion, that depend sensitively on inelastic collisions. 
Relaxation times in dilute polyatomic gases depend only 
on inelastic collision processes and should exhibit a 
spin polarization effect. Thus the purpose of this paper 
is to obtain expressions for the spin polarization effect 
on rotational relaxation times, using the Wang Chang­
Uhlenbeck approach1 to kinetic theory. 

I. THE SEMICLASSICAL BOLTZMANN EQUATION 

The kinetic equation solved by Wang Chang and Uhlen­
beck isl 

a~;i+v •. a~i.l =LLf .. · f(j:~i;.',-i.dl.'J) 
.' Jkl 

xgI~~(g,x,</»sinxdxd</>dVI.' , (1) 

where i.l is the singlet distribution function, Eol is the 
internal energy of the qth chemical species in internal 
quantum state i, and I~~ (g, X, </» is the differential scat­
tering cross section for the process in which molecules 
q and q', initially in internal states i and j, respective­
ly, go to final internal states k and 1, respectively. 
The primes denote postcollision values and g is the ini­
tial relative velocity. Equation (1) is called the semi-
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classical Boltzmann equation because the translational 
motion is treated classically and the internal motion is 
treated quantum mechanically. 

Equation (1) has been obtained by assuming the exis­
tence of symmetry between inverse processes. How­
ever such symmetry exists only if the internal states 
are nondegenerate or if the cross section is degeneracy 
averaged. 6 Since the primary motivation for this work 
is to examine rotational relaxation times and, since 
rotational states are degenerate, the degeneracy aver­
aged cross section will be used. Degeneracy averaging 
does not appear to wash out spin polarization effects 
since loaded spheres have inverse collisions but show a 
definite spin polarization effect. 4,6 

The Boltzmann equation is solved by a perturbation 
technique. The distribution function is written as 

(2) 

where i:l is the equilibrium solution of the Boltzmann 
equation and <P.i is the perturbation function. For a 
system of rotating polyatomic molecules with zero net 
macroscopic angular momentum and zero average in­
ternal angular momentum6 

(3) 

where 

r.!S. W.= ..j ikr V., 

and 

V.=v.-Vo , 

where Vo is the mass-average velocity. 

The set of integral equations for <P.l is given by Eq. 
(18) in Ref. 6. The form of this set of integral equa­
tions suggests that 1l1/l1 should be expanded in the linear­
ly independent density, temperature, and velocity gra­
dients, i. e. , 6 

<P/ll = - A.rl • ....! In(T) - B.l : S+n L (C:~ . do') - D.I all • vo , 
~ .. r 

(4) 
where the various terms are defined in Ref. 6. The 
last term in Eq. (4) is associated with the bulk viscosity 
which is related to the relaxation time. 2 When the last 
term in Eq. (4) is substituted into the set of integral 
equations for <p.i> the follOWing set of integral equations 
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for Dq; is obtained; 

f~; Szu [(1-1- W~) +~ (Eq; - E"q)] = L I(Dq;) 
cy C jnl q' 

(5) 

where I(Dqj ) is defined by Eq. (19) in Ref. 6. 

II. THE BULK VISCOSITY 

The pressure tensor is defined by 

p = L nqmq (Vq Vq) = LLTrJ rnq Vq Vqfqjdvq 
q q j 

where the symbol Tr indicates the trace over internal 
states. To first order in the distribution function, this 
becomes 

where U is the unit tensor. Upon using the fact that 

where U~r is the translational energy/gram and p =nkT, 
the expression for the pressure tensor becomes 

p = p U + LLTrmq J Vq Vqf~j <Pq; dVq • 
q j 

Upon using Eq. (4) for <Pqj and eliminating the terms in 
Aqj and C:; by symmetry, this becomes 

p=pU + L2;:Tr f rnq V q Vqf~j 
q • 

The term involving Bq; is related to the shear viscosity 
and the term involving Dqj is related to the bulk viscos­
ity /C. The bulk viscosity is the coefficient of 
- ua/ar.vo. Le., 

(6) 

In order to find /C, the function Dqj must be expanded 
in a complete set of functions. It is useful to write 

Dqj =D;j +~j , 

where 

Dl - "" d1 SIn) (W2) (0) ( ) (0)( 2) 
qj- L.J qnPI 1/2 q R" Eqj P, rn , 

".'.' 
and 

~j = L ~nPtSm (W~)R!0)(Eqj)p!1)(m2)J~. , 
n,p, , 

(7) 

(8) 

(9) 

where Jq• is the z component of internal angular momen­
tum operator, d!nPl and tflqpU>1 are expansion coeffiCients, 
and the polynomials S1(%(W~), R:)(Eq;), p:0)(m2), and 
p:1 )(m2

), and their properties are described in Ref. 6. 
Equation (8) leads to the result for the bulk viscosity 
found in the absence of spin polarization and Eq. (9) 
leads to a spin polarization contribution to the bulk vis­
cosity. 

In addition, the auxiliary conditions on Dqj are 

LTr J f ~j Dqj dV q = 0 , 
j 

L2;:Trff~j Dqj (~mq V~+Eqj)dVq =0 , 
q • 

and 

(10) 

(11) 

(12) 

(13) 

(14) 

where Jq is the internal angular momentum operator. 

Upon substituting Eqs. (7), (8), and (9) in Eq. (6) and 
making use of the orthogonality properties of the expan­
sion coeffiCients, the result 

is obtained, subject to the auxiliary conditions 

d!ooo + t tfq()oo = 0 , 

and 

(15) 

~ nq [ - t (d;lOO t t ~100) + C~nt (d!olO + t tfq010)] = O. (16) 

When auxiliary condition (15) is substituted into the ex­
pression for the bulk viscosity, the result 

is obtained, subject to auxiliary condition (16). 

III. CALCULATION OF THE EXPANSION 
COE FFICI ENTS 

(17) 

The expansion coefficients in Eq. (17) are obtained 
through the use of a variational principle. 5,9 In order 
to calculate the coefficients, a trial function for Dqj is 
necessary. The simplest trial function is obtained by 
taking 

n=p=t=O n=l; p=t=O P=l; n=t=O 

in Eqs. (8) and (9), 1. e., 

D qj = d;100 ~100 + d!o10 ~010 + tfq()oo T!ooo + ~100 T!100 

(18) 

+ tfq010 T!010 , (19) 

where 

~n"t = S 1%(W~)R:)(Eq;) P:O)(m2) 

and 

T!nPt=Sm(W~)R:)(Eq;)p:1)(m2)J~. , 

with 

T;100 = pJ1 )(m2
) J~. - t 

Auxiliary condition (15) has also been used. 

(20) 

(21) 

(22) 

A set of five linear equations for the five unlmown ex-
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pansion coefficients in Eq. (19) is obtained by taking in­
tegral moments of each term in trial function (19) with 
Eq. (5). These equations can be written in the form 

IJ = 1, 2, 3, 4, 5 , (23) 

where 

R =-x £int , R_ =-Xq, Cql nt R 0 q1 q cv'~ , q3 = 
Cv 

XqCjnt 

XqCqjnt 

G:~, 0 
1 G::, +-
3 

xqc int/3 

Xq CQin/3 

kT x q' 0 0 0 0 0 0 0 0 x q' 
K=--

Cv I G~~, I 

where 

G!!, G!!, G13 
qq' G~:, G!~. 

G!!. G~~. G!!. G~:. G~~. 

G~~. = G!!. G!~. G!!. G!:. G!~. (27) 

G:!. G~. G::. G::. G:~. 

G~!, G~~. G~:. G~:. G:!. 

Equation (26) is the formal result for the bulk viscosity, 
including the effect of spin polarization. 

IV. DISCUSSION 

In the absence of spin polarization the results given 
by Eq. (26) and in the Appendix reduce to those in Ref. 
2, i. e., the second term in Eq. (26) does not contribute 
to the bulk viscosity and the only nonzero matrix ele­
ments, G~~:, are G!!., G~" G~!., and G!~ .. 

The relation between the relaxation time, T, and the 
bulk viscosity is2 

T=(c~/kcjntP)K (28) 

in the limit of both easy and difficult interchange of in­
ternal and translational energy. 

0 

This work is motivated by the desire to obtain numer­
ical results for transport properties, including spin 
polarization effects, using reasonable simplifying as­
sumptions and realistic intermolecular potentials. The 
complicated formal results obtained for the spin polar­
ization contribution to transport properties indicates 
that this is a very difficult task. However, there is 
reason to believe that this is a tractable problem for 
relaxation times. 

In order to discuss this point, it is necessary to ex­
amine those aspects of the problem of evaluating the 

(24) 

and 

(25) 

do' 4 = d!, 100' dq'5 =~'010 

Also, the G~~: are evaluated in the Appendix. 

The set of equations (23) can be SOlved for the expan­
sion coefficients. Then Eq. (17) becomes 

xQ C Int 

xQ CQjnt 

0 

xQcint/3 

xQ c qintl3 

0 
(26) 

j 

relaxation time that remain. While Eqs. (26) and (28) 
give the formal kinetic theory result for the relaxation 
time, including the contribution from spin polarization, 
the associated problem of determining scattering cross 
sections and integrals over scattering cross sections 
has not been discussed. The complete numerical eval­
uation of the G~~: requires explicit expressions for the 
cross section. 

The determination of explicit and computationally 
useful expressions for scattering cross sections is usu­
ally difficult. As an example, formal results for the 
cross section when rigid diatomic molecules collide in­
volve a great deal of notation because of the relatively 
large number of angular momenta involved and the need 
to couple angular momentum states. 10 In particular, 
these expressions involve a number of summations over 
angular momenta and the summations pre sent perhaps the 
greatest difficulty in the numerical calculation of trans­
port properties. 

For inelastic collision processes, coupling between 
states reduces the summations. Most transport proper­
ties depend on both elastic and inelastic collisions but 
relaxation processes depend only on inelastic collisions. 
Thus the reduced summations over internal states 
makes the numerical calculation of relaxation times a 
more tractable problem than the calculation of other 
transport properties. Indeed Olmsted and Curtiss l1 

have obtained an analytical semiclassical result for the 
rotational relaxation time, in the absence of spin polar­
ization, for a gas of rigid spheres with embedded point 
dipoles. 

Thus the numerical calculation of the spin polarization 
contribution to the rotational relaxation times appears 
to be a tractable problem and such a calculation is in 
progress. 
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APPENDIX 

Explicit expressions for the G~: are obtained by taking integral moments of each term in trial function (19) with 
Eq. (5). Upon using the first two terms in trial function (19), the result is 

R qnPI = ~ f T>qnPI ~I(Dql)dVq , 

where n = 1; P = t= 0 or p = 1; n = f= 0 and 

R qnpt = - nq C Inl [15(nPf; 100) + Cqlnt 15 (npt; 010)] • 
C v C v 

Upon using the explicit expression for I(D ql), this becomes 

where 

and the degeneracy averaged cross section, l~~ (g, X, <1», is defined by12 

-kl( ) 1 1 '"'" IU( ) 
IIJ g,x,<1> =-(21 1)·(21 1) 6 IJ g,x,<1> • 

q + a' + z component states 

(AI) 

The indices lq and I", represent the total angular momentum quantum numbers of molecules q and q', respectively, 
before collision. 

Upon substituting trial function (19) in Eq. (AI), it can be written as 

R - '"'" '"'" (d1 npt ,n' P' 1'.>2 T nPt In' P' I') 
anile - ~ L.., a' n' pI t' T qq' 00 + a-q, n' P' t' qq' 01 , 

'I' n'p't' 

where the possible values of n',p', and fare 

n' = 1; p' = f = 0 , p' = 1; n' = f = 0 , 

in the first term on the right and 

n'=p'=l'=O, n'=l;p'=f=O, p'=·l; n'=t'=O , 

in the second term on the right. Also 

where a is 0 or 1. 

(A3) 

(A4) 

Auxiliary condition (15) has already been used. Auxiliary condition (16) can be incorporated into Eq. (A3), i. e., 

(A5) 

where 

_ (inq, 15(n'p't'; 100) - nq, Cq'lnt 6(n,p't';010)) 
Tnpt;n'p't' _ T npt;n'p't' _ k Tnpt;npt 

qq'oo - qq'OO C I qqOO , 
i nqo(npf; 100) - nq ~nt 6(npt; 010) 

(A6) 

and 

(

' "("f 1 ) , Cq'lnt "( "f )) "2nq,U np ; 00 -3nq,--U np ;010 
TnPt;,,'P't' _ Tnpt;n'p't' k TnPt;"Pf 

qq'01 - qq'01 - 3 Cqlnt qqoo 
"2 nq 6 (npt; 100) - nq -k-6(npt; 010) 

(A7) 

The auxiliary condition has been incorporated into the set of linear equations in this particular way so that the re­
sults reduce to those of Monchick, Yun, and Mason2 in the absence of spin polarization. 

Upon taking integral moments of the last three terms in trial function (19) with Eq. (5) and using arguments simi-

J. Chern. Phys., Vol. 64, No. to, 15 May t976 
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lar to those used to obtain Eq. (A3), the result 

l.R "" (d1 T'P/;"P't' ->2 '1>1;"1>'1') 
3 qnpt=L...J.~ o·n'P't' 0.0.'10 +aq'n,p1 t,T qq'11 , 

0.' n'p't' 

is obtained where the possible values of n, p, and tare 

p = 1; n = t= 0 , 

and the possible values of n', p', and t' are 

n' = 1; p' = f = 0, p' = 1; n' = f = 0 , 

in the first term of the right and 

n' =p' = t' = 0, n' = 1; p' = f = 0, p' = 1; 

in the second term on the right. Also 

where a is 0 or 1. 

Define 

and 

G'Pt;"P't' 
Qq'ab 

where 

ga.Pt = - n. [0 (npt; 000) + o (npt; 100) + a (npt; 010)] 

n' = t' = 0 

Upon using these definitions, the set of equations given by Eq. (A5) can be written as 

and the set of integral equations given by Eq. (AS) can be written as 

(AS) 

(A9) 

(A10) 

(All) 

(A12) 

(A13) 

(A14) 

Upon using Eqs. (24) and (25), Eqs. (A13) and (A14) can be written in the form of Eq. (23) where the expressions 
for the C:: are given below. 

It is easily shown that the results in the absence of spin polarization; i. e., 

C100, 100 _ Cll ClOD. 010 _ C12 COlO. 100 _ C21 GOlD. 010 _ C22 
qq'OO - qq', (lQ"OO - 0.0.', 0.0.'00 - qq", 0.0.'00 - qq' , 

are the same as the results obtained by Monchick, Yun, and Mason. 2 However, when the degeneracy averaged 
cross section is used, then results should also include the statistical weights (2la + 1) (21 a, + 1). 

Now consider the expressions for C::!&1'P't'. Using Eqs. (A4), (A7), (A10), and (A12), 

Upon using Eqs. (20), (22), and (A2), and integrating over the velocity of the center of mass, this becomes 

13 " x.xa" ~T "f f Ca .. =4L.,..--- --Ma" L... '" 
a" Q. Q." 2rr IJ. ijkl 

where 

and 

J. Chern. Phys., Vol. 64, No. 10, 15 May 1976 
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Each of the sums over i, j, k, and I involves a sum over the total angular momentum quantum number and the z 

component of angular momentum quantum number. However the degeneracy averaged cross section does not depend 
on the z component of angular momentum quantum numbers. Thus equation (A15) can be written as 

G!~. =4L QX.QX." J2
kT 

M." L f··· J e-("z'e"I' •• "J) AE: •• " y3 i~~(y, X, ¢) (2i+1) (2j+ l)sinx dxd¢dy 
." .... 7rJJ. likl 

x '"' {" [ 12pW( 12) 2p(I)( 2)]" ['2 p(l) ( 12) 2 p(1) ( 2 )]} L..J Vqql mom - mom + Uq'qll mqll 0 mq" - mq" 0 mq" 
m, m', mq", m&" 

where the indices i, j, k, and I now denote only total orbital angular momentum quantum numbers. Upon using the 
orthogonality properties of the polynomials, this becomes 

G!~. =: ~ ~ x. x." M." (AE: •• " [0 ••• (2k + 1) - 0 ..... (21 + 1)]).... , 
q 

(A16) 

where 

(F) .... =Q 1Q j2
kT L f ••• fe-(,.z··ql ..... i)y31~~ (y, X, ¢) (2i +1) (2j +l)sinxdx d¢ dyF 

o 0" 7rJJ.jikl 

The other G~~; are evaluated in a similar manner. The results are 

G!:. =~ L x.x." Mo" (AE: 0." [Oqq'(~ -~ M. -M." y2) (2k+1)+o ..... (~ -~ M ... -M.y/2)(21 +1)]) •• " 
." 

(A17) 

(AlB) 

(A19) 

(A20) 

and 

(A21) 

Also 

G !!, = ~ L x. x ... M." (AE: .... [0 ••• (2k + 1)+ 0., ... (21 + 1)]).... , ." (A22) 

(A23) 

G!~ =~ ~X.X." «2i + 1) {Oq •• [(2i + 1) - (2k + 1)] + 0 ••• " [(2j + 1) - (21 + I)]}).... , (A24) 

G !:. = ~ L Xq x." ([(2i + 1) - (2k + 1)][0 •• ,(~ - % M. - M." y2) (2i + 1) + 0.,." (~ _ % M." - M. y2) (2j + 1)]).... , .f> (A25) 

and 

(A26) 

J. Chem. Phys., Vol. 64. No. 10, 15 May 1976 
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In addition 

C!;. == ~3 Lx. x." M." (6.( •• " [B ••• (~ - ~ M. - M ... y'2)(2k + 1) + B.'Q"(~ - ~ Ma" - M.y'2)(2l + 1)]) .. 
~. " 

(A27) 

(A28) 

(A29) 

c::. ==~ ~ XaX ... ({[(2i+ 1) - (2k+ l)](l-Ma) +j M ... [y '2(2k+ 1) -Y(2i+ 1)]} 

x [B ••• G - ~ M. - M ... 1'2) (2i + 1) +B ..... (~ - ~ M ... - M.y2) (2j + l)]).a" 

4 '" . - -3 LJ x. x." M. «2t+ 1) - (2k + l)][B ••• M.(2k + 1) + B ..... M ... (2l + 1)]) .... . " 
and 

c:~. =~ LX. x." «~ - ~ Ma - M.,.. y2)(2i + l){B aa• [«(.J - (.)(2i + 1) - «(.k - (.)(2k + 1)] 
9 a" 

+ B.·a" [( (." j - (." )(2j + 1) - «(.u I - (a" ) (2l + 1)]}) .a" (A31) 

Finally 

and 
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