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Orbital current order of thed-density-wave type has been postulated to explain the pseudogap in high
temperature superconductors. We have performed neutron scattering experiments to search for this order and
show here the results obtained on an YBa2Cu3O6.45 sample using the best neutron spectrometers available. We
argue that the data are consistent with a small, largelyc-axis-directed moment, found below about 200 K.

DOI: 10.1103/PhysRevB.69.134509 PACS number~s!: 72.15.Gd, 61.12.Ld, 71.30.1h

The microscopic origin of the pseudogap is one of the
most puzzling attributes of the cuprate superconductors. A
review of the various experimental techniques used to deter-
mine the pseudogap is given by Timusk and Statt.1 It is gen-
erally considered to stem from pairing above the supercon-
ducting transition temperature2,3 Tc or to result from another
ground state differentiated from superconductivity by a
quantum critical point.4,5 Chakravartyet al.6 have suggested
that the pseudogap stems from a hidden order denoted by a
d-density-wave~DDW! phase that competes with supercon-
ductivity and explains in a natural way the doping depen-
dence ofTc . This state is similar to the circulating currents
around the Cu-O bonds resulting from the staggered flux
phase of thet-J model introduced by Hsuet al.7 These cur-
rents would produce a small magnetic field directed largely
along thec axis of the superconducting crystal and should be
visible in a sufficiently accurate neutron scattering
experiment.8 Here we present data demonstrating the present
capability to observe such a state and show that the best
measurements suggest the possibility of such a state rather
than showing a null result.

An earlier neutron scattering experiment suggested that
such a state occurs in YBa2Cu3O6.6,9 but a competing phase
judged to stem from impurities made the identification of the
DDW state difficult. The moments from the bond currents
result in peaks at the (h/2,k/2,l ) superlattice positions of the
reciprocal lattice. This is the position where magnetism is
found in the parent compound YBa2Cu3O6.15, which is an
insulator with a Ne´el transition temperature well above room
temperature and has been studied previously.10,11 The defin-
ing attribute of the DDW state is that the moment should be
largely along thec axis. Small moments in the sample crystal
originating from the parent compound should be located in
the a-b plane as is found for this material. Other magnetic
impurity phases could be possible, but to our knowledge no
such phases are known to have high temperature~above 50
K! magnetic order along thec axis for the YBa2Cu3O61x
system.

In order to determine the direction of the moments for the
antiferromagnetic state it is necessary to use polarized neu-

trons, as outlined by Moonet al. in 1969.12 The crystal used
in the experiments is twinned so thata* could not be differ-
entiated fromb* . We thus consider the crystal to be tetrag-
onal so that the@1,1,0# direction is in the basal plane and the
@1,21,0# direction perpendicular to the page is also in the
basal plane. We describe our reciprocal lattice positions by
a* 'b* 52p/(a1b)/2 and c* 52p/c, and the scans are
made in reciprocal lattice units~r.l.u.!. Many of our results
were obtained using the~1/2,1/2,1! reflection as shown in
Fig. 1~a!. The momentum transferQ for this reflection is
determined by the difference in the incoming and outgoing
neutron wave vectors,k2k8. Guide fields were used to pro-
vide a neutron polarization direction either vertical to the
scattering plane~VF! or alongQ ~HF! and a standard spin-
flipping coil was used in the scattered beam. All the data
shown in the paper have been corrected for incomplete po-
larization. The magnetic neutron scattering intensity always
originates from the moment projected on the plane perpen-
dicular toQ. The polarization analysis technique can further
determine how much of the moment lies along the direction
of Q' . We denote a scattering event in which the spin makes
a 180° rotation as spin flip~SF!, while scattering with no
spin direction change is non spin flip~NSF!. For the HF case
all magnetic scattering is SF and stems from all the moment
in the crystal projected on the plane perpendicular toQ. The
NSF scattering arises from nonmagnetic processes. For the
VF case the magnetic scattering is divided into SF and NSF
parts. The SF part of the magnetic scattering lies in the scat-
tering plane alongQ' . The NSF magnetic scattering stems
from the moments pointing in the direction perpendicular to
the scattering plane. A detailed discussion and the equations
to determine the moment direction from the HF and VF
count rates are found in Refs. 9 and 12 so we will not repro-
duce them here. The moments from the DDW state are ex-
pected to be very small, and thus the signals observed very
weak.

The YBa2Cu3O6.45 crystal used in the experiment
weighed 25 g and had aTC of 55 K with a transition width of
about 2.5 K. The method of growth incorporates the
Y2BaCuO5 ~the so-called green phase! into the crystal in
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small isolated pockets. Otherwise the sample is highly pure.
Scans to observe Cu-O chain order showed no particular type
of order. This appears to be the best situation for the present
experiment, as highly chain-ordered samples have shown
magnetic impurity effects, possibly because of the ordered
spaces available in the chains. The magnetic fluctuations for
this crystal have been characterized previously.13 Polarized
beam data were first obtained at the NIST center for neutron
research~NCNR! using the SPINS spectrometer. In this case
supermirrors were used to both polarize and analyze the po-
larization of neutrons after scattering. Pyrolytic graphite was
used as a monochromator and as a filter to remove higher
order wavelength contamination in the beam. A flipping ratio
of 8 was obtained and the data collected were corrected for
the incomplete polarization of the beam using NSF scatter-
ing. A check of the~1/2,1/2,0! reflection showed no peak
indicating that the higher order scattering from the mono-
chromator was well removed. Figure 1~b! shows the result of
a HF SF measurement through the~1/2,1/2,1! position at 20
K. The scan range on the highQ side of the scan is limited
by intense NSF scattering that is difficult to correct for with
the rather small flipping ratio as seen in Fig. 3~a! below.
Nevertheless, a peak is observed at~0.5,0.5,1! and a Gauss-
ian fit results in a height of 1162 counts with a full width at
half maximum~FWHM! of 0.0160.002 at the position 0.5
60.001 r.l.u. The peak is resolution limited, giving a corre-
lation length of about 270 Å. Figure 1~c! shows no evidence
for a peak at a temperature of 150 K. Multiple runs were

averaged to obtain the observed error bars. These scans took
over two days each and are difficult to improve in a reason-
able time period. Also, since the magnetic signal is so small,
a higher flipping ratio is desired. The experiment was there-
fore moved to the IN20 spectrometer at the Institut Laue-
Langevin neutron source in Grenoble, France.

The spectrometer arrangement of IN20 was the standard
one used for polarization analysis and employed Heusler al-
loy crystals for the monochromator and analyzer. A flipping
ratio of 19 was measured in both HF and VF field configu-
rations. Open collimation was used from in front of the
monochromator until after the analyzer. The neutron energy
was 13.78 meV, providing an energy resolution of about 1
meV FWHM, and three pyrolytic graphite filters were used
to avoid higher order contamination. The~1/2,1/2,0! position
was checked and no peak was found, ensuring that there was
no second order contamination from the monochromator and
analyzer.

For the case of present interest, the interpretation of the
experiment is quite simple. Since we are looking for a pre-
dominantly c-axis moment, we utilize the VF SF scan to
determine if the moment is largely alongc. The HF SF scan
measures the whole moment so that as long as the VF SF
intensity is nearly as large as the HF SF intensity there is
mostly c-axis order. This is the signature of the DDW state.
Figure 1~d! shows a VF SF scan through the~0.5,0.5,1! re-
flection, which should show the most intense signal from the
orbital order. A large sloping background is found, but a peak
is observed at the~1/2,1/2,1! position. Least squares fitting of
a Lorentzian distribution finds a peak of 57611 counts and
at a position of 0.49160.01 r.l.u. if the width is fixed at the
resolution limited half width at half maximum of 0.0225
r.l.u.. It would be desirable to let the width vary in the fit, but
the sloping background makes it impossible to get a reason-
able value of the width in the fit. The NIST data suggest that
the peak width is much smaller than the resolution on IN20.
The resolution was determined from checks of the widths of
the Bragg peaks of the sample. The second order of the
~0.5,0.5,1! peak was also checked by removing the filters.
The horizontal focusing makes the resolution quite broad
with long tails. It, however, can be accounted for by a
Lorentzian distribution. The center of the distribution is at
~0.5,0.5,1! within the error of the measurement. The sloping
background appears to depend only on the momentum trans-
fer Q so that it can be determined at positions in the recip-
rocal lattice away from~0.5,0.5,1! where no magnetic signal
is expected. It has been measured along thec* direction
starting at positions outside the range in (h,h,l ) where any
magnetic signal is observed. Figure 1~e! shows the result of
subtracting the measured background fitted with a power law
curve. The fit to the background is shown as a dashed line in
Fig. 2~b!. The fit of the background subtracted data to a
Lorentzian distribution yields 5465 counts for the height,
0.49460.004 r.l.u. for the position, and 0.03160.006 r.l.u.
for the width, slightly larger than the resolution limited
value.

Figure 2~a! shows the HF VF measurement. This must
show a peak at least as large as the VF SF case as it contains
all the magnetic scattering. The peak found at~0.5,0.5,1!

FIG. 1. Scattering diagram of the experiment and polarized
beam results.~a! shows the scattering plane used in the experiment.
~b! HF SF measurement of the magnetic order at 20 K around the
~0.5,0.5,1! reflection using the SPINS spectrometer. Several runs
were averaged to obtain the errors shown.~c! SPINS spectrometer
measurement at 150 K.~d! SF VF IN20 measurement at 20 K. A
sloping background is found with the much coarser resolution used
at IN20. The squares show a background measurement.~e! Same
measurement as~d! but with sloping background as determined
alongc* subtracted.
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looks smaller, as the scale is somewhat different, but within
the counting errors it is the same. The resolution limited peak
height is 37610 counts with a peak position at 0.499
60.01 r.l.u. Since the VF SF case gives a signal as large as
the HF SF case, the moment must be largely directed along
the c axis. Using the equations developed in Ref. 12 the
results given in terms of counts would put the square of the
c-axis moment strength at 73613 and the square of thea-b
plane moment strength at240630. Given that the fitting
procedure was identical in the two cases the argument for a
largely c-axis-directed moment is a strong one, while the
a-b plane moment is consistent with zero or a small number.
It is difficult to provide an absolute moment value, but scal-
ing from the Bragg intensities of our earlier measurements9

would result in a moment value of about 0.0025mB . The
source of the large sloping background in the magnetic mea-
surements is not clear. In Fig. 2~b! the SF HF and VF data
have been subtracted. For a paramagnetic spin moment this
should yield 1/2 the paramagnetic scattering. The error bars
are large but the scattering does appear to decrease from
about 50 counts to around 25 counts. This gives evidence
that the background stems from some type of spin moment.
The dashed line is the result from the measured background
mentioned above. The background could stem from the para-
magnetic scattering from the green phase although it appears
to fall off with momentum rather quickly to stem from un-
correlated paramagnetic spins. The sloping background is not
so visible in the NIST measurements, suggesting that the
open resolution captures more of the sloping background
relative to the signal at the peak.

Figures 2~c! and 2~d! show the result measured at 70 K.

Again, peaks are found on a sloping background for the VF
SF and HF SF measurements. The fits are a Lorentzian dis-
tribution with the width fixed at the resolution limited values.
The fits give heights of 34612 and 57614 counts for the VF
and HF measurements and positions of 0.49560.0005 and
0.50160.0004 r.l.u. The errors are too large to obtain a reli-
able moment direction, but are not inconsistent with the
largely c-axis-directed moment found at the lower tempera-
ture. The 70 K data were not taken to distinguish a moment
direction, but rather to determine if the magnetic signal per-
sisted aboveTc . Figure 3~a! demonstrates that the VF NSF
scattering displays no peak at~1/2,1/2,1! so there is no sign
of a moment perpendicular to the scattering plane, although
the count rate is sufficiently large that a small moment would
be hard to observe. Most of the scattering stems from inco-
herent isotopic or spin sources or extra nonmagnetic pro-
cesses such as powder lines from impurity phases such as the
Y2BaCuO5 or green phase. We have observed the magnetic
scattering from the green phase if the sample is cooled to
temperatures well below its ordering temperature of about 18
K. However, these disappear by 20 K, which is why this
temperature was chosen for our lowest temperature runs with
long counting times. The scattering on average in the NSF
measurement is five times that for the SF case, which is the
number observed in similar samples of different doping lev-
els without extra impurities. The ratio for the YBa2Cu3O6.6
sample that contained the magnetic impurity phase was
nearly unity. Note that the small magnetic signals we are
considering here would be completely unobservable in an

FIG. 2. IN20 measurements of the magnetic scattering. Multiple
runs were averaged to obtain the observed error bars.~a! shows the
HF SF measurement at 20 K. The background is even more steeply
sloped than for the SF VF case.~b! gives the difference of the SF
HF and SF VF measurements. For paramagnetic spin scattering this
gives half the paramagnetic signal and should fall off as the mag-
netic form factor.~c! SF VF measurement at 70 K.~d! SF HF
measurement at 70 K.

FIG. 3. IN20 polarized measurements and HFIR unpolarized
determination of the temperature dependence of the magnetic scat-
tering. ~a! gives the VF NSF scattering. This largely stems from
nonmagnetic processes and is about five times larger than the total
magnetic scattering.~b! shows SF VF and SF HF measurements for
thec* direction.~c! shows the HF SF result for 170 K.~d! gives an
unpolarized measurement of the temperature dependence of the
magnetic scattering. The result shown is obtained from the intensity
at the~0.5,0.5,1! magnetic position, normalized to the background
at ~0.53,0.53,0!.
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unpolarized scan, as they would be added to the NSF scat-
tering. Thus, while the unpolarized measurements by Stock
et al.14 saw no evidence for a magnetic peak, we are in
agreement with their results.

Figure 3~b! shows scans made along thec* direction at 70
K. A small peak is visible on the sloping background at~1/
2,1/2,1! for both the HF SF and VF SF scans. This peak
appears to be on the order of 50 counts as it should corre-
spond to the scans in Figs. 2~c! and 2~d!. No sign of a peak
is visible at ~0.5,0.5,2!, but this peak is expected to be
smaller than the peak at~0.5,0.5,1! for the DDW state. It
should be larger fora-b plane spin order as in the antiferro-
magnetic insulator. Figure 3~c! shows data for a HF SF scan
at 170 K. There still appears to be some magnetic signal at
~0.5,0.5,1! of about the same size as was found at 70 K.
While a scan in the unpolarized mode would yield no infor-
mation because of large nonmagnetic scattering at different
points in the scan, some information may be obtained about
the magnetic peak intensity relative to the background. Fig-
ure 3~d! shows an unpolarized measurement of the intensity
at ~0.5,0.5,1! compared to that at~0.53,0.53,0!. These posi-
tions are at the same total momentum transfer so that the two
positions are obtained by turning the crystal. The measure-
ment was made on the HB-1 spectrometer at Oak Ridge Na-
tional Laboratory. This assures that the sloping background,
which appears to be only a function of the total momentum,
does not affect the measurements. The data are normalized
by a long counting period at room temperature. There is
obviously an increase in intensity at the~0.5,0.5,1! at low
temperature. The difference seems to go to zero at around
200 K. This would agree with the result in Fig. 1~c!, but
appears different from Fig. 3~c!. It may be that the peak
broadens at high temperatures, which would not affect the
low resolution results in Fig. 3~c!, but would result in a loss
of peak height in the measurements of Figs. 1~b! and 3~d!. In
any case, we are examining very small signals and it is dif-
ficult to establish a definitive temperature dependence.

In summary, we have provided evidence for a small mag-
netic signal at the~0.5,0.5,1! position in YBa2Cu3O6.45. The
best interpretation of the data demonstrates that the magnetic
moment is largely directed along thec axis. This is different
from the moment observed earlier for the parent compound
or any known impurity phase with a peak at the observed
lattice position. It is in the direction expected for the DDW
phase. The exact temperature dependence is unknown, but
the best evidence suggests the peak height of the signal is
reduced in the neighborhood of 150 K to 200 K, which is on
the scale of the pseudogap. Water in the sample would show
up in the ratio of the background between the SF and NSF
scattering since hydrogen has a huge spin incoherent scatter-
ing cross section. This ratio is around 1:5, and is the same for
newly prepared samples. This makes it unlikely there is mag-
netism stemming from water.15 Also, water appears to enter
the sample more easily when the chains are highly ordered,
leaving large free spaces in the chains. The moments cannot
stem from ac-axis component of the sloping background
found in the experiment as this does not peak at the magnetic
lattice point. Better measurements would be desirable, but
appear difficult at this time. Much longer counting times
would be needed to materially affect the quality of the data.
The best hope for improvement would seem to be the dis-
covery of a sample that shows a larger effect. A number of
samples have been investigated but highly underdoped
samples show similar small effects, while highly doped
samples show no effect at all. As far as neutron scattering is
concerned, the present results provide indications that orbital
current phases are not ruled out and should continue to be
seriously considered.
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