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KONCEPCJA ESTYMACJI WARIANCJI 
APROKSYMATORA NEURONOWEGO 

ZA POMOCĄ PODPRÓBKOWANIA JACKKNIFE

A b s t r a c t

The estimation of a variance for a semi-parametric neural network model variance for geometric 
properties of sintered metal will be done on the basis of jackknife subsampling method. 
Calculation results are of great practical significance because it will be possible to use proposed 
approach in similar microscale modelling. The proposed approach is simple and has many 
advantages if model identification procedure is computational expensive.
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S t r e s z c z e n i e

W artykule przedstawiono estymację wariancji półparametrycznego modelu neuronowego cech 
geometrycznych spieku metali przeprowadzoną za pomocą metody podpróbkowania jackknife. 
Obliczone wyniki są cenne z uwagi na możliwość zastosowania proponowanego podejścia do 
analogicznych zagadnień modelowania w mikroskali.

Słowa kluczowe: estymator wariancji jackknife, metody  statystyczne, analiza  obrazu, 
estymacja błędu, spiekanie proszków metali
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1. Introduction

1.1. Geometrical properties of 2D images of sintered metals

The ferritic-austenitic stainless steel was obtained by sintering the mixture of ferritic 
stainless steel AISI 434L powders with different amount of additions: Mn, Ni and Si. Effects 
of additions on quality of sintered products were studied [1]. Microscopic geometrical 
properties of porosity formulate one of the quality assessment criterion. In porous materials the 
character of the pore structure strongly effects on its mechanical properties. The microscopic 
structure of sintered samples was investigated by computer image analysis methods [2]. 
The obtained 2D optical image was processed by specialized software for image analysis [3]. 
The quantitative properties of pores were identified, among others pores area and circularity 
ratio. These properties were non-homogeneous and thus an empirical cumulative distribution 
and a histogram were their appropriate descriptions. For the evaluation of sinter produced 
with a variety of additions, there is necessary to create models for simulating the distributions 
of geometric properties including estimation of some measures of uncertainty e.g. variance.

1.2. Modelling

The empirical cumulative distribution function is stepwise and the histogram has little 
smoothness. For sintering simulation purposes, it is appropriate to create a smooth model 
of empirical cumulative distribution function with confidence bands [4, 5]. Unavoidable 
setting uncertainties of compacting and sintering lead to dispersion of obtained sinters 
characteristics. Reducing dispersion would be possible using replications i.e. compacting 
and sintering in the same setting nominal conditions. Replicated compacting and sintering, 
however, introduce into the experiment additional block factors associated with individual 
systematic differences in mixing additives, compacting and sintering, even at the same 
nominal settings. Identification of block factors impact would require a significant increase in 
the number of completed samples, metallographic specimens and analyses [6]. Instead, it is 
possible to use methods based on controlled perturbations of obtained model and analyse the 
impact of disturbances on the modelled output. The most promising non-parametric models 
do not allow to examine these effects with analytical methods, as is used in the classical 
perturbation theory [7, 8].

1.3. Jackknife method

Nonparametric and semi-parametric models have not imposed a priori regression formula 
[9]. The formula structure is adaptively data driven what allows much better fit prediction to 
the raw data. It should be noted that, contrary to commonly named, non-parametric models 
have parameters. In most cases, the identification of non-parametric models (neural networks, 
NPMEL, FEM) is computationally very expensive, so it is advisable to seek the most cost-
effective use of the procedures for the identification of such models. In the absence of known 
in advance function formula, it is not possible to determine probability distributions of output 
variables and their confidence bands by analytical methods.

Numerical determination of such distributions is possible by using Monte Carlo methods 
[10–12]. The use of most frequently encountered bootstrap method [13], allowing to obtain 
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the whole probability distribution of the output, would require multiple (from a few hundred 
to several thousand times) identifications of the auxiliary parametric models, which can be 
very expensive computationally. If the uncertainty assessment would be limited to estimates 
of variance, it will allows to implement jackknife subsampling procedure [14], which requires 
the use of a relatively small and acceptable (from a few to tens of times) number of non- 
-parametric identification of auxiliary models. Simultaneously, the knowledge of the variance 
enables fully reliable estimate searched uncertainty.

2. Materials and methods

2.1. Sintered sample [1]

The water atomized powder AISI 434L of Höganäs Corporation [15] was used as a base 
powder. The additions were manganese powder, silicon powder and nickel powder. The four 
blends were prepared, but in this article, data collected for the sample 434 L+14% Mn are 
analysed.

2.2. Image analysis

The images of the sample 2D structure was acquired by Olympus camera model DP-25 
coupled with Nikon microscope model Eclipse E400 and PC computer system. The images 
were analysed by algorithm written in environment of ADCIS Aphelion software [3] and 
pores were detected and quantified.

2.3. Neural network model

The basic model is an artificial neural network with feed-forward multi-layer architecture 
[16]. This network has single input and single output:
 y = F(x, βi, fj ) (1)
where:

x – pore size, 
y – predicted quantile corresponding to the size of a pore,
βi – i-th weight of neural network synapse,
fj – activation function of j-th neuron.

This basic model was identified (learned) by Statsoft Statistica program with Automatic 
Neural Network module. The best topology and activation functions were selected 
automatically by the program. Sub-sampling models were identified (learned) by Statsoft 
Statistica program with Automatic Neural Network module, but only synapses weight were 
selected while the topology and activation functions were the same as in the basic model.

2.4. Jackknife variance estimator for nonlinear regression

Statistic is a function of data selected according to some principle e.g. likelihood, 
sufficiency etc. Such statistic, prior to data collection, is a random quantity having probability 
distribution called the sampling distribution. The sampling distribution of a statistic depend 
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on the underlying population and therefore is unknown. The jackknife is a method for 
estimating the sampling distribution of a statistic and its characteristic. The comprehensive 
elaborate is available at Shao and Tu [14]. The general nonlinear model of feed forward 
neural network has the following formula (eq. 2):
 yi = f (xi, β) + ei,   i = 1, …, n (2)
where:

β – q-vector of unknown parameters (weights and biases in neural networks),
f – known function nonlinear in β,
xi – p-vectors,
ei – random errors with E(ei|xi) = 0.

Pairs (yi, xi) are i.i.d. with a finite second moment. Typical estimators of weights and biases 
β in neural network regression problems are obtained in supervised approach. The estimators 
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If the parameter of interest J is defined as a given function g of parameters β (eq. 5):
 J = g(β) (5)
then the LSE estimator of J is (eq. 6):
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 being the LSE of β obtained after deleting the i-th 
pair (yi, xi). Now, if g is defined as f at arbitrary x i.e. (eq. 8):

 g(β) = f (x, β) (8)

then J is mean value of f at x. With this assumption, JLS
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 and uJACK are jackknife estimators 
of the mean and the variance of the function f at arbitrary x (eq. 9):
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Now, evaluating estimators JLS
Ù

 and uJACK at any arbitrary x, the mean and variance can 
be estimated. These estimators are used in the rest of the article.

2.5. General idea of simulation

The general outline of the workflow consists from the following 8 stages: (1) pre- 
-processing of raw data from image analysis; (2) identification of the basic neural network 
model for the whole sample; (3) evaluating predictions from the basic neural network model; 
(4) decomposing of data into sub-samples; (5) identification of auxiliary neural networks 
models for sub-samples; (6) evaluating predictions from the auxiliary neural network 
models; (7) jackknife processing of the predictions from sub-samples models; (8) analysis 
of results.

2.6. Computational software

Image analysis was performed using ADCIS Aphelion package [3]. Numerical simulations 
were performed using PTC Mathcad version 15 [17].  Statistical analysis and significance 
tests were performed using Statsoft Statistica package [18].

3. Results

3.1. Raw data

The raw data obtained from the image analysis contain 17800 records. There were 
detected many pixelization artefacts associated with small objects below 32 pixel size. They 
were trimmed out with threshold of 32 pixels and data records were reduced to the number 
of 4544. Data were very irregular with lacks in many area sizes. The direct processing on this 
records is futile due to these irregularities generating only noise and smooth approximation 
is desirable. Next, area of pores were classified into 9 classes presented in Tab. 1. Class 
boundaries are arranged densely in these places, where the curvature is greater.

T a b l e  1
Distribution of pores area frequency

Pore area [pixels] 32 43 62 93 123 188 265 634 2931

Number of pores with 
area less or equal 0 1000 2000 3000 3500 4000 4250 4500 4544

3.2. Neural models

The best fitted neural network model for pores area was topology 1-2-1 with logistic 
function for hidden layer and logistic function for output neuron. This topology was fixed as 
well as activation functions and subsample’s identifications were processed. Predictions of 
full sample (basic) model, jackknife variance estimator and associated standard deviations 
are presented in Tab. 2.



314

T a b l e  2
Neural network predictions and jackknife variance estimators for pores area frequency

Area Measure Full sample 
prediction Residual vjack stdevjack

32 0 1142 1142 1585782 1260

43 1000 1315 315 1141451 1065

62 2000 1817 –183 385877 616

93 3000 2922 –78 846047 919

123 3500 3657 157 365754 602

188 4000 4207 207 23522 153

265 4250 4347 97 29215 171

634 4500 4405 –95 51505 227

2931 4544 4406 –138 46381 216

Residuals may be treated as normally distributed (Kolmogorov test gives p-value = 
= 0.142). The comparison of image analysis data and neural network is presented on Fig. 1. 
The log scale for horizontal axis was selected due to saturation effects which make linear 
axis unreadable. The comparison of residuals and jackknife standard deviation estimator 
is presented on Fig. 2.

Fig. 1. The comparison of image 
analysis data and neural network 
model for distribution of pores 

area
Rys. 1. Porównanie rozkładów powierz- 

chni porów dla danych z ana- 
lizy obrazu oraz modelu neuro- 

nowego

Fig. 2. The comparison of residuals 
and jackknife standard deviation 

estimator
Rys. 2. Porównanie wartości resztowych 

modelu neuronowego oraz odchy- 
lenia standardowego jackknife
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4. Discussion of the results

Neural network model approximates distribution of pores area continuously as expected. 
Model shows large errors at the left bound (for small pores). It does not reach the exact zero 
value but predicts the value of 1142 (see Fig. 1). This behaviour is reflected in both: residual 
values and an estimator of standard deviation predicted using jackknife method (Fig. 2). 
Estimator generally behaves in a similar way as real residual values of the model, but in 
one place (at pore size of 100) shows a sharp local spike, which looks like a slightly phase-
shifted reflection of the smaller jump in the residuals. Such behaviour requires more study to 
determine whether it is associated with a specific model and data set, or is it the behaviour of 
the jackknife procedure interfering with a neural network model.

5. Conclusions

Metallographic studies were performed with sintered powder of stainless steel AISI 434L. 
Cumulative distribution of frequencies of the pore area were modelled by a neural network 
approximator and such approach produced a smooth waveform. The subsampling jackknife 
approach was used to estimate a variance and standard deviation of predicted values. 
Satisfactory results were achieved. This argues for the wider use of this methods with 
nonparametric approximator in the context of materials science.
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