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Mixed electron emission from lead zirconate–titanate ceramics
Weiming Zhanga) and Wayne Huebner
The Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, Missouri 65401

Stephen E. Sampayan
University of California, Lawrence Livermore National Laboratory, Livermore, California 94551

Mike L. Krogh
Allied Signal Federal Manufacturing & Technologies,b! Kansas City, Missouri 64141

~Received 12 December 1997; accepted for publication 27 February 1998!

Simultaneous ferroelectric and plasma emission from Pb~Zr,Ti!O3 was observed with only a
negative driving pulse applied to the sample, and without an extraction potential on the electron
collector. Plasma emission was a strong, inconsistent, and self-destructive process. In addition, a
positive ion current was detected. Comparatively, ferroelectric emission was a relatively stable
self-emission process, exhibiting no apparent delay time, and no positive ion current. The
relationship between the switching and emission current of ferroelectric samples measured
simultaneously cannot only be used to determine the existence of ferroelectric emission, but can also
give direction to choosing suitable ferroelectric materials for emitter applications. ©1998
American Institute of Physics.@S0021-8979~98!03911-5#

I. INTRODUCTION

Strong electron emission~Jc as high as 100 A/cm2! from
ferroelectrics due to fast polarization switching@i.e., ferro-
electric emission,~FE!# was discovered at CERN in 1988.1

Research activities quickly spread around the world, trig-
gered by applications in the field of accelerator technology,
and especially possible applications in microelectronic de-
vices such as flat panel displays.1–3 However, a diverse array
of results and explanations concerning FE have appeared,
leading to uncertainties in understanding underlying mecha-
nisms.

Most studies have utilized disk-shaped ferroelectrics
with Au or Ag grid electrodes at the emitting surface. At the
opposite side a solid electrode~applied with a driving field!
has been used. The commonly accepted principle of FE is
that a ferroelectric material appropriately polarized will have
the positive charges of the dipoles oriented towards the ferro-
electric surface between the grid electrodes. The resulting net
positive charge on the surface is compensated by electrons in
order to preserve charge neutrality. Upon fast reversal of the
polarization, the negative charges of the ferroelectric dipoles
orient towards the surface, leading to a rapid buildup of a
repulsive electrostatic force.1–7 This field has been modeled
to be as high as 33108 to 109 V/m.7–9 However, this prin-
ciple cannot explain the following phenomena convincingly:

~1! The electron emission intensity increases with tempera-
ture, and occurs far above the Curie temperature~i.e., at
temperature where no spontaneous polarization
exists!;5,10–13

~2! Published emission current densities as high as

105 A/cm2 are far beyond what the value of spontaneous
polarization of ferroelectrics~at most 100mC/cm2! can
contribute;13

~3! No direct experimental evidence has shown that the elec-
trons are emitted from the bare surface of the ferroelec-
tric during polarization switching.

A ‘‘plasma emission mode’’ has been presented, which
ascribes these effects to the creation of a surface discharge
plasma.13–15 However, this mode of emission damages the
ceramic surface after only a few minutes of operation.13 This
is detrimental for reliable application or fundamental mea-
surements. In addition, one should note that the experimental
techniques varied widely among these research groups. A
negative pulse with a fast risetime~tens of ns! and short
pulse width~few hundred ns! are the conditions believed to
result in ‘‘true’’ ferroelectric emission.16,17 No extraction
field was applied to the electron collector. However, negative
pulses with a slower pulse risetime~few hundred ns! and
longer pulse width~few ms! were also used to induce ferro-
electric emission by the same research group in earlier pub-
lished studies10,11 as well as other research groups.5,6,18 It
was also mentioned that luminosity does not appear to cor-
respond with emission current with or without an extraction
field.19 Comparatively, a high positive extraction potential on
the electron collector results in a plasma emission mode;13–15

under this condition the Child–Langmuir law applies. In ad-
dition, different electrode configurations have been used, in-
cluding sputtered Au10–12,16–18and copper wire grids simply
pressed onto the surface.13,15,19

Thus, a better understanding of this complex emission
process is necessary, not only for successful applications but
also for theoretical reasons. In this work both types of elec-
tron emission process were simultaneously observed.

II. EXPERIMENTAL TECHNIQUES

Disk-shaped samples~Q519 mm; t50.64 mm! of a
commercially available Pb~Zr,Ti!O3 ~PZT! EC-64~EDO Co.,

a!Corresponding author: Electronic mail: weiming@umr.edu
b!Operated for the United States DOE under Contract No. DE-AC04-
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Utah!, were prepared using a conventional ceramic
processing.20 Surface were polished with 300 grit SiC paper,
and then ultrasonically cleaned in acetone. Screen-printed
Ag electrodes (Q'9.5 mm) were applied; fully solid on the
rear side and a grid on the other side. Interconnected stripe
electrodes were 300mm wide, and 300mm apart~see Fig. 1!.
Samples were fired at 780 °C30.5 h to improve the elec-
trode adhesion, and then were glued onto a 9.5-mm-diam
copper rod using silver paste. The copper ground connection
on the grid electrode side was also electrically attached with
silver paste. Samples were heat treated in a furnace at 200 °C
for 12 h to eliminate any outgassing of the silver paste. This
step is important, as any residual gas in the paste will induce
a strong discharge.

Figure 2 shows a schematic diagram of the experimental
setup. Ferroelectric samples were set in the vacuum chamber
with the grid electrode side facing the electron collector~a
flat Pt foil!. The collector area was at least 1.5 times larger
than the emission area. The distance between the sample and
electron collector was set at'4 or 5 mm. The electron col-
lector can be either kept at the same potential as grid elec-
trode ~i.e., no extraction potential between ferroelectric ma-

terial and collector!, or a positive or negative potential up to
1500 V can be applied. Driving pulses were input to the rear
electrode of sample, while the grid electrode was kept at the
ground state. The pulse generator is comprised of one fast
high voltage switch~HTS 31-GSM, Eurotek Inc. NJ!, two dc
power supplies~APH2000M, KEPCC Co., NY!, and one
pulse function generator~Model 81, Wavetek Co., CA!. This
combination can generate high voltage (<3 kV), unipolar or
bipolar pulses with a fast rise time (<300 ns/3 kV) and ad-
justable pulse width (>200 ns). In order to minimize elec-
trical noise, all connector cables were shielded and runs
made as short as possible.

A cable with a 50V impedance was soldered on the
electron collector and connected to a measurement circuit.
Collected emission electrons flow through a 50V resistor; a
digital real time oscilloscope~TDS 380, Tektronix Co., OR!
with 400 MHz bandwidth was used to measure the voltage
drop. The charging and switching current was measured us-
ing a current probe~TM 502A, Tektronix Co., OR! with 50
MHz bandwidth. All studies were performed in a vacuum of
1026– 1028 Torr.

Hysteresis loops of samples with grid electrodes were
measured using a ferroelectric material testing system
~RT6000, Radiant Technologies, Inc., NM!. The capacitance
of samples were'1.1 nF. Samples were prepoled prior to
emission studies by applying a dc electric field of 31 kV/cm
with the negative polarity on the grid electrode at room tem-
perature in the vacuum chamber for 2 h.

III. RESULTS AND DISCUSSION

The switching characteristics at a ferroelectric can be
partially evaluated from the hysteretic behavior. Figure 3 ex-
hibits the hysteresis loop for the PZT sample. This is classic
‘‘pinched loop’’ behavior, indicative of the ‘‘hardness’’ of
the PZT. That is, at room temperature, the strain energy of
90° domain reversal cannot be totally overcome, hence satu-
ration of the loop is not achieved for even a bias field of 45
kV/cm, and the remanent polarizationPr is low. In this case
Pr'4 mC/cm2.

FIG. 1. Ferroelectric emitter surface pattern showing grid electrode with
Q'9 mm and grid width'300mm.

FIG. 2. Schematic diagram of the experimental setup.Rs535– 100V, CB

510– 20 nF.

FIG. 3. Hysteresis loop of PZT EC-64 with grid electrodes at room tem-
perature.
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Typical emission results with only a negative driving
pulse applied to the sample and without an extraction poten-
tial on the electron collector are shown in Figs. 4~a! and 4~b!.
One should note that these results are different compared to
the results of other groups who reported true ferroelectric
emission1,4,5,6,11,16,18or plasma emission.13–15 Most studies
have shown only one emission peak per driving pulse. How-
ever, our results showed two clearly distinguishable emission
peaks per driving pulse. Peak 2 always occurred anywhere
from 200 to 500 ns after peak 1, and always had a higher
amplitude than peak 1. Peak 2 also varied in magnitude
~0.2–1 A! during repeated measurements. Comparatively,
the position of peak 1 was relatively stable, i.e., almost no
delay time. Note that Figs. 4~a! and 4~b! are two consecutive
recordings.

Initially these emission results were interpreted as true
ferroelectric emission, as the basic conditions of ferroelectric
emission were met, such as a negative and relatively fast
driving pulse with short pulse duration, and no extraction
potential on the electron collector. Thus according to the
principle of the true ferroelectric emission, no emission peak
should be exhibited if only a positive driving pulse is applied
to the rear electrode of the sample: the positive charge of the

dipoles will orient to the grid electrode side of the sample,
representing an attractive rather than repulsive electrostatic
force on electrons present on the ferroelectric surface. Nev-
ertheless, Fig. 5 shows the results under positive pulse con-
ditions; one strong emission peak was still observed, and the
peak amplitude and time position were unstable.

Comparing the peak position of Figs. 4 and 5, it is clear
that emission peak 2 in Fig. 4 is still present. Both emission
peaks have an apparent delay time~200 ns–500 ns! from the
full amplitude of the applied pulse. This apparent delay time,
insensitivity to driving pulse polarity, and instability are
characteristics of plasma emission.

A plasma has a typical expansion velocity of'2 cm/ms
in a vacuum,13,21 which does not have a strong dependence
upon the cathode material. Thus, provided that the plasma
forms on the sample surface when the driving pulse reaches
its maximum, then the delay time to the collector can be
calculated. In this experiment, the distance between the
sample and electron collector was'5 mm, which corre-
sponds to a transit time of'250 ns. This calculated delay
time matches Figs. 4 and 5 quite well.

The observed inconsistency is a common and important
characteristic of a plasma. The behavior of plasma is gov-
erned by collective effects due to electromagnetic interaction
among the charged particles and the particle’s instability de-
termines the plasma inconsistency in terms of uncertainty of
state and motion. Many mechanisms can produce the incon-
sistency of a plasma, such as collision induced instability,
ionization instability, rotation induced instability, and pres-
sure driven instability etc.22 Any of these instabilities will
change the local charge density, local charge expansion ve-
locity etc., which in turn leads to the inconsistency of the
time position and amplitude of the current emission peak.

A plasma is usually defined as an ionized gas in a state
of electrical ‘‘quasineutrality.’’ However, charge excess
plasmas also exist, in which there is an excess in the number
per unit volume of the positive or negative particles~ion or
electron excess plasma!.22,23 No matter which case, positive
ions exist in a plasma. Thus, in order to confirm the presence
of plasma emission, a strong negative extraction field
(22.5 kV/cm) was applied to the electron collector to see if
a positive peak could be detected. Figure 6 is a typical result.
The detected positive peak can only be due to the collection

FIG. 4. Typical emission current traces when a negative driving pulse is
applied to the sample and with no extraction potential on the collector~two
consecutive recordings!.

FIG. 5. The emission current trace when a positive driving pulse is applied.
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of ions. The maximum of the broad positive peak is delayed
'350 ns from the driving pulse, which matches that of peak
2 in Fig. 4. However, the positive emission current and
charge are much stronger than the electron emission shown
in Fig. 4, which is due to the applied high extraction field to
the collector in this experiment. These results suggest a con-
clusion that peak 2 of the emission process shown in Fig. 4 is
due to plasma emission.

The plasma was most likely induced from the metal-
dielectric-vacuum triple gaps at the edge of Ag grid elec-
trode. The scanning electron microscopy~SEM! micrograph
shown in Fig. 7 of a sample polished cross section prior to
emission shows the presence of small gaps that are microns
in size. These gaps are due to imperfect adhesion between
electrode and ceramic, especially at the edge of the electrode.
The enhancement of the electric field in these gaps,Eg , is
given by:13,15,24

Eg'KEa , ~1!

whereK is the dielectric constant of material andEa is the
driving electric field.

Since the dielectric constant for PZT EC-64 is'1300
~25 °C, 1 kHz!, and Ea'31 kV/cm, soEg543109 V/m.

Under this high electric field, classic field electron emission
from the triple points will undoubtedly occur. This is known
as ‘‘prebreakdown’’ field emission if the gap is seen as a
classical diode. The Ag grid electrode and ceramic surface
serve as a cathode or anode, respectively, depending on the
polarity of the driving field. The breakdown of this gap can
be either cathode or anode initiated. The Ag electrode plays
a critical role because of its low melting point. When a posi-
tive field is applied, the Ag electrode served as a cathode, the
field emission current flowing through a point on the elec-
trode causes it to heat up. Subsequently it melts and vapor-
izes, thus in the end leading to breakdown.

When a negative field is applied, the grid electrode
serves as an anode. Yet breakdown can also be initiated by
electrons accelerated across the vacuum gap which impact on
a section of the Ag surface, causing it to heat and vaporize.
These effects are the reason that the observed plasma emis-
sion was not sensitive to the driving field polarity. As vapor
fills the gap, ions form and electron avalanche occurs, con-
sequently the gap conductance increases and the discharge
changes into an arc.

Other evidence of this kind of plasma formation was
found from SEM micrographs of the emission surface.25

However, plasma formation on the emission surface might
be much more complicated than we have hypothesized.
Other possible sources for plasma formation is the locally
high electric fields associated with different domain orienta-
tions near the surface. With the existing experimental sys-
tem, alternate mechanisms such as this could not be ex-
plored.

However, the position and amplitude of emission peak 1
in Fig. 4 are clearly quite different with that of emission peak
2. The position and amplitude of peak 1 are relatively steady.
Thus, it is certain that peak 1 corresponds to a different emis-
sion mode. When the driving pulse frequency was increased
above 200 Hz, peak 2 in Fig. 4 totally disappeared, and only
peak 1 appeared~Fig. 8!. Kofoid24 also observed that plasma
emission was more likely to occur at low frequencies. How-
ever, the reason is not clear. Increasing the frequency of the
driving pulse also decreased the width of the emission peak,
although the integrated current density was greater.

The same negative field (22.5 kV/cm) was applied to

FIG. 6. The detected ion current when21000 V is applied to the electron
collector.

FIG. 7. SEM micrograph of sample polished cross section showing the
triple gaps between the ceramic and the grid electrode.

FIG. 8. A typical emission current trace for a 250 Hz driving pulse without
extraction field.
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the electron collector to see if the emission at 250 Hz con-
tained a positive ion current. The results, shown in Fig. 9,
yielded just electromagnetic noise, i.e., no positive ions were
detected. Note that the electromagnetic noise was also ob-
served in the other experiments of Figs. 4–6 and 8, however,
the noise level is lower, as no field was biased on the collec-
tor ~for Figs. 4–6!, and the noise could also be suppressed by
the emission signal. The noise exhibits some periodicity,
with a frequency of 6 MHz. This noise may be due to piezo-
electric ‘‘ringing.’’ For this sample, the fundamental thick-
ness mode resonance would occur at'3 MHz ~calculated by
Nt /d; Nt : frequency constant'2026 Hz m, d: sample
thickness'6.431024 m.! The absence of a negative peak is
due to the strong negative potential on electron collector
which repels the emission electrons, and from which the en-
ergy of emission electron is predicted to be under 1000 eV.
From this result, we conclude that the emission peak 1 in
Fig. 4 corresponds to true ferroelectric emission.

More direct evidence was obtained by measuring the
charging current~due to the sample capacitance! and switch-
ing current~due to the polarization or domain switching!, as

well as the emission current simultaneously as shown in Fig.
10. The inversion ‘‘double hump’’ recorded in channel 1
mostly represents charging current, as ferroelectrics initially
behave like a linear dielectric~i.e., simple capacitor!. How-
ever due to the relatively large RC time, the charging current
and the switching current overlap. The switching current is
always late to charging current, as domain or polarization
switching is relatively slower than the ionic and electronic
polarization, and only occurs when driving field reaches the
threshold values. From the integrated current, the total
charge of this inversion double hump peak is 2.88mC, while
the charge necessary to load the linear dielectric part of the
sample to 2000 V~driving voltage! is 1.98 mC ~calculated
from Q5C3V!. So the excess charge 2.8821.98
50.90mC is due to the polarization switching. The second
peak, which also represents the switching current, corre-
sponds to 0.5mC, thus the total switching charge under this
circumstance is'1.4mC ('2.54mC/cm2, calculated from
the electrode area'0.55cm2!. This corresponds to switching
'10% of the total polarization~Pm'25mC/cm2 from Fig.
3!. The switching process lasts'150 ns, then cuts off by the
discharging peak. The time corresponding relationship be-
tween the switching current and emission current peak 1
gives a strong evidence that the emission peak 1 is induced
by the dipolar or domain switching in the sample. There is a
'40 ns delay between the maximum of the switching peak
and the emission peak 1. Note, no switching peak corre-
sponds to emission peak 2.

From these results, we conclude that the emission cur-
rent peak 1 is due to the true ferroelectric emission, as it
satisfies three main criteria:~1! self-emission~no extraction
field applied to electron collector!,1,17 ~2! no ion current
detected,19 and ~3! corresponds to the domain switching.4,17

From the integrated emission current peak 1 in Fig. 10, it
turns out that just 4 nC was emitted, which corresponds to
only 0.3% of the switched charge ('1.4mC). This low FE
efficiency is probably due to the slow rise time of the driving
pulse ('2000 V/200 ns), thus some charges can flow away
through the surface or bulk of the sample. Also some charges
are probably captured by the plasma and thus contribute to
the plasma emission peak. Again note that the plasma emis-
sion current was much higher than FE emission current in
either Fig. 4 or 10. Another reason for the low FE current is
the inherent hardness of PZT EC-64. The hysteresis loop
shown in Fig. 3 reflects that it cannot be saturated even for a
driving field as high as 45 kV/cm. For most of the emission
experiments, the applied field was'31 kV/cm, thus the do-
main switching percentage was quite low, as confirmed from
the switching current plot~Fig. 10!. Thus the repulsive elec-
trostatic force induced on the ferroelectric surface will also
be low.

The observed fact that almost no delay time exists for
emission peak 1 can be explained as follows:26 Miller et al.8

calculated that for BaTiO3 single crystal the repulsive field
strengthE on the surface layer due to polarization switching
would range from 33108 to 109 V/m. This calculation was
based on the hypothetical existence of a low dielectric con-
stant (K'10– 100) surface layer and full polarization
switching. Although for PZT and PLZT materials the exis-

FIG. 9. A typical emission result for a high frequency~250 Hz! driving
pulse with21000 V applied to the electron collector.

FIG. 10. The time corresponding relationship between switching and emis-
sion current with a22000 V driving pulse applied to sample and without an
extraction potential on the collector.
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tence of this surface layer has not yet been proven,27 due to
the many similarities to BaTiO3

28 it is reasonable to assume
that the result of Milleret al. also fits the PZT case. How-
ever, in this experiment, only 10% of the spontaneous polar-
ization (2.54mC/cm2) was switched. Thus, it is more rea-
sonable to decrease the field strength to 10%. Hence,E
would be 33107 V/m.

Provided that the electrons are located on the surface,
then the force on an electron would be:

F5eE54.8310212 CV/m ~2!

then the acceleration of electrons would be:

ax5
F

m
55.331018 CV/mk g ~3!

so:

Z5V0t1
1

2
axt

2, ~4!

where Z is the distance between the emission surface and
collector (531023 m), V0 is the initial electron velocity
(50 m/s), andt is the transit time for an electron to travel
from the emission surface to collector. From the above equa-
tion, t is calculated to be 0.04 ns. So the delay time for
ferroelectric emission should be very short. The major frac-
tion of the delay time would mainly be determined by the
repulsive field build up time, which is related to domain
switching dynamics, from Fig. 10, it is'40 ns.

From Eq.~1!, we know that the electric fieldEg in the
triple gaps of PZT EC-64 is'109 V/m. Under this high
field, classic field emission occurs, i.e., electrons from the
lattice overcome the high surface potential, which then leads
to plasma emission. Comparatively the electric field on the
ferroelectric surface induced by fast polarization switching is
'107 V/m. Although it is two orders of magnitude lower
than Eg , it is not unreasonable to expect that mixed mode
emission occurs. Since ferroelectric emission has a different
emission mechanism, i.e., self-emission, and the emitted
electrons are thought to originate from the surface or right
below the surface, it is likely that only a very low surface
potential needs to be overcome. This might be the reason that
both true ferroelectric emission and plasma emission are ob-
served simultaneously in this experiment. However, one
should note again that the strong plasma emission described
in Refs. 13, 15, and 24, a high positive extraction field was
applied to the electron collector. In our experiments~Figs. 4
and 10! no extraction field was applied. Thus this lowered
the plasma electron emission current density.

There is still no direct experimental evidence showing
that the electrons are emitted from the bare surface of the
ferroelectric during ferroelectric emission. However, SEM
micrographs of the emission surface before and after emis-
sion studies show evidence of microstructural changes on the
bare ferroelectric surface.25

IV. CONCLUSIONS

Electron emission from PZT studied under our experi-
mental techniques is a mixed type electron emission process,
i.e., both true ferroelectric emission and plasma emission ex-
isted simultaneously.

Plasma emission and ferroelectric emission have quite
different emission characteristics. For plasma emission, in-
consistency and an apparent delay time between electron
emission and driving pulse are typical. In addition, a positive
ion current was observed. Strong electrode erosion could be
expected. Comparatively, ferroelectric emission is a rela-
tively stable self-emission process, and exhibits no apparent
delay time. No positive ion current existed.

The relationship between switching and emission current
of ferroelectric sample measured simultaneously gives a
clearer path to see if ferroelectric emission exists, and to
determine the emission efficiency and capability. Thus it can
give us the direction to find a suitable ferroelectric material
for emitter applications.
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