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A b s t r a c t
Images and video are often coded using block-based discrete cosine transform (DCT) or 
discrete wavelet transform (DWT) which cause a great deal of visual distortions. In this paper, 
an extension of the intra-scale dependencies of wavelet coefficients is proposed to improve 
denoising performance. This method incorporates information on neighbouring wavelet 
coefficients that are inside of manually created clusters. Extensive experimental results are 
given to demonstrate the strength of the proposed method.
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S t r e s z c z e n i e
Obrazy i nagrania wideo są często kodowane z użyciem blokowej dyskretnej transformacji ko-
sinusowej (DCT) lub dyskretnej transformacji falkowej (DWT), które powodują znaczne zakłó-
cenia wizualne. W niniejszej pracy proponuje się rozszerzenie zależności między współczynni-
kami falkowymi dotyczącymi skali w celu zmniejszenia zaszumienia sygnału zakodowanego. 
Zaproponowana metoda zakłada wykorzystanie informacji o sąsiadujących współczynnikach 
falkowych, które znajdują się wewnątrz manualnie utworzonego klastra. W artykule zaprezen-
towano obszerne wyniki doświadczalne w celu wykazania jakości proponowanej metody.
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1.  Artifacts in images

All the time, we need to obtain, process, and deliver information. This information is not 
just limited to text files or simple messages; nevertheless, various visual pieces of information 
can be transmitted including image and video files. However, transmission channels have 
limited bandwidth and storage devices hold limited capacity. Digital video is broadcasted 
and stored in an encoded form; therefore, it requires less information (bits) than the original. 
At low bit-rates, the coarse quantization exploited during compression results in visually 
annoying coding artifacts [1].

Compression artifacts are a particular class of data errors that are usually the consequence 
of quantization in loss-prone data compression. These distortions can be classified into 
the following types:

Blocking artifacts. This type of image distortion is the most visible degradation of all 
artifacts. This effect is caused by all block-based coding techniques. It is a well-known 
fact that all compression techniques divide the image into small blocks and then compress 
them separately. Due to the coarse quantization, the correlation among blocks is lost, and 
horizontal and vertical borders appear.

Ringing artifacts. The ringing effect is caused by the quantization or truncation of high 
frequency coefficients and can also come from improper image restoration operations. 
Ringing artifacts are visible for all compression techniques especially when the image 
is  transformed  into the frequency domain. Moreover, it appears as distortion along sharp 
edges  in the image. This artifact occurs very often when the DWT encoder is used. 
Furthermore, it may be observed after the image has been de-coded using a frequency coder.

Blur effect. Blurring is another artifact resulting from the absence of high frequencies 
in low bit rate video. It appears around sharp edges, and all image details become blurred. 
This effect is very similar to the ringing artifact, and sometimes it is hard to distinguish 
between them.

Different techniques may be used to reduce the most annoying artifacts and all of 
these techniques can be divided by filtering domain (spatial, frequency). Different authors 
provide  versatile methods of image quality improvements and sometimes, the most 
challenging task is to choose the necessary technique. Spatial algorithms modify image 
pixel values. These approaches are usually used together with edge detection algorithms 
to prevent the blurring effect, many classical image denoising methods are based on a local 
average. The restored value at a pixel is obtained as an average of its neighboring pixels. 
The most classical algorithm is Gaussian filtering. In this case, the restored value is obtained 
as a weighted average where the weight of each pixel depends on the distance to a restored 
one – this low pass filter tends to blur the image. The neighborhood filters avoid the blurring 
effect by restricting the average to pixels having a similar grey level value. The idea is that 
grey level values inside a homogeneous region slightly fluctuate while pixels belonging to 
different regions have a larger grey level difference. The neighborhood filter takes an average 
of the values of pixels which are simultaneously close in their grey level values and spatial 
distance. The most encouraging results can be obtained using the NLM approach  [2]. 
Efficiency of this algorithm is proven in many different areas and this algorithm tries to take 
advantage of the redundancy and self-similarity of the image. The NLM algorithm estimates 
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the value of x as an average of the values of all the pixels. The probability that one pixel 
is similar to the other is determined by looking at the difference in the luminance value and 
the difference in position between two pixels in the neighbourhood filters. 

Another direction of image restoration is using wavelet based techniques.
The multi-resolution analysis performed by the WT has been shown to be a powerful 

tool in order to achieve good denoising. In the wavelet domain, the noise is uniformly spread 
throughout the coefficients, while most of the image information is concentrated in the few 
largest coefficients (sparsity of the wavelet representation).

The most straightforward way of distinguishing information from noise in the wavelet 
domain consists of thresholding the wavelet coefficients [3–5]. Using a soft-thresholding filter 
is the most popular strategy and has been theoretically justified by Donoho and Johnstone [6]. 
They propose a three steps denoising algorithm:

1)	 the computation of the forward WT,
2)	 the filtering of the wavelet coefficients,
3)	 the computation of the IWT of the result obtained.
They use the discrete wavelet transform (DWT) and the soft-thresholding filter. Because 

it is not made any explicit hypothesis on the noise-free image, it results in a non-parametric 
method.

In this article, an efficient algorithm based on adaptive thresholding and wavelet 
coefficients dependencies for image denoising is presented. The proposed algorithm can 
effectively reduce noise in static images. The experimental results show that the proposed 
approach significantly outperforms the BiShrink, Neigh Shrink and Block Shrink approaches. 
Evaluations have been performed on different images and with different noise levels.

2.  Existing approaches for image denoising

In modern digital systems and video broadcast chains, image compression is applied 
to reduce bandwidth or storage size. Post-processing of the decoded image sequence is an 
acceptable technique to achieve a better perceived picture quality [10]. Furthermore, modern 
consumer vision products like televisions and PCs use image enhancement and restoration 
techniques to improve the objective and subjective picture quality. All postprocessing 
algorithms and methods can be divided into the following types [1]:

–	 spatial filtering,
–	 filtering in the frequency/wavelet domain,
–	 temporal filtering,
–	 hybrid algorithms (mainly combines spatial and frequency filtering).
Many approaches have been proposed in the literature aiming at the alleviation of artifacts 

in the images. As a great number of algorithms have been developed in recent times, it would 
be rational to overview these approaches which threshold the wavelet detail coefficients for 
two-dimensional (2-D) signals. An overview of spatial techniques has been conducted in our 
previous work [7].

Frequency algorithms transform images to frequency domains and modify DCT (discrete 
cosine transform) or DWT (discrete wavelet transform) coefficients.
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The effect of averaging the spatially closest pixels can also be achieved in the Fourier 
or wavelet domain. The average of the spatially closest pixels is then equivalent to the 
cancellation of the high frequencies. As the analogous spatial filter, this cancellation 
leads to  the blurring of the image and a Gibbs effect. The optimal filter in the Fourier 
domain is  the Wiener filter – this does not cancel the high frequencies but attenuates all  
of them.

In the wavelet domain, the noise is uniformly spread throughout the coefficients, while 
most of the image information is concentrated in the few largest coefficients (sparsity of the 
wavelet representation).

Consequently, regarding the three steps denoising algorithm, there are two tools to be 
chosen: the WT (wavelet transform) and the filter. In [8] the UDWT (undecimated discrete 
wavelet transform) is used, in [9] the DTCWT (dual tree complex wavelet transforms), 
and in [10] the DWT. 

From the first category, we can mention: the hard-thresholding filter that minimizes 
the  min-max estimation error and the efficient SURE-based inter-scales point-wise 
thresholding filter  [10], which minimizes the mean square error (MSE). To the second 
category belong filters obtained by minimizing a Bayesian risk under a cost function, 
typically a delta cost function (MAP estimation [11]) or the minimum mean squared error 
[8]. The denoising algorithms proposed in [10] exploit the inter-scale dependence of wavelet 
coefficients. The method proposed in [8] also takes into account the intra-scale dependence 
of wavelet coefficients. The statistical distribution of the wavelet coefficients changes from 
scale to scale. The coefficients of the WT have a heavy tailed distribution.

2.1.  Image filtering using wavelet thresholding

The wavelet denoising methods filter each coefficient from the detail sub-bands with 
a  threshold function to obtain modified coefficients. The denoised estimated by inverse 
wavelet transform of the modified coefficients. Here, the threshold plays an important role 
in the denoising process. There are two thresholding functions frequently used. The soft- 
-threshold function (also called the shrinkage function):
	 soft d sign d d( , ) ( )*[| | ]λ λ= − + 	 (1)

takes the argument and shrinks it towards zero by the threshold T. The other alternative is the 
hard-thresholding function:
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which keeps the input if this input is larger than the threshold; otherwise, it is set to zero. 
The  wavelet thresholding procedure removes noise by only thresholding the wavelet 
coefficients of the detail sub-bands, while keeping the low resolution coefficients unaltered.

Hard thresholding keeps existing coefficients whereas soft thresholding shrinks the 
coefficients above the threshold in absolute value.

More frequently, it’s started to use adaptive threshold. Our proposed denoising method 
also uses such a type of thresholding (Fig. 2).
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The adaptive thresholding doesn’t modify wavelet coefficients that have high 
magnitudes (this is a drawback of soft thresholding) and doesn’t have disruptions of wavelet 
coefficients close to T (this is a drawback of hard thresholding).

2.2.  Wavelet dependencies and shrinkages types

In general, four types of wavelet coefficient dependencies can be considered. This is 
illustrated in Fig. 3:

c)	 Intra-scale and intra-band dependencies,
d)	 Inter-scale and inter-band dependencies,
e)	 Inter-band and intra-scale dependencies,
f)	 Inter-scale and intra-band dependencies.
The most frequently used de-nosing methods use only two types of dependencies: 

intra-scale and intra-band, and inter-scale and intra-band dependencies. The wavelet 
coefficients that represent the image also have large magnitudes at these scales, locations 
and orientations (d). However, the signs and relative magnitudes of these coefficients will 
depend on the exact shape, location and orientation of the structure they represent. The inter- 
-scale dependencies indicate that if a parent coefficient is large, then its child coefficient 
is  also large. However, currently there are no strict correlations between parent/child 

Fig.  1.  Thresholding functions: a) soft threshold, b) hard threshold

Fig.  2.   Adaptive thresholding function
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wavelet  coefficients [11]. It’s    possible to indicate such a type of dependencies but only 
between two consecutive scales.

The method that uses inter-scale dependencies is called bivariate shrinkage [11]. 
The bivariate shrinkage function can be interpreted as follows:
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where y1, y2 – noisy coefficients in the scale 1 and 2. s is defined as marginal variance. 
This estimator requires prior knowledge of the noise variance sn. In order to estimate noise 
variance, a robust median estimator is used from the finest scale wavelet coefficients [12].
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And marginal variance is defined as:
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Another method that uses intra-scale dependencies is called Neigh Shrink [13]. 
The shrunken wavelet coefficient according to the neigh shrink is given by this formula:

	 w wi j i j i j, , ,= β 	 (7)

where wi,j – noisy wavelet coefficient; wi j,  – denoised wavelet coefficient; the shrinkage 
factor bi,j can be defined as:

	 βi j UNI i jT S, ,( / )= − +1 2 2 	 (8)

Fig.  3.  Wavelet coefficient’s dependencies
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There, the + sign at the end of the formula means to keep the positive value while set it to 
zero when it is negative and TUNI is the universal threshold, which is defined as:

	 T N= 2σ ln( ) 	 (9)

And Si j,
2  is a summation of the wavelet coefficients in the neighbouring window centered 

at the wavelet coefficient to be shrunk (Fig. 4):

	 S wi j k l
Bi j

, ,
,

=
∈
∑ 2 	 (10)

Another method that uses the SURE optimization technique (that minimizes the mean 

square error) is a block shrink. Suppose w = {wi,  i =1, 2, …, d} and S wB k l
Bi j

2 2=
∈
∑ ,
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2

 
is less than or equal to the threshold λ, then within the b block, the wavelet coefficient wi is 
set to zero. Otherwise, wavelet coefficient is shrunk according to (7). The optimal threshold 
λ and block size L are derived by minimizing Stein’s unbiased risk estimate (SURE) [14]:
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m = d/L is the number of blocks.

Fig.  4.  Wavelet coefficients of neighbouring window
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3.  Image denoising using SURE minimization and clustering of wavelet coefficients

The proposed method of wavelet shrinkage uses adaptive wavelet thresholding. In order 
to find a better threshold, the proposed approach uses SURE minimization and intra-scale 
and intra-band dependencies of wavelet coefficients. The general flow chart of the proposed 
wavelet shrinkage algorithm for noise reduction is depicted in Fig. 5. The main idea is that 
the signal is transformed using DWT to the wavelet domain and thereafter LH, HL, and HH 
sub bands are processed. The wavelet coefficients processing consists of the following steps:

–	 clustering; clusters are created from wavelet coefficients (all details are described 
in section 3.1),

–	 determining the threshold parameter for each cluster type (details are in section 3.2),
–	 thresholding (details in section 3.3).
After this processing, wavelet coefficients are again transformed to the original format.

Fig.  5.  Flow chart of the proposed wavelet shrinkage algorithm for noise reduction
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3.1.  Wavelet coefficients clustering

It has been determined that better results of image denoising can be obtained after 
clustering of the wavelet coefficients (coefficients need to be clustered in the LH, HL, HH). 
Better results can be received when cluster satisfies the following requirements:

–	 the absolute average value of wavelet coefficients shouldn’t be much greater than the 
wavelet coefficient to be shrunk,

–	 denoising provides better results when a cluster contains more than 6–12 wavelet 
coefficients,

–	 if wavelet coefficients in the cluster have a greater value, the obtained results should 
be better.

Thus, the proposed method uses the following clusters (Fig. 6).

Practically greater blocks are used: 6x6 and 7×7 blocks; therefore, the amount of different 
cluster types are greater than is displayed on Fig. 6.

Let wo be the estimator of the unknown nosiness coefficient. Each cluster is created for the 
purpose of thresholding each noisy coefficient wi,j:
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where Ax,y cluster that is found from wavelet coefficients that have maximum value in the 
block Bi,j, wi,j – wavelet coefficients that belong to block Bi,j.

Additional weights are added to the clusters that have more than 4 × 3 = 12 wavelet 
coefficients:

Fig.  6.  Wavelet clusters that are formed from 5×5 blocks
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where:
Acl	 –	 a square average of wavelet coefficient inside cluster Ax,y,
1.3	 –	 determined experimentally (using a database with images).

As is mentioned, additional weight is added to the cluster that contains wavelet coefficients 
with a similar value to the shrunken wavelet coefficient:
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,
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3.2.  Determine the better threshold parameter

The next step is to choose an appropriate threshold value. Different wavelet coefficients 
are shrunken differently with different threshold values that are found for different cluster 
types. The optimal l and L of every sub band should be data-driven and minimize the mean 
squared error (MSE) or Steins risk of the corresponding sub band and for specified cluster 
type (Stein proved that MSE can be found unbiasedly for a given noise level. For these 
purposes, a robust median estimator can be used).

In the proposed algorithm, the optimal threshold l for each cluster type are derived by 
minimizing Stein’s unbiased risk estimate:

	 SURE w L N g w
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where:
L	 –	 cluster type (Fig. 6),
l	 –	 threshold,
Ns	 –	 a noisy coefficient.
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where Sn is the summation of wavelet coefficients in the cluster L; and 
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3.3.  Thresholding

Thresholding is conducted in a similar manner as to how it’s performed in the Neigh 
shrink method [13]. The wavelet coefficients are shrunken according to the Neigh shrink 
using this formula:
	 w wi j i j i j, , ,= β 	 (20)

where:
wi,j	 –	 noisy wavelet coefficient,
wi j, 	 –	 denoised wavelet coefficient,

the shrinkage factor bi,j for specified cluster types is defined as:

	 βi j UNI i jT S, ,( / )= − +1 2 2 	 (21)

and Si j,
2  is a summation of the wavelet coefficients in the cluster centered at the wavelet 

coefficient to be shrunk:

	 S wi j k l
Bi j

, ,
,

=
∈
∑ 2 	 (22)

4.  Results

In this section, an objective analysis of the proposed wavelet shrinkage algorithm with 
an adaptive thresholding is evaluated. We have experimented with various noisy images and 
report the results for the three 512×512 standard test images: Lena, Barbara and Mandrill 
(Fig.  6). The DWT is used with a symlet wavelet with eight vanishing moments with 
four scales. They are contaminated with Gaussian random noise with standard deviations 
of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. In practice, the noise standard deviation is 
unknown and during experiments, it’s initially estimated using (4). Our results are measured 
by the PSNR in decibels (dB) and MSE.

Our method was compared with BiShrink that uses inter-scale intra-band and intra- 
scale intra-band wavelet coefficients dependencies. In addition, we compared our method 

Fig.  7.  Comparison of the PSNR and MSE for the Barbara image on different noise levels
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with the Neigh shrink, according to paper [15], this method produces the most promising 
results.  In  comparison to other methods, the Block shrink (only this method is based on 
SURE) also produced quite good results. The comparison charts for the Mandrill image 
is depicted on Fig. 7.

Extensive results are described in the Table 1 (‘*’ indicates the best result among all four 
denoising methods).

T a b l e  1
Comparison of PSNR and MSE for different wavelet methods

Image Sigma
Proposed BiShrink Block_shrink Neigh_shrink

PSNR MSE PSNR MSE PSNR MSE PSNR MSE

M
an

dr
ill

10 32.842* 33.796* 32.140 39.729 31.594 45.048 32.714 34.809

20 29.000* 81.847* 28.253 97.222 27.695 110.556 28.758 86.555

30 26.903* 132.657* 26.159 157.455 25.919 166.399 26.498 145.648

40 25.519* 182.483* 24.786 215.991 24.798 215.399 24.933 208.827

50 24.514* 229.980* 23.828 269.321 23.995 259.183 23.759 273.622

60 23.740* 274.808* 23.179 312.725 23.392 297.763 22.830 338.938

70 23.119* 317.085* 22.691 349.942 22.914 332.384 22.062 404.434

80 22.633* 354.600* 22.296 383.272 22.517 364.228 21.396 471.456

90 22.174* 394.161* 21.942 415.816 22.166 394.884 20.802 540.652

100 21.813 428.316 21.629 446.896 21.828* 426.83* 20.261 612.364

B
ar

ba
ra

10 32.842* 33.796* 32.140 39.729 31.594 45.047 32.713 34.809

20 29.001* 81.847* 28.253 97.222 27.695 110.556 28.757 86.555

30 26.904* 132.657* 26.159 157.455 25.919 166.399 26.497 145.647

40 25.519* 182.483* 24.786 215.991 24.798 215.398 24.932 208.827

50 24.514* 229.980* 23.828 269.320 23.994 259.182 23.759 273.621

60 23.741* 274.808* 23.179 312.724 23.392 297.762 22.829 338.937

70 23.12* 317.085* 22.691 349.942 22.914 332.383 22.062 404.434

80 22.633* 354.600* 22.296 383.271 22.517 364.228 21.396 471.455

90 22.174* 394.161* 21.942 415.816 22.166 394.884 20.801 540.651

100 21.813 428.316 21.628 446.896 21.828* 426.83* 20.260 612.363
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Le
na

10 34.610* 22.493* 34.322 24.033 33.821 26.97 34.533 22.894

20 31.380* 47.328* 31.126 50.171 30.720 55.085 31.083 50.666

30 29.524* 72.559* 29.370 75.171 29.152 79.046 28.895 83.849

40 28.219* 97.984* 28.106 100.562 28.042 102.050 27.274 121.783

50 27.231* 123.025* 27.141 125.597 27.166 124.851 25.989 163.714

60 26.46*0 146.908* 26.407 148.704 26.431 147.883 24.924 209.258

70 25.807* 170.764* 25.779 171.840 25.802 170.922 24.004 258.622

80 25.238 194.666 25.114 200.276 25.255* 193.902* 23.171 313.249

90 24.733 218.680 24.730 218.809 24.777* 216.442* 22.430 371.585

100 24.29 242.313 24.235 245.215 24.346* 239.009* 21.750 434.541

As described in Table 1, the proposed method provides better results from among all 
mentioned denoising methods. Results are especially better for images with high texture 
details. In comparison to Neigh Shrink, the difference is more than 3 db when the amount 
of noise is high. However, for images with fewer textures block shrink also provides quite 
good results and when the amount of noise is high, these results are even slightly better than 
in the proposed method. 

5.  Conclusions

The presented method demonstrated that the adaptive wavelet thresholding method for 
image denoising using SURE minimization and clustering of wavelets provides significant 
improvement in comparison to the existing image denoising methods. In order to show 
the effectiveness of the new algorithm, several examples are presented and compared with 
effective techniques in the literature. The objective analysis demonstrated that the proposed 
method significantly outperforms the BiShrink, Neigh shrink and block shrink approaches. 
Evaluations have been performed on different images and with different noise levels. Results 
are especially better for images with high texture details. However, for images with fewer 
textures, block shrink also provides quite good results and when the amount of noise is high, 
these results are even slightly better than in the proposed method.

This article demonstrated that the clustering of the wavelet coefficient might be beneficial 
and also provides a new direction for future research. This technique can especially be used 
altogether with other techniques which explore inter-scale dependencies or   can even be 
combined with other image denoising methods.
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