
Georgia Southern University
Digital Commons@Georgia Southern

University Honors Program Theses

2019

Quartic Metamaterials: The Inverse Method,
Perturbations, and Bulk Optical Neutrality
Thomas Mulkey
Georgia Southern University

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses

Part of the Optics Commons

This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia Southern. It has been accepted for inclusion in
University Honors Program Theses by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact
digitalcommons@georgiasouthern.edu.

Recommended Citation
Mulkey, Thomas, "Quartic Metamaterials: The Inverse Method, Perturbations, and Bulk Optical Neutrality" (2019). University Honors
Program Theses. 401.
https://digitalcommons.georgiasouthern.edu/honors-theses/401

https://digitalcommons.georgiasouthern.edu?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/honors-theses?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/honors-theses?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/honors-theses/401?utm_source=digitalcommons.georgiasouthern.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


 

 

Quartic Metamaterials: The Inverse Method, Perturbations, and Bulk Optical 

Neutrality 

 

An Honors Thesis submitted in partial fulfillment of the requirements for Honors in the 

Department of Physics. 

 

By 

Thomas Mulkey 

 

Under the mentorship of Dr. Maxim Durach 

 

ABSTRACT 

A primary goal of photonics is designing material structures that support predetermined 

electromagnetic field distributions. We have developed an inverse method to determine 

material parameters for a quartic metamaterial from six desired plane waves. This work 

inspired us to study how perturbations to the parameters can result in optical neutrality. 
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Introduction 

The main goal of photonics could be defined as designing material structures that support 

desired electromagnetic field distributions. Consider a monochromatic optical field with 

frequency 𝜔 whose electric and magnetic fields are given by vector functions 𝑬(𝒓) and 

𝑯(𝒓). Creating fields in a material is contingent on the condition that the plane waves 

composing these fields 

𝑬(𝒓) = ∫ 𝑬𝒌 𝑒𝑥𝑝[𝑖𝒌𝒓] 𝑑
3𝑟,        𝑯(𝑟) = ∫𝑯𝒌 𝑒𝑥𝑝[𝑖𝒌𝒓] 𝑑

3𝑟, 

are supported by the material. A particular electromagnetic plane wave is allowed if it 

follows Maxwell’s equations in k-space 

𝒌 × 𝑬𝒌 = 𝑘0𝑩𝒌 and 𝒌 × 𝑯𝒌 = −𝑘0𝑫𝒌,      (1) 

where 𝑘0 = 𝜔/𝑐 and vectors 𝑫𝒌 = 𝑬𝒌 + 4𝜋𝑷𝒌 and 𝑩𝒌 = 𝑯𝒌 + 4𝜋𝑴𝒌 contain 

information about material response via polarization 𝑷𝒌 and magnetization 𝑴𝒌 vectors. 

Conventional materials correspond to dispersive, local, and isotropic material relationships 

𝑫𝒌 = 𝜀(𝜔)𝑬𝒌 and 𝑩 = 𝜇(𝜔)𝑯 [1]. Here we consider the implications of the most general 

linear local material relationship that can be expressed as [2-7]: 

(𝑫𝒌
𝑩𝒌
) = �̂� (𝑬𝒌

𝑯𝒌
), �̂� = (

𝜖̂ �̂�
�̂� �̂�

), 
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where 𝜖̂, �̂�, �̂�, �̂� are 3x3 tensors characterizing dielectric permittivity, magnetic 

permeability and magnetoelectric coupling correspondingly. This includes 36 effective 

material parameters, which populate the 6x6 transformation matrix �̂� (see numerical 

example in Fig. 1(a)). Here we use a linear relationship between the pairs D, B and E, H 

(see Ref. [1]), but other equivalent choices could be considered more natural for the reasons 

of relativistic invariance, which we do not discuss here (see Ref. [7,8]). 

In this paper, we demonstrate that one needs to specify the k-vectors and 𝑬𝒌, 𝑯𝒌 amplitudes 

of 6 arbitrary plane waves (with some limitations specified below) to fully define the 

required 36 material parameters of the material that will support these waves and, 

correspondingly, all the other fields possible in the bulk of this material. Here we do not 

discuss the immediate availability with the current technology of the values of material 

parameters we obtain in our examples but provide a recipe to obtain the values of the 

parameters needed for the desired field distributions to inform and drive the future design 

of the corresponding metamaterials. The interest in metamaterials with extreme and 

unconventional properties [9], such as negative refraction, hyperbolic dispersion, optical 

magnetism, anisotropy, chirality, cloaking, supercoupling, non-reciprocity etc. is growing 

to feed the technological demands of the industries, marketplaces and security [10-11]. 

Usually one starts with a set of the effective material parameters for a material or 

metamaterial at hand and finds the possible electromagnetic fields in this material (the 

direct problem in Fig. 1). Maxwell’s equations (1) can be rewritten as �̂�Γ = �̂�Γ, with Γ =

(𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦 , 𝐻𝑧) and 
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�̂� = (
𝜖̂ �̂�
�̂� �̂�

) , �̂� = (0 −�̂�
�̂� 0

), �̂� =
1

𝑘0
(

0 −𝑘𝑧 𝑘𝑦
𝑘𝑧 0 −𝑘𝑥
−𝑘𝑦 𝑘𝑥 0

). 

This system has nontrivial solutions if its determinant of matrix ∆̂= �̂� − �̂� is zero 

𝐷𝑒𝑡(∆̂) = 𝐷𝑒𝑡 (𝜖̂ − (�̂� + �̂�)�̂�−1(�̂� − �̂�))𝐷𝑒𝑡(�̂�) 

= 𝐷𝑒𝑡 (�̂� − (�̂� − �̂�)𝜖̂−1(�̂� + �̂�))𝐷𝑒𝑡(𝜖̂) = 0.         (2) 

The determinant (2) is a multivariate quartic function 𝑓 = 𝑓(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧), i.e. it is a 

polynomial of degree 4. In other words, the k-vectors of the plane waves that satisfy 

Maxwell’s equations belong to a quartic surface 𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = 0 in k-space (see example 

in Fig. 1(b)) [3,12-16]. Each point on such a photonic quartic surface corresponds to a 

solution of Eq. (1), i.e. to a field vector Γ = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦, 𝐻𝑧). The quartic surfaces 

we considered correspond to the following equation 

∑ [𝛼𝑖𝑗𝑙𝑚𝑘𝑥
𝑖 𝑘𝑦
𝑗
𝑘𝑧
𝑙𝑘0
𝑚

𝑖+𝑗+𝑙+𝑚=4 ] = 0      (3) 

with 35 coefficients 𝛼𝑖𝑗𝑙𝑚. In the sum the powers i, j, l, m run from 0 to 4 such that 𝑖 + 𝑗 +

𝑙 + 𝑚 = 4.  

Mathematically, there is no complete classification or global picture of quartic surfaces. In 

the case of singular quartics, the essential properties of surfaces with nodes (or nodal 

curves) are discussed in Ref [17]. A special case of (mildly singular) quartic K3 surfaces 

correspond to Kummer varieties. These K3 surfaces have the property that they can be seen 

as the quotient of two tori by an involution having 16 fixed points. The relation between 

Kummer K3s and the optics of the studied materials has been discussed in Refs. [3,6]. 
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Smooth quartic surfaces are a classical example of K3 surfaces. Their fundamental group 

is trivial and their canonical class as well. Quartic K3 surfaces are parametrized by 19 

moduli (essentially, coefficients). K3 surfaces are very interesting as their properties 

combine geometric and arithmetic features [18]. Nevertheless, some families of smooth 

quartic surfaces, such as ruled quartics, have been studied and classified before [19]. 

 

Fig. 1. The direct and inverse problems of quartic photonics. (a) a numerical example of the effective material 

parameters matrix �̂�; (b) the corresponding quartic surface in k-space with 6 points selected for the inverse 

problem; vector amplitudes of the electric (red) and magnetic (blue) fields are shown for one of the points. 

The Inverse Problem 

The coefficients 𝛼𝑖𝑗𝑙𝑚 of the quartic surface Eq. (3) can be explicitly found from the 

material parameters using Eq. (2). But for the design of the metamaterials, it would be 

interesting to solve the inverse problem, i.e. to find the effective material parameters of the 

metamaterials that would support specific plane waves needed for the creation of desired 

field distributions. In general, the coefficients 𝛼𝑖𝑗𝑙𝑚 in Eq. (3) are complicated nonlinear 

functions of the material parameters which cannot be easily inverted to resolve the inverse 
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problem of finding material parameters starting from the desired shape of the quartic 

surface, even though this has been done in the simple cases which deal with the spherical 

k-surface [20,21], and k-surface composed of two shells [22,23]. In any case, the 

knowledge of all 𝛼𝑖𝑗𝑙𝑚 is not the full solution of the direct problem, since it does not contain 

the information about the field vectors Γ of the supported waves. Therefore, the coefficients 

𝛼𝑖𝑗𝑙𝑚 should not be the input information of the inverse problem. 

We formulate the inverse problem (see Fig. 1) as follows. Imagine one needs to create a 

metamaterial that propagates a set of desired plane waves whose k-vectors as well as the 

field vectors Γ = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦, 𝐻𝑧) are given. These plane waves should satisfy Eqs. 

(1) with the effective material parameters in the unknown matrix �̂�. Since we have 36 

unknown material parameters, we can specify characteristics of 6 plane waves to form a 

complete system of equations. 

We rewrite Eqs. (1) for the 6 desired waves simultaneously as a matrix equation �̂��̂� = �̂�, 

where  

�̂� =

(

 
 
 

𝐸𝑥1 𝐸𝑥2 𝐸𝑥3 𝐸𝑥4 𝐸𝑥5 𝐸𝑥6
𝐸𝑦1 𝐸𝑦2 𝐸𝑦3 𝐸𝑦4 𝐸𝑦5 𝐸𝑦6
𝐸𝑧1 𝐸𝑧2 𝐸𝑧3 𝐸𝑧4 𝐸𝑧5 𝐸𝑧6
𝐻𝑥1 𝐻𝑥2 𝐻𝑥3 𝐻𝑥4 𝐻𝑥5 𝐻𝑥6
𝐻𝑦1 𝐻𝑦2 𝐻𝑦3 𝐻𝑦4 𝐻𝑦5 𝐻𝑦6
𝐻𝑧1 𝐻𝑧2 𝐻𝑧3 𝐻𝑧4 𝐻𝑧5 𝐻𝑧6)

 
 
 

 

is the matrix whose columns are vectors Γ𝑖, while columns of matrix �̂� are vectors �̂�𝑖Γ𝑖, 

where i runs from 1 to 6. The antisymmetric matrix �̂�𝑖 is composed from the k-vector 

components, while Γ𝑖 from fields of the 6 desired waves. Now this system can be solved, 
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and the effective material parameters matrix can be found explicitly from the parameters 

of the 6 chosen waves 

�̂� = �̂��̂�−1     (4) 

Finding matrix �̂� with the unknown material parameters gives the solution to the problem 

of finding a metamaterial that supports a desired field distribution (i.e. the inverse problem 

in Fig. 1). 

Quasistatic High-K Limit 

Hyperbolic metamaterials, a class of “quadratic” metamaterials (i.e. their k-surfaces – or 

iso-frequency/Fresnel surfaces [24] - are described by quadratic equations), have generated 

huge interest, since they support high-k plane waves, a property which leads to diverging 

photonic density of states allowing spontaneous and thermal emission engineering [25-28]. 

In the quartic metamaterials Eqs. (2)-(3) may have asymptotic solutions with large 𝑘 =

√𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2 ≫ 𝑘0 as well. In this asymptotic limit only the 4th order terms with 𝑚 =

0 in Eq. (3) matter. 
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Fig. 2. Numerical example of asymptotic behavior. (a) asymptotic k-surface in (𝜑, 𝜃) coordinates (black) 

compared to 𝑘 = 100𝑘0 cross-section (red); green points are selected at this cross-section for effective 

material parameters retrieval; (b) the corresponding quartic surface in k-space with the same green points 

indicated with vector amplitudes of electric (red) and magnetic (blue) fields. Note that the fields are 

practically parallel to the k vectors as they should in the high-k quasistatic limit. 

When considering the asymptotic behaviour of a quartic k-surface, one can intersect the 

quartic surface with a sphere of radius k and look at the behavior in the limit 𝑘 ≫ 𝑘0. 

Consider a spherical coordinate system in k-space 𝑘𝑥 = 𝑘 sin 𝜃 sin𝜑, 𝑘𝑦 = 𝑘 sin 𝜃 cos𝜑, 

𝑘𝑧 = 𝑘 cos 𝜃. In this coordinate system Eq. (3) in the limit 𝑘 ≫ 𝑘0 asymptotically reads 

∑ [𝛼𝑖𝑗𝑙0 (𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑)
𝑖(𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑)𝑗(𝑐𝑜𝑠 𝜃)𝑙𝑖+𝑗+𝑙=4 ] = 0  (5) 

The solution of Eq. (5) is a function 𝑓𝑎𝑠(𝜃, 𝜑) which gives directions in k-space 

corresponding to asymptotic solutions of Eqs. (2)-(3). For example, the topology of the k-

surface of a hyperbolic material in the asymptotic limit corresponds to two circles in the 

limit 𝑘 ≫ 𝑘0. The more general class of quartic metamaterials provides opportunity to 

engineer the high-k states. To classify the quartic k-surfaces in the asymptotic limit 
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topologically it is convenient to use the projective plane P2. The classification follows from 

theorem [29]: A smooth projective real quartic curve consists topologically of: (i) 1 circle; 

(ii) 2 adjacent circles (example in Fig. 2 or hyperbolic materials); (iii) 2 nested circles; (iv) 

3 circles; (v) 4 circles (example in Fig. 1); (vi) an empty set (e.g. vacuum). 

We show how our solution to the inverse problem applies to the engineering of the high-k 

behavior. For illustration, we start with a randomly chosen effective material parameters 

matrix 

�̂� =

(

 
 
 

−3.15 4.81 4.47 −1.66 −0.52 −2.18
−2.82 2.81 0.17 2.74 −3.71 1.06
−1.55 1.60 0.38 −0.56 −4.37 −0.66
−2.29 4.24 −2.95 −2.23 3.68 −4.43
−3.30 4.22 −2.06 −0.98 4.51 1.00
2.96 −4.58 1.23 −3.31 −2.70 4.19 )

 
 
 
. (6) 

Solving Eqs. (1)-(2) we arrive at the quartic surface shown in Fig. 2. In Fig. 2(a) we show 

a cross-section of this surface at 𝑘 = 100 𝑘0 (red curve) and the corresponding asymptotic 

solution 𝑓𝑎𝑠(𝜃, 𝜑) of Eq. (5) (black). From this high-k cross-section, 6 points are randomly 

selected, shown in green in both panels Fig. 2(a) and (b). In Fig. 2(b), the quartic surface 

is plotted in Cartesian coordinates with the selected 6 points and the corresponding field 

amplitudes shown by arrows (electric fields are red, magnetic – blue). Retaining the data 

of only the selected 6 points, we solve Eq. (4) and get the parameters of matrix (6) back 

exactly, with no deviation. The field vectors in Fig. 2(b) show a major property of the high-

k quasistatic electromagnetic fields. Both electric and magnetic fields are directed with 

high precision in the radial direction, i.e. they are parallel to the k-vectors 𝑬,𝑯 ∥ 𝒌. 
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Isotropic Materials 

As a further example of how our method works we apply it to the waves with 𝒌𝟏 = 𝑘1�̂�, 

𝒌𝟐 = 𝑘2�̂�, 𝒌𝟑 = 𝑘3�̂�, 𝒌𝟒 = −𝑘4�̂�, 𝒌𝟓 = −𝑘5�̂�, 𝒌𝟔 = −𝑘6�̂�, and polarizations given by 

�̂� =

(

 
 
 

0 0 𝐸3 0 𝐸5 0
𝐸1 0 0 0 0 𝐸6
0 𝐸2 0 𝐸4 0 0
0 𝐻2 0 0 0 𝐻6
0 0 𝐻3 𝐻4 0 0
𝐻1 0 0 0 𝐻5 0 )

 
 
 

 

The resulting matrix �̂� obtained using Eq. (4) has off diagonal elements of the form 

𝑀12 =
𝐸2𝐻1𝐻4𝐻5(𝐸5𝐻3𝑘3 − 𝐸3𝐻5𝑘5)

𝐸1𝐸2𝐸3𝐻4𝐻5𝐻6 − 𝐻1𝐻2𝐻3𝐸4𝐸5𝐸6
, 

which all become zero in the respective limits 𝐻3 → 𝐸3, 𝐻5 → 𝐸5, 𝑘3 → 𝑘5. The diagonal 

elements are of the form 

𝑀11 =
𝐻3𝐻5(𝐸1𝐸2𝐻4𝐻6𝑘3 − 𝐸4𝐸6𝐻1𝐻2𝑘5)

𝐸1𝐸2𝐸3𝐻4𝐻5𝐻6 − 𝐻1𝐻2𝐻3𝐸4𝐸5𝐸6
, 

which all become 1 in the limits 𝑘𝑖 → 𝑘0𝐸𝑖/𝐻𝑖. In other words, for the plane wave 

propagation characteristic of vacuum we obtain vacuum unit matrix �̂� = 1̂. 

Generally, in isotropic materials the k-surfaces are quadratic and correspond to pairs of 

spheres, topological features of which were studied in Ref. [30]. In a direction (𝜃, 𝜑) in k-

space there are 2 waves propagating in isotropic medium with 2 different polarization. 

There are 2 more waves in the opposite direction (see Fig. 3(a)).  
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Quartic Metamaterials 

Such polarization separation and quadratic property disappears in quartic media. After 

fixing (𝜃, 𝜑) Eqs. (2)-(3) take the form 

∑  [𝛼𝑖𝑗𝑙𝑚 (𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑)
𝑖(𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑)𝑗(𝑐𝑜𝑠 𝜃)𝑙 (

𝑘

𝑘0
)
4−𝑚

]𝑖+𝑗+𝑙+𝑚=4 = 0.  (7) 

Eq. (7) is a single-variable quartic equation with respect to 𝑘/𝑘0, which in general has up 

to 4 roots representing 4 different plane waves propagating in the direction (𝜃, 𝜑). From 

this a fundamental limitation follows that one cannot require all 6 waves in the inverse 

problem to have parallel k-vectors.  

Nevertheless, we can select any 4 values of the k-number in any direction and 2 more in 

other directions. As an example, we were able to obtain a quartic material (Fig. 4(b), 

“reindeer Rudolph” k-surface) with the following effective parameters matrix: 

�̂� =

(

 
 
 

−4.34 3.11 10.63 5.57 3.41 −10.10
−0.50 0.04 −3.81 −1.24 1.98 1.56
3.45 −2.77 −12.72 1.27 0.93 −1.16
1.97 −5.38 2.63 −5.12 −2.14 −0.55
4.48 −3.82 −3.78 −2.42 −0.90 0.19
−0.26 −0.79 0.89 −1.18 −0.15 0.90 )

 
 
 
.   (8) 
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Fig. 3. k-surface engineering; (a) k-surface of an isotropic material; a line in any direction intersects 2 states; 

(b)-(c) “reindeer Rudolph” k-surface features extremely non-reciprocal behavior, with k-vectors (b) and 

Poynting vectors (c) of 4 states pointing in the same direction. 

In this material all 4 plane waves with (𝜃, 𝜑) = (0.11𝜋, 1.71𝜋) have wave-vectors which 

point in the same direction and there are no waves with opposite k-vectors (Fig. 3(b)). Note 

that directions of the k-vectors correspond to the direction of the phase propagation. We 

were able to select the field vectors Γ𝑖 such that the Poynting vectors for the 6 waves point 

in the same directions as k-vectors [Poynting vectors for the waves in Fig 3(b) are shown 

in Fig. 3(c)]. This means we were able to design all 4 waves in a direction (𝜃, 𝜑) to 

propagate both energy and phase in this direction - an example of extreme non-reciprocity 

[2,31-34]. 

In some cases, the metamaterials are subject to restrictions, e.g. if some of the effective 

material parameters are known a priori. In such situations one could require existence of 

less than 6 waves and complement the truncated Eqs. (4) with extra restrictions on material 

parameters. For example, one could require existence of 3 specific waves in a metamaterial 
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and matrices �̂� and �̂� in Eq. (4) would have 3 columns instead of 6. Then Eq. (4) are 

rewritten as 

𝜖̂ = −�̂�𝐻�̂�
−1 − �̂��̂��̂�−1, �̂� = �̂�𝐸�̂�

−1 − �̂��̂��̂�−1,          (9) 

i.e. the permittivity and permeability matrices 𝜖̂ and �̂� can be expressed via the matrices �̂� 

and �̂�, k-vectors of the selected waves and the amplitudes of their fields in the matrices  

𝑘0�̂�𝐸 = (𝒌𝟏 × 𝑬𝟏, 𝒌𝟐 × 𝑬𝟐, 𝒌𝟑 × 𝑬𝟑) 

𝑘0�̂�𝐻 = (𝒌𝟏 × 𝑯𝟏, 𝒌𝟐 × 𝑯𝟐, 𝒌𝟑 × 𝑯𝟑) 

�̂� = (

𝐸𝑥1 𝐸𝑥2 𝐸𝑥3
𝐸𝑦1 𝐸𝑦2 𝐸𝑦3
𝐸𝑧1 𝐸𝑧2 𝐸𝑧3

) and �̂� = (

𝐻𝑥1 𝐻𝑥2 𝐻𝑥3
𝐻𝑦1 𝐻𝑦2 𝐻𝑦3
𝐻𝑧1 𝐻𝑧2 𝐻𝑧3

). 

The inspection of the modified inverse solution of the photonic problem given by Eqs. (9) 

leads to the conclusion that if the magnetoelectric coupling �̂� and �̂� is fixed one can freely 

select only 3 plane waves. Eqs (9) are particularly convenient for the design of materials 

in absence of magnetoelectric coupling �̂� = �̂� = 0̂ in which case 𝜖̂ = −�̂�𝐻�̂�
−1, �̂� =

�̂�𝐸�̂�
−1. 

Complex Bi-Anisotropic Parameters 

In another example we apply Eqs. (9) as shown in Fig. 4 where the magnetoelectric 

coupling has a chiral form �̂� = −�̂� = −𝑖1̂ and the medium supports 3 of the 6 waves 

selected for Fig. 3(b-c). This is an example of a situation, when matrix �̂� is complex 
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Re[�̂�] =

(

 
 
 

18.6 −15.4 −18.2 0 0 0
2.41 −1.48 7.94 0 0 0
7.21 −6.01 −16.3 0 0 0
0 0 0 2.34 2.59 3.73
0 0 0 −1.00 0.24 −1.13
0 0 0 0.62 0.86 2.18 )

 
 
 
. (10a) 

Im[�̂�] =

(

 
 
 

−0.39 −0.23 −2.56 −1 0 0
2.52 −1.78 2.52 0 −1 0
−1.64 1.11 2.29 0 0 −1
1 0 0 1.31 0.44 0.97
0 1 0 1.88 0.97 1.03
0 0 1 0.02 −0.15 −0.24)

 
 
 

 (10b) 

 

 

Fig. 4. k-surface with complex material parameters. (a) Two quartic surfaces with coefficients Re[𝛼𝑖𝑗𝑙𝑚] 

(orange) and Im[𝛼𝑖𝑗𝑙𝑚] (blue); (b) the intersection of the quartic surfaces of panel (a) shown as blue curve of 

solutions of Eqs. (2)-(3). The desired 3 waves are highlighted in green and belong to the curve. 

If matrix �̂� is complex the coefficients 𝛼𝑖𝑗𝑙𝑚 in Eq. (3) are complex too and Eqs. (2)-(3) 

correspond to two quartic surfaces with coefficients Re[𝛼𝑖𝑗𝑙𝑚] and Im[𝛼𝑖𝑗𝑙𝑚] (orange and 

blue in Fig. 4(a)). The solutions of Eqs. (2)-(3) with real 𝑘0 and 𝒌 are at the intersection of 
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these quartic surfaces which is a curve in k-space (blue in Fig. 4(b)). It is interesting to 

compare the complex bi-anisotropic metamaterial shown in Fig. 4(b) to similar and 

connected problems of “extreme materials” considered in Ref. [35] from the "forward" 

instead of "inverse" point of view. 

One can see how the solution curve passes through the desired 3 waves (3 of the 6 waves 

highlighted in green in Fig. 4(b) and blue in Fig. 3(b)). Note that the solution vectors Γ𝑖 for 

the selected 3 waves are the same as in the case of the “reindeer Rudolph” k-surface in Fig. 

3(b-c), i.e. they are real and represent linear polarization, in contrast with the isotropic 

chiral materials where solution vectors are complex, representing circular polarization. 

Perturbations and Bulk Optical Neutrality 

Following the work on quartic metamaterials and their k-surfaces, we became interested 

on how the k-surface responds to perturbations in the material parameters matrix �̂�. The 

material of choice to be perturbed was a vacuum with elements 𝑀𝑖𝑗 = {1, 𝑖 = 𝑗; 0, 𝑖 ≠ 𝑗}. 

The vacuum was perturbed by adding a matrix �̂� with elements 𝑃𝑖𝑗. Maxwell’s equations 

now have the form �̂�Γ = (�̂� + �̂�)Γ. This can be further reduced to 

(−�̂� + �̂� + �̂�). Γ = Δ. Γ = 0     (11) 

Nontrivial solutions to Equation (11) exist when the determinant of Δ is equal to zero, and 

the resulting function is the k-surface. For �̂� = 0̂, the k-surface is that of a vacuum, two 

overlapping spheres of radius 1 centered about the origin. 

(−1 + kx
2 + ky

2 + kz
2)2 = 0     (12) 
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For arbitrary 𝑃𝑖𝑗, the determinant of Δ becomes quite complex. The function can be 

simplified by assuming the perturbations are sufficiently small in magnitude, |𝑃𝑖𝑗| ≪ 1, 

and the dominant terms are those linear with respect to the perturbation elements. Under 

this approximation the k-surface is described by the following: 

(−1 + kx
2 + ky

2 + kz
2) (−1 + 𝐴kx + kx

2 + 𝐻(−1 + kx
2) + 𝐸ky + 𝐵kx𝑘y + 𝑘y

2 +

𝐽(−1 + ky
2) + 𝐹kz + 𝐶kxkz + 𝐺kykz + kz

2 + 𝐾(−1 + kz
2)) = 0   (13) 

The nine undefined coefficients of eq. (13) are dependent solely on the values of elements 

𝑃𝑖𝑗, and can be found in Table A. 

Immediately, several notable items can be seen. First, under the linear perturbation 

approximation, one sphere remains unperturbed from its original in the vacuum. Second, 

the nine undefined coefficients are independent from six of the perturbation elements: 

𝑃14, 𝑃25, 𝑃36, 𝑃41, 𝑃52, and 𝑃63. Under the linear perturbation approximation, these six 

elements can hold any value and not impact the resulting perturbed k-surface. Lastly, if the 

nine coefficients are set to zero, the k-surface will reduce to be identical to that of the 

unperturbed vacuum, eq. (12). This indicates the perturbed vacuum would be optically 

neutral with respect to the unperturbed vacuum. Optical neutrality is an area of research 

that is gaining interest with developments in producing invisibility in the absence of the 

traditional cloak [37] and neutral inclusion, in which the effective permittivity is unity [38]. 

We now wish to establish a set of rules to select �̂� to guarantee an optically neutral result. 

Here, we also restrict ourselves to reciprocal materials. A material is considered reciprocal 

if �̂� follows three conditions: 𝜖̂ = 𝜖̂𝑇 , �̂� = �̂�𝑇, and �̂�𝑇 = −�̂�.  
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From the reciprocal conditions, coefficients A, E, and F are equal to zero regardless of the 

values for their constituent elements 𝑃𝑖𝑗. Furthermore, coefficients the remaining six 

coefficients can be reduced to the form 

𝑃𝑖𝑗 = −𝑃𝑘𝑙, 

where elements 𝑃𝑖𝑗 are the perturbation elements applied to 𝜖̂ and elements 𝑃𝑘𝑙 are 

perturbation elements applied to �̂�. From this, a new condition is established: 

𝜖̂ − 𝐼 = −(�̂� − 𝐼), 

where 𝐼 represents the unity matrix. Applying the new condition in conjunction with the 

reciprocity conditions to �̂� yields a perturbation matrix resulting in no changes to the k-

surface when applied to a vacuum. These perturbations have the form 

�̂� =

(

 
 
 

p11 p12 p13 p14 p15 p16
p12 p22 p23 p24 p25 p26
p13 p23 p33 p34 p35 p36
−p14 −p24 −p34 −p11 −p12 −p13
−p15 −p25 −p35 −p12 −p22 −p23
−p16 −p26 −p36 −p13 −p23 −p33)

 
 
 

. 

A Note on Polarizations 

We have shown that the k-surface of the material resulting from perturbation is identical 

to that of a vacuum under certain approximations. This indicates the k-vectors and field 

amplitudes at a given point on the k-surface are identical, but this does not reveal if the 

polarizations have been unaltered by the perturbations. To better study the impact on 

polarizations, we reformulate the problem as an eigenvalue problem. We begin with 

Maxwell’s equations with the perturbation in matrix form 
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�̂�Γ = 𝑘0(�̂� + �̂�)Γ     (13). 

Previously, we subtracted the matrices �̂� and �̂�, but instead we will write it as 

(�̂� + �̂�)−1�̂�Γ = 𝑘0Γ. A simple manipulation allows us to write 

((�̂� + �̂�)−1�̂� − 𝑘0𝐼)Γ = 0    (14), 

where 𝐼 is the unity matrix. The problem stated in eqn. 14 is now in the form of an 

eigenvalue problem and can be solved as such. The characteristic polynomial is given by 

the determinant of (�̂� + �̂�)−1�̂� − 𝑘0𝐼 whose roots are the eigenvalues. The eigenvectors 

associated with these roots represent the polarizations of the plane waves supported by the 

perturbed material. This alternative approach allows for easier inspection of polarizations 

on the perturbed metamaterial. 

Conclusion 

In summary, we have established a method for the inverse problem of photonics allowing 

for the effective material parameters of the metamaterial to be determined from a known 

set of plane wave k-vectors and fields. Furthermore, we have studied the impact of small 

perturbations on the material parameters of a vacuum and devised a set of conditions in 

which the resulting material is optically neutral with respect to the vacuum. 
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Table A. 

A −p26 + p35 + p53 − p62 

B p12 + p21 + p45 + p54 

C p13 + p31 + p46 + p64 

E p16 − p34 − p43 + p61 

F −p15 + p24 + p42 − p51 

G p23 + p32 + p56 + p65 

H p11 + p44 

J p22 + p55 

K p33 + p66 
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