
ZBIGNIEW KOKOSIŃSKI∗, SŁAWOMIR WÓJCIK**

A COMPARISON OF SW/HW IMPLEMENTATIONS
OF STREAM CIPHER ENCODERS

PORÓWNANIE IMPLEMENTACJI PROGRAMOWYCH
I SPRZĘTOWYCH SZYFRATORÓW STRUMIENIOWYCH

A b s t r a c t

In this paper, a new method of stream encoding and decoding is presented. It is developed on the basis
of a derangement generator. Stream cipher D has been compared with other stream ciphers – E0, W7
and Phelix. Encoding and decoding algorithms have been implemented in C++ and VHDL programming
languages. FPGA synthesis data has been reported for Spartan 3E and Virtex 4 devices from Xilinx. The
hardware solution has been tested on the Digilent Nexys 2 500K board. Subsequently, comparative studies
have been conducted for software and hardware coders, taking into account average coding time and
average throughput for 16 input data files of different sizes. Conclusions resulting from the research are
derived.

Keywords: stream cipher, coder, decoder, coder throughput, FPGA

S t r e s z c z e n i e

W artykule przedstawiono nową metodę strumieniowego szyfrowania i deszyfrowania danych w oparciu
o generator nieporządków. Szyfr strumieniowy D został porównany ze znanymi szyframi strumieniowymi
E0, W7 i Phelix. Algorytmy kodowania i dekodowania zaimplementowano w językach programowania
C++ oraz VHDL. Podano dane dotyczące syntezy urządzeń sprzętowych w układach programowalnych
FPGA typu Spartan 3E oraz Virtex 4 firmy Xilinx. Rozwiązania sprzętowe zostały przetestowane na
płycie Digilent Nexys 2 500K. W badaniach porównawczych zbudowanych szyfratorów programowych
i sprzętowych uwzględniono średni czas szyfrowania oraz średnią przepustowość dla 16 plików danych
o różnych rozmiarach. Sformułowano wnioski z przeprowadzonych badań.

Słowa kluczowe: szyfr strumieniowy, szyfrator, deszyfrator, przepustowość szyfratora, FPGA

∗ Ph.D. Zbigniew Kokosiński, email: zk@pk.edu.pl, Department of Automatic Control and Information
Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology.

** M.Sc. Sławomir Wójcik, Faculty of Electrical and Computer Engineering, Cracow University
of Technology (currently with Ericpol, Cracow).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal Czasopism Naukowych (E-Journals)

https://core.ac.uk/display/229222126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

84

1. Introduction

Data encryption and security is one of the key issues in modern computer and
telecommunication systems [4]. A large number of cryptographic systems have been
developed having different characteristics. The most popular systems like DES, AES are
supported either by government agencies or telecommunication companies while many
others are developed and supported by independent private enterprises.

Encryption algorithms usually belongs to one of the two groups: they use block ciphers
or stream ciphers. While software encoders are dominating the market, there are also many
hardware implementations. Depending on the encryption method, usually one of the two
implementations mentioned above is more efficient, e. g. software implementation of LFSR-
based encoders is slower than dedicated hardware solution.

Several research results relating to FPGA implementations of stream ciphers were
described in [14]. The Stream cipher VMPC (Variably Modified Permutation Composition),
was proposed and developed in 2004 by Bartosz Żółtak [18, 19] on the basis of one-way
function. It is easy to implement both in software and in hardware. Recent research papers
relating to VMPC encryption technology as well as the present software version of VMPCrypt
4 are available at [19]. In 2009, VMPC stream cipher was successfully implemented and
tested in FPGA [6].

In this paper, four different stream ciphers, implemented both in hardware and software,
are compared. The selected ciphers are:

E0 – used in wireless data transmission via Bluetooth interface [7];
W7 – a one-time candidate for a successor of A5 in mobile GSM technology [15];
Phelix – dedicated for 32-bit platforms, combines encryption with MAC (Message

Authentication Code) [16];
D – a new method, developed recently on the basis of the derangement generation [12].
The software and hardware encoders are characterized by data processing time and

throughput computed experimentally.
In the next section, the concept and basic properties of set derangements are explained.

In section 3, the D stream cipher is introduced. Section 4 contains a short description of
software implementations. FPGA implementations in Xilinx Spartan and Virtex devices are
described in section 5. Section 6 brings a comparison of software and hardware encoders.
In the last section, some conclusions and remarks are added.

2. Derangements

The D stream cipher introduced in this paper is developed on the basis of a generation of
a specific class of n-permutations with no constant points (no 1–cycles) called derangements.
Combinatorial properties of derangements are described in depth in [5, 9]. Several methods
for the generation of all set derangements sequentially or in a parallel linear array model are
published in the literature [1–3, 8, 13].

The representation of partial derangements is derived from a representation of
permutations by iterative decomposition of symmetric permutation group Sn into cosets [12].
Some particular properties of derangements are also established.

85

Now we introduce representations of the considered combinatorial objects by means of
integer sequences (codewords) defined as choice functions of indexed families of sets.

Let 〈Ai〉i∈I denote an indexed family of sets Ai = A, where: A = {1, ..., n}, I = {1, ..., n},
1 ≤ n. Any mapping f which ‘chooses’ one element from each set A1, ..., An is called a choice
function of the family 〈Ai〉i∈I. If, for every i ≠ j, a suplementary condition: ai ≠ aj, for ai ∈ Ai
and aj ∈ Aj, is satisfied then any choice function α = 〈ai〉i∈I that belongs to the indexed family
〈Ai〉i∈I is called n-permutation of the set A.

Let us now define permutations with forbidden positions and derangements [12].
A permutation π of n-element set A = {1, ..., n} with a forbidden position i is the sequence
〈π(1), π(2), ..., π(n)〉, where π(i) ≠ i, for some 1 ≤ i ≤ n.

Let 〈Pi〉i∈I be an indexed family of sets Pi ⊆ A, where Pi = {1, ..., i}, 1 ≤ i ≤ n – 1, and
Pn = Pn–1. Any choice function α = 〈pi〉i∈I , that belongs to Carthesian product ×i∈I Pi represents
a permutation of A with a forbidden position i if and only if:

 (1)

Any n-permutation with n forbidden positions i ≠ π(i), 1 ≤ i ≤ n, is called a derangement
δ(n) with the forbidden set A.

Let 〈Di〉i∈I be an indexed family of sets Di ⊆ A, where Di = Pi, 1 ≤ i < n, and F = {f1, f2, ..., fk},
F ⊆ I = {1, ..., n}, 0 ≤ k ≤ n, be the forbidden set. Any choice function δ(n, k) = 〈di〉i∈I, that
belongs to Carthesian product ×i∈I Di represents a derangement of A if and only if:

 (2)

The new cipher D belongs to a group of derangement ciphers, working on bits or strings.

There exist
n!
e different derangements of n-element set. The generation algorithms for

derangements can be found in [1–3, 8, 12, 13]. For n = 32, D
e

() !32 32 1035.

3. D stream cipher

The new cipher D, proposed by the first author of the article, belongs to a group of
derangements ciphers, working on bits or strings. However, encoding scheme on the basis
of derangement operation can not provide nontrivial encodings of specific strings like 0 or
1 sequences. Therefore, the generated derangements are processed further with the help of
a key stream Si generated by a linear feedback shift register (LSFR) – see Fig. 1.

The hardware-oriented algorithm for generating set derangements is developed in the
parallel counter model augmented by a triangular permutation network and is a modification
of the permutation generation algorithm [11].

The triangular permutation network is built of two-state cells (2-permuters) [10, 11].
Each cell requires a separate control signal. The permutation network can perform n – 1
transpositions (P(i), P(k)), i.e. can produce any n-permutation of its inputs on outputs.

≈ ≈

(()) [(()) () ()]p i i p i i j i j n p j i≠ ∨ = ⇒ ∃ : < ≤ ∧ =

∀ ∈ : ≠ ∨ = ⇒ ∃ : < ≤ ∧ =d i F d i i d i i j i j n d j i() (()) [(()) () ()]

86

The control sequences are produced in O(1) average time per generated object. The output
sequences are then obtained from the control sequences in O(n) time.

The control circuit is organized in the following way [17]. With every i-th column of the
triangular network (1 ≤ i ≤ n) the i-th ring counter is associated with the initial state from
the ‘1–out–of–i’ code. All column counters form the parallel counter with n! different states.
Clock enable signal for the i-th ring counter is a product of carry signals (overflows) from
all ring counters preceding it. The state of the permutation network is controlled by n – 1
synchronous up-down counters (UDC), where UDC(i) counts mod (i + 1) depending on the
cipher bit C(i). For C(i) = 1, UDC(i) counts up, otherwise UDC(i) counts down. We assume,
that k = UDC(i).

The asynchronous setup of each ring counter and global reset for all ring counters is
provided. If the j-th bit of the i-th ring counter bi

j = 1, for 1 ≤ j ≤ (i – 1), then in the i-th column
of the network only one cell denoted by C[i, j] is activated to perform the corresponding
transposition τi

j. If bi
i = 1, 1 ≤ i ≤ n, then all cells in the i-th column are in the ‘identity’ state.

After setting the initial state of the network, the control circuit generates consecutive
states of network in a constant time (one clock period) and the permutation network generates
subsequent configurations representing permutations. In order to recognize a derangement
permutation, an additional logic based on formula (2) is needed [12], and, on average, (e – 1)
extra clock periods are required to find such a permutation.

Valid n-derangements are detected by a logic function V checking if the condition given
in (2) is satisfied:

 (3)

where:
 FV – a binary forbidden set vector: FV(i) = 1 iff position i is forbidden, otherwise

FV(i) = 0;

Fig. 1. The idea of D encoding scheme for n = 32 with the permutation network and a key stream

V FV i v FV i b b
i

n

i
i

n

i
i

j i

n

j
i= = +

=

−

=

−

= +
∏ ∏ ∑

1

1

1

1

1
() ()

87

 vi – the function detecting if the condition (5) for the forbidden position i is
satisfied; in fact, for technical reasons, vi should be rewritten in the form:

 (4)

The above logic functions can be computed in O(n) time which matches the network
propagation delay. Because the size of the network is limited and the constant factor hidden
in the function O(n) is very low, for most applications we may assume that consecutive
network configurations are generated in constant time.

The hardware complexity of the generator is O(n2), and the network propagation delay is
O(n). For practical applications, the networks size is limited and the propagation delay can
be considered constant.

4. Software implementations

An application in C++ has been
developed in MS Visual Studio 2005 for
MS Windows platforms with MS .NET
Framework 2.0 installed. The compiler
has been set for maximum speed.

The user interface provides selection
of paths to access input files and write
output files into a given destination.
A secret key section is common for all
algorithms. It is possible to generate
a key, read/write from/to a file, input the
key via a keyboard. A key length varies
from 8 to 256. Selection of the cipher tab
provides setting additional parameters
for that cipher. It is possible to generate
public parameter (nonce) and provide
the MAC-tag for the message
authentication (MAC – Message
Authentication Code).

After setting all necessary parameters
the type of operation (encryption or
decryption) is selected. The log window
allows the user to trace the consecutive
steps of program setting and execution.
The progress of data processing is
visualized. The main window of the
application is shown in Fig. 2.

v b b b b bi i
i

i
i

i
i

n
i

n
i= + + +() +() +()+ + −... ...()1 2 1

Fig. 2. GUI of the stream cipher encoder/decoder

88

5. Hardware implementations

The stream cipher encoder/decoder has been implemented in VHDL in Xilinx WebPack
ISE v.8.2.03i. The destination device Spartan 3E-500 FG320 on Digilent Nexys2 development
board has been used. The FPGA circuit has got 500 000 equivalent gates. A USB port is
provided for the power supply and communication between the PC and FPGA. Embedded
SDRAM has a capacity of 16MB. A quartz oscillator runs with 50 MHz frequency.

Data transmission between PC and FPGA memory is always 8-bit, but data processing
within FPGA is either 8-bit (E0 and W7 ciphers) or 32-bit in buffered mode (Phelix and D
ciphers).

During the synthesis phase, we have used options Optimization goal – Speed and
Optimization Effort – Normal. In the implementation phase, the option Optimization Strategy
– Area has been used. The collected data from the synthesis reports are presented in Table 1.

E0 encoder employs the simplest architecture, while D encoder employs the most complex
architecture. The complexity of the structure also has influence on the minimal clock period.
Normalization of the clock period for all encoders at 20 [ns] has become possible by means
of the flag system that was introduced for synchronization of internal transitions in all finite
state machines (FSM) that control the work of encoders.

As we will see in the next section, the clock frequency does not necessarily influence the
device’s throughput: f. i. W7 and E0 encoders, with the highest and the lowest throughput
respectively, have very similar minimal clock periods.

T a b l e 1

Synthesis data for Spartan 3E-500 device

Encoder Input
IOB

Output
IOB

Bi-direct.
IOB

Number of
LUTs

Number of
slices

Number of
Gates

Minimal clock
period [ns]

E0 19 56 24 1555 963 24 711 11.681
W7 19 56 24 3186 1685 38 769 11.758

Phelix 19 56 24 5721 3088 65 528 27.729
D 19 56 24 7900 4151 63 188 116.653

Available
resources 232 (all types) 9312 4656 500 000 –

T a b l e 2

Synthesis data for Virtex4 family

Encoder Number of
LUTs

Number of
slices

Number of
gates

Minimal clock
period [ns]

E0 1802 1069 19 855 4.875
W7 3282 1808 33 488 4.684

Phelix 5683 3054 58 579 13.224
D 7826 4088 55 177 64.719

Available
resources 12 288 6144 – –

89

In Table 2, synthesis data for Virtex 4 family of Xilinx FPGAs are shown for comparison
with the Spartan 3 device. There are several differences between implementations resulting
from architectural differences. The most interesting result is a significantly higher possible
speed of the Virtex 4 implementations.

6. Comparison of software and hardware encoders

In the conducted experiments, the application presented in section 3 was tested on
a 2.0 GHz computer with 3.0 GB RAM, running under 32-bit Windows Vista OS. Speed of
encoding was measured for 16 data files within the range of 1-16 MB which corresponds
with the maximum memory size 16 MB in the hardware encoder implementations on Spartan
3E FPGA. The linear growth of encoding time with file size is observed in Fig. 3. The
average throughput of 115,72 Mbit/s for Phelix, 27,78 Mbit/s for D, 11,57 Mbit/s for E0 and
7,70 Mbit/s for W7 was obtained.

Fig. 3. Comparison of encoding times of the software encoders (W7, E0, D and Phelix)

In the conducted experiments, the hardware encoders presented in section 3 were tested
on Xilinx Spartan 3E FPGA. Speed of encoding was measured for 16 data files within the
range of 1-16 MB. The linear growth of encoding time with file size is observed in Fig. 4.
The average throughput of 16,26 Mbit/s for W7, 12,69 Mbit/s for D, 12,67 Mbit/s for Phelix
and 10,20 Mbit/s for E0 was obtained.

Simultaneously, W7 has got the lowest throughput among software encoders. It justifies
a conclusion that encoders composed on LFSR are devoted mostly to hardware
implementations. E0 encoder, which is also built on LFSR, delivers another data. Its
hardware version takes the last place and its software version the 3rd place. Its low hardware
throughput is due to an inefficient key stream generator, which produces only one key bit in
one clock cycle. Implementations of encoders processing 32-bit characters (Phelix and D) are
definitely the fastest among the tested software versions. The Phelix encoder outperforms all
other software encoders. Also its hardware version has the high throughput.

90

The comparison of hardware and software encoder throughputs is depicted in Fig. 5.
The most efficient hardware implementation of the encoder algorithm is that for W7. Its
FPGA implementation reveals higher throughput than the software version, while the clock
frequency of Nexys 2 board is 40 times lower then that of the processor.

Fig. 4. Comparison of encoding times of the hardware encoders (E0, Phelix, D and W7)

Fig. 5. Comparison of SW/HW encoder throughputs (E0, W7, Phelix, D)

7. Concluding remarks

All four encoding schemes were successfully implemented and tested in software and
hardware. The software implementation of the new D stream cipher implemented by the
authors is much better than E0 and W7 in terms of the average throughput, but the winning

91

algorithm in this category is Phelix. The differences between hardware versions of encoders
are less visible. The fastest hardware encoding provides W7, while D and Phelix encoders
occupy the second place. The slowest one in this category is the E0 encoder.

Properties of the D stream cipher were not verified via cryptanalysis so far. It is expected
that selection of key scheduling scheme shall play an important role. In order to increase
robustness of the proposed method on cryptanalytic attacks, application of derangements
D(n) for n different then the power of two might be considered.

It is possible to develop encoding schemes similar to D encoder on the basis of other
derangement generation algorithms [1, 3, 9, 13]. Alternative hardware encoder may be
constructed with the parallel derangement generator in the linear array model [2].

The idea of using derangements instead of classical permutations may lead to the
modification of VMPC one-way function [18, 19] into the VMDC (Variable Modified
Derangement Composition) one-way function. In this way, the VMPC encryption algorithm
would become the VMDC encryption algorithm. However, many details of the former
scheme, like the key scheduling algorithm, should be adapted to the new cipher. It would be
interesting to compare cryptographic properties of both variants.

R e f e r e n c e s

[1] Akl S.G., A new algorithm for generating derangements, BIT 20, 1980, 2-7
[2] Akl S.G., Calvert J.M., Stojmenovič I., Systolic generation of derangements, Proc. Int.

Workshop on Algorithms and Parallel VLSI Architectures II, Elsevier, 1992, 59-70.
[3] Baril J.-L., Vajnovszki V., Gray code for derangements, Discrete Applied Mathematics,

140, 2004, 207-221.
[4] Denning D.E.R., Cryptography and data security, Addison-Wesley, 1982.
[5] Erickson M.J., Introduction to Combinatorics, Wiley Interscience, 83, 1996, 119-120.
[6] Gajos T., A hardware implementation of VMPC stream cipher encoder and decoder

in programmable logic, M.S. Thesis, Cracow University of Technology, Cracow 2009
(in Polish).

[7] Gehrman C., Persson J., Smeets B., Bluetooth Security, Artech House, 2004.
[8] Gupta P., Bhattacharjee G.P., A parallel derangement generation algorithm, BIT 29,

1989, 14-22.
[9] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, 2nd ed., Addison-

Wesley Publishing Company, 1994, 194-195.
[10] Kokosiński Z., On generation of permutations through decomposition of symmetric

groups into cosets, BIT 30, 1990, 583-591 (available at www.pk.edu.pl/~zk/pubs.
html).

[11] Kokosiński Z., Circuits generating combinatorial configurations for sequential
and parallel computer systems, Cracow University of Technology, Cracow, Poland,
Monograph, 160, 1993.

[12] Kokosiński Z., On parallel generation of partial derangements, derangements
and permutations, Proc. Int. Conf. Parallel Processing and Applied Mathematics
PPAM’2007, Gdansk, Poland, Lecture Notes in Computer Science, Vol. 4967, 2008,
219-228 (available at www.pk.edu.pl/~zk/pubs.html).

92

[13] Korsh J.F., LaFolette P., Constant time generation of derangements, Information
Processing Letters, Vol. 90, 2004, 181-186.

[14] Rogawski M., Stream ciphers in FPGA structures, IX Konferencja Zastosowań
Kryptografii, Enigma’2005, Warszawa 2005 (in Polish).

[15] Thomas S., Deven A., Berson T., Gong G., The W7 stream cipher Algorithm, Internet
draft, April 2002.

[16] Whiting D., Schneier B., Lucks S., Muller F., Phelix fast encryption and authentication
in a single cryptographic primitive, ECRYPT Stream Cipher Project Report 2005/027,
2005.

[17] Wójcik S., A hardware implementation of stream encoder and decoder of the data
in programmable Spartan 3 FPGA devices, M.Sc. Thesis, Cracow University of
Technology, Cracow 2010 (in Polish).

[18] Żółtak B., VMPC one-way function and stream cipher, Proc. Int. Conf. Fast Software
Encryption FSE’2004, Delhi, February 2004.

[19] VMPCrypt: http://www.vmpcrypt.pl/

