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DEVELOPMENT AND IMPLEMENTATION OF NEW NONLINEAR 
CONTROL CONCEPTS FOR A UA 

Vijayahmar Junardhan. Derek Schmilz, and S. N. Balakrishnan 
University of Missouri - Rolla, Rolla, MO - 65409 

Abstract 
A reconfigurable flight control method is 

developed to be implemented on an Unmanned 
Aircraft (LJA), a thirty percent scale model of the 
Cessna 150. This paper presents the details of the 
UAV platform, system identification, 
reconfigurable controller design, development, and 
implementation on the UA to analyze the 
performance metrics. A Crossbow Inertial 
Measurement Unit provides the roll, pitch and yaw 
accelerations and rates along with the roll and pitch. 
The 100400 mini-air data boom from SpaceAge 
Control provides the airspeed, altitude, angle of 
attack and the side slip angles. System identification 
is accomplished by commanding preprogrammed 
inputs to the control surfaces and correlating the 
corresponding variations at the outputs. A Single 
Network Adaptive Critic, which is a neural network 
based optimal controller, is developed as part of a 
nonlinear flight control system. An online learning 
neural network is augmented to form an outer loop 
to reconfigure and supplement the optimal 
controller to guarantee a “practical stability” for the 
airplane. This paper also presents some simulations 
from the hardware-in-tbe-loop testing and 
concludes with an analysis of the flight 
performance metrics for the controller under 
investigation. 

Introduction 
With the advancement of electronic 

technologies along with modem control theory, 
totally autonomous unmanned aircraft (UA) have 
taken to the sky. Unmanned aircraft can be used for 
objectives such as data link stations, weather 
observers, and reconnaissance and attack platforms. 
Perhaps in the future UA’s will bear the 
responsibility of trafficking passengers around the 
world. 

As costs rise for defense budgeting, UA’s 
appear to be a simple way to spend less and get the 
same accomplishment from a manned vehicle 

without the risk of a human life. In the battlefield 
or in the cockpit of a passenger airplane, the 
adaptability of the controller to unknown or 
unpredicted scenarios is key for mission success. It 
is this necessity that pushes control experts to 
develop not only autonomous flight controllers, but 
reconfigurable flight controllers. Reconfigurable 
controllers have the ability to adapt to situations 
that they were not explicitly designed for as in 
actuator, structural, or engine failures. This 
increases the survivability of the combat UA with 
battle damage as well as increases the safety of a 
passenger aircraft. 

Research in the area of reconfigurable control 
via neural networks has been undertaken by many. 
Reference model adaptation [l] showed the ability 
to match the reference model to an actual aircraft in 
the event of damage. Further along these lines, this 
reference model adaptation was incorporated into a 
neural flight control system that combined dynamic 
inversion control techniques with direct adaptive 
control from pre-trained and online neural 
networks 121. Calise and Rysdyk also show the 
applicability of supplementing dynamic inversion 
control with a neural network to achieve constant 
handling characteristics and consistent aircraft 
response during flight [3]. 

implement a reconfigurable control system for 
autonomous control of a 30% scale model of a 
Cessna 150. This paper covers the current progeess 
of the project and its future objectives. The aircraft 
will rely on feedback information from a gyroscope 
and an air data boom mounted on the aircraft. 
Along with the feedback sensors, a microcontroller 
and a radio modem are also installed on the aircraft 
to act as the airplane controller and to send 
information back to a ground station. After proper 
parameter estimation of the aircraft system has been 
accomplished, a modified dynamic inversion 
controller based on a design from our group [4] will 
be implemented on the aircraft to validate the 

The objective of this project is to successfully 

0-7803-8539-x/04/$20.00 0 2004 IEEE 
12.E.5-1 



control hardware. Next, a more sophisticated 
optimal control based neural network controller 
design of ow group [5] will be implemented to test 
its performance under mildly stressed conditions. 
Furthermore, analytical formulations underway will 
be implemented in an outer loop to the basic 
controller structure to test the abilities of the 
reconfigurable controller in highly stressed 
conditions such as non-operative actuators. Note 
that all these tests will be conducted in an 
autonomous mode. 

The Autonomous UAV 
Because the Cessna 150 is a stable airplane, a 

30% scale model of the same is used for 
implementation (Figure I). Although aerodynamics 
are not scalable, a similar layout was thought to 
offer similar stability characteristics. The aircraft 
has a 10 foot wingspan, weighs 35 Ibs, and utilizes 
a Moki 2.1 in3 engine for power. The size of the 
aircraft allows ample space in the “cockpit” area for 
the onboard telemetry and control equipment. 
Ailerons, elevators, a rudder, and retractable flaps 
provide the control surfaces for the airplane. The 
control surfaces along with a throttle control 
provide the inputs to the test vehicle. Inputs are 
actuated by commercially available digital servos 
and the position information from the servos is fed 
to the data acquisition system onboard the airplane. 
The inputs to the servos will be able to be switched 
between the microcontroller and the RC pilot 
commands. 

Figure 1. 30% Scale Cessna 150 
The onboard data acquisition and control 

(ODAC) system is comprised of a PC-104 486 DX4 
at IOOMHz with 32 MB of RAM and 32 MB of 
Flash RAM. The ODAC runs MSDOS and has 16 
12-bit analog inputs, four serial ports, Ethemet and 
parallel port, four 12-bit analog outputs and eight 
servo control ports. The ODAC communicates with 

the base station through a 115.2 Kbps RS232 radio 
modem from Cirronet, Inc. The functional diagram 
of the ODAC is shown in Figure 2. 

Figure 2. Functional Diagram of ODAC 

Roll, pitch, and yaw rates, the roll and pitch 
angles, and axial, normal, and lateral accelerations 
are provided by an Inertial Measurement Unit 
(IMU) VG400CA from Crossbow. The IMU is 
unable to interpret a yaw angle because magnetic 
north, a reference for yaw angle, is unavailable to 
the IMU. Airspeed, altitude, angle of attack, and 
side slip angle are provided by the 100400 mini-air 
data boom (MADM) from SpaceAge Control. 
Honeywell precision pressure transducers (PPT), 
are connected to the MADM pressure. ports to 
determine the altitude and the airspeed. 

Passive vibration isolation is provided for the 
ODAC and the Crossbow IMU through the use of 
neoprene rubber as a cushion as well as rubber 
mounting pads, for the engine mount, which will 
eliminate most of the noise from the source. A 
separate battery source is used for the ODAC and 
the inputs are properly shielded to prevent noise. 
An active second-order Butterworth filter was also 
added to filter the incoming signals before they are 
sent to the base station for recording. The 
component interface of the ODAC is shown in 
Figure 2a. After the ODAC is tumed on, the system 
is initialized from the base station and data 
acquisition and logging are performed. A Pentium 
111 IGHz laptop is used as the base station computer 
which interfaces with the radio modem. A variety 
of maneuvers maybe commanded from the base 
station. The data logging feature maybe turned on at 
the base station to store the data in .dat files on the 
base station computer and can be retrieved for 
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further analysis. The functional diagram of the base 
station system (BSS) is shown in Figure 3. 

Figure 2a. Component Interface of ODAC 

Figure 3. Functional Diagram of BSS 

System Identification 
To model the aircraft for analytical 

computations, standard six degree of freedom 
(DOF) nonlinear aircraft equations of motion will 
be used during the study [6] .  Using telemetry data 
from flights and @stem Dentification programs 
for &graft [7] (SIDPAC), stability parameters will 
be estimated and compared to estimates from 
Advanced Aircraft Analysis [8] (AAA). The 
SIDPAC program used to compute stability 
derivatives utilizes an equation error approach 
solved via a least mean squares algorithm. AAA 
takes physical parameters of an aircraft as inputs 
and outputs stability derivatives based on the 
physical aircraft characteristics. 

The flight maneuvers designed for the system 
identification was a 3-2-1-1 longitudinal maneuver 
utilizing the elevator to provide estimates of the lift 
and moment derivatives. A small impulse maneuver 
to record the Phugoid mode of the aircraft to extract 
drag coefficients, and simple doublet maneuvers for 
the ailerons and rudder to estimate the lateral- 
directional derivatives will also be executed. Some 
of the results obtained using the 3-2-1-1 maneuver 
is shown in the results and discussion section. 

six DOF equations of motion along with major 
aircraft parameters are listed in Table 1. A 
simulation of the six DOF equations of motion will 
be compared to the response of the actual aircraft 
model; the equations of motion will be tailored to 
account for the errors in the response. 

The stability derivatives that are needed for the 

Table 1. Parameters for 30% Scale Cessna 150 



Controller Designs 
After proper parameter estimates and a 

sufficient system model have been developed, 
synthesis of the intended controllers may proceed. 
The types of controllers that will be implemented 
are as follows: 

Dynamic Inversion Technique 

linearization that derives its control from an 
equation that describes the dynamics of the error, 
was chosen to be the first controller in order to 
verify the flight hardware. For an example of the 
process, define a nonlinear system like that of an 
aircraft 

Dynamic inversion [4], a form of feedback 

x = f ( x ) + g ( X ) . U c  (1) 

where X is an nxl state vector containing n states 
and Uc is an nxI control vector. Note that for the 
given aircraft problem,f(Y) and g(Y) are square 
matrices. The error dynamics is desired to have the 
following form 

Z + K . R = O  (2) 

,f=X-X' (3) 

where the error between current and desired values 
is given as 

and K represents the inverse error dynamics time 
constant. Substituting Equation (3) and (1) into 
Equation (2) and assuming step commands we get 

A.U, = 6 (4) 

A = g ( X )  (5 )  

where 

and 

b = -K(X - X') - f ( X )  (6) 

By multiplying both sides by the inverse of A 
(assuming it exists), a control solution is computed 
as 

U ,  = A-'.b (7) 

Using commands such as roll angle, normal 
acceleration, lateral acceleration, and forward 
speed, a longitudinal mode dynamic inversion 
controller is used to output four control variables: 
elevator, aileron, and rudder deflections as well as 
throttle percentage. A second controller is used for 
lateral maneuvers to control roll angle, altitude, 
lateral acceleration, and forward speed while 
utilizing the same control variables. Both 
controllers have the ability to control both lateral 
and longitudinal motion but the commanded 
longitudinal state variable changes. In the 
longitudinal mode controller, normal acceleration is 
commanded while in the lateral mode controller, 
altitude is directly commanded. This was done to 
create more precise altitude control (hold) in a 
lateral, directional maneuver. The tracking 
commands are generated from the errors between 
the current aircraft states and the commanded states 
which are given by the user. Lastly, the two 
controllers are individual and will not operate the 
aircraft at the same time. 

Single Network Adaptive Critic (SNAC) 

the aircraft will be a neural network based optimal 
controller in the form of a Single Network Adaptive 
Critic (SNAC) architecture [SI. The SNAC is very 
powerful with its origins in approximate dynamic 
programming, which offers solutions to optimal 
control problems. Its development is given in this 
section. 

aircraft equations of motion can be written as 

The second controller to be implemented on 

In a discrete form the previously mentioned 

with the state and control vectors the same as 
previously mentioned. The goal is to flnd a 
controller minimizing a cost function J given by 

= 2 y k ( X k ,  U,) (9) 
k=I 

which minimizes the error and error rate between 
the actual and commanded states. These states are 
the same as the dynamic inversion controllers. 
Here, k denotes the time step while X, and U, 
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represent the states and control respectively. Y, is 
assumed to be convex (e.g. a quadratic function in 
X ,  and U,). 

step k as 
By rewriting Equation (9) to start from time 

Jk can be split into 

’ k  = yk + Jk+l  (1 1) 
N-l 

where Y, and J,,, = _CYi represent the 

“utility function” at time step k and the cost-to-go 
from time step k + 1 to N , respectively. The 
costate vector at time step k is defined as 

k = k + l  

The optimality condition for the cost function 
is given by 

and further reduced to 

The costate equation is derived in the 
following way 

By using Equation (14), in (15), we get 

The steps in SNAC network training are as 
follows (Figure 4): 

~ 

1 .  

2. 

3. 

4. 

Generate a set of training points. For each 
point in the ttaining set: 

a. Input X ,  to the critic network to obtain 

A+, = X+l 

b. Calculate U, from the optimal control 

equation (14) with known X ,  and A+]. 
c. Get X,+] from the state equation (8) 

using X ,  and U, 
d. Input X,,, to the critic network to get 

A+2 

e. Using Xk+l and A+*, calculate g+, 
from the costate equation (16) 

Train the critic network for all X k  in the 
training set to outputK+,”,, . 

Check convergence of the critic network. 
Convergence is defined as minimal change in 
the critic network between subsequent critic 
network trainings. If convergence is achieved, 
revert to step 1 with the next element of the 
training set. Otherwise, repeat steps 1-2. 

Continue steps 1-3 until finished with the 
training set. 

Critic I 

Figure 4. SNAC Training Procedure 

The SNAC network is broken into four 

~ 

separate networks, one for each control output. 
Each network is a feed forward network with 13 or 
14 neurons in the first Iayer, 18 neurons in the . 
hidden layer, and 1 neuron in the output layer. The 
activation function for each of the layers is tangent 
sigmoid, tangent sigmoid, and linear combination, 
respectively. During network training the inputs 
(states) are normalized with respect to a 
predetermined value specified by the user. The 
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output of the network (controVcostate) is not 
normalized. The SNAC network is trained offline 
with a representative training set of possible inputs 
(state combinations). The Levenberg-Marquardt 
training algorithm is used to train the networks with 
a learning rate of 0.5. 

Neural networks are widely known for their 
ability to handle nonlinearities in control systems. 
This study will determine the network's ability to 
successfully control a nonlinear aircraft as well as 
an aircraft with mildly simulated damage. 

Outer Loop Extra Control 
As a third step, we plan to append the 

analyhcal work under way to have an online 
learning neural network to account for the highly 
stressed situations such as a fiozen control surface, 
etc. This neural network would monitor the errors 
between the aircraft model and the actual flight data 
and output extra control to bring the error between 
the aircraft and the model to zero. The diagram for 
the extra control process can be seen below in 
Figure 5. 

_U_ 
"M - 

Figure 5. Outer Loop Extra Control Scheme 

The extra control neural network will be a 
learning neural network that updates its weights 
based on a training algorithm that feeds off its 
inputs: the model state vector and the error between 
the actual aircraft and the model. This work would 
be similar to previous work done at UMR in which 
a radial basis function neural network was used to 
add extra control based on errors in the system due 
to unceltainties [9]. 

Testing Procedures 
After the above controllers are verified to work 

on the system model during computer simulation, 

they will be implemented in the aircraft. Testing 
procedures specific to the type of controller being 
implemented will be followed. 

Dynamic Inversion 
The two dynamic inversion controllers 

(longitudinal and lateral) will be implemented in 
much the same way. First a transfer between the 
normal WC system and the microcontroller must be 
validated. This is essential to having the dynamic 
inverse controller able to take over the aircraft 
during trim flight. This step will be completed with 
both controllers using commands similar to a 
simple autopilot (steady state, non-turning flight). 
After this is accomplished, specific tasks will be 
tested for both controllers. For the longitudinal 
controller, simple altitude changes will be 
commanded. For the lateral controller, simple tums 
will be performed with possible altitude changes 
incorporated later. Once the initial maneuvers are 
carried out, more commands can be given over 
time. 

Single Network Adaptive Critic 

maneuver for the aircraft such as straight and level 
flight then a turn to the left, then a turn to the right, 
and finally straight and level flight. Once 
implemented, the trained maneuver would be 
commanded. After this maneuver was complete, 
the extents of the network's capabilities will be 
tested via maneuvers modified from the original 
trained maneuver. The network will also be tested 
with respect to control surfaces that may have 
restricted ranges or even hard coded offsets or 
biases that would simulate a change in the system 
model. The testing procedure for the Outer Loop 
Extra Control SNAC controller will be similar to 
the regular SNAC controller testing procedure and 
should exhibit more robust characteristics than the 
single SNAC network. 

The SNAC controller is trained via a certain 

Results and Discussion 
Telemetry flights of the aircraft have been 

successfully performed for data collection, 
verification, and parameter estimation, but 
currently, only the moment derivatives have been 
identified. Figure 6 shows a graph of a 3-2-1-1 
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maneuver for the elevator. For our designed 3-2-1- 
1 maneuver, the 2 pulse was determined to last 2 
seconds and the 3 and 1 pulse were scaled 
accordingly. Three of the recorded variables excited 
by this maneuver: Theta, 4, and Q are displayed in 
Figure 7. Theta and Phi are recorded through the 
use of a Kalman filter hard coded into the IMU. 
The roll rate, P, is computed hy the IMU by taking 
the derivative of the pitch angle, Theta. Using 
SIDPAC the moment derivatives have been 
estimated and are shown in Table 1. 

Figure 6. 3-2-1-1 Elevator Maneuver 

2 4 8 10 12 1. 
PnCh Rate 

. . . . . . . . . . , . . . . . . . . . . . . . . . . . 

0 2 4 6 8 10 12 1. 
lime (9) 

-10 

Figure 7. Recorded States 

Computer simulation will be completed on all 
of the controllers before they are flight tested 
Figures 8,9, and 10 show the results from the 
dynamic inversion controller operating in the lateral 
mode on the 30% scale Cessna 150. Figure 8 
shows the commanded variables as a solid line and 
the commands plotted as a dashed line while 
Figure 9 shows the control usage. The commanded 
variahles are as follows: bank angle, Phi, is 

commanded to -5 deg for a minute and then to 5 
deg for another minute before returning to a value 
of 0 deg, altitude was commanded to increase by 
200 feet for the first minute and then to decrease by 
400 feet for the next minute and then to return to 
the initial altitude, lateral acceleration was 
commanded to 0 for coordinated flight, and forward 
speed, U, was commanded to be constant at the trim 
velocity before the maneuver. 
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This maneuver was selected to show the 
capabilities of the lateral mode controller when 
commanded changes in the longitudinal and lateral 
modes of motion. The longitudinal mode controller 
has the same cross mode capabilities but, instead of 

commanding altitude, normal acceleration is 
commanded. Figure 10 displays the fligbt trajectory 
in three dimensions and verifies the successll 
simulation of the aircraft. 

Figure 8. Commanded Variables, Lateral Mode 

Figure 9. Control Inputs 

1Z.E.5-8 
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Figure 10. Three Dimensional Aircraft Trajectory 

The total simulation lasted three minutes and 
was run on a time step of 0.02s. The equations of 
motion are solved using a fourth order Runge-Kutta 
solver with fixed step size developed for use in 
Matlab. The simulation tracked very well as can be 
seen by the commanded variables plot. The error in 
bank angle decreased at a rate of about 5 deg per 
10s. Error in altitude decreased at a rate of 200 feet 
per about 30 seconds. Coordinated flight was 
achieved with maximum lateral acceleration near 
6* lo4 g’s. Forward speed, commanded to remain 
constant, only showed a departure ftom the initial 
velocity when the aircraft began the descent, during 
which the throttle control saturated to the least 
amount of thrust. All other controls throughout the 
simulation remained at very acceptable magnitudes 
of 7 deg or less. 

The SNAC controller synthesis is nearly 
complete and will be simulated for the Cessna 150 
soon. A similar extra control neural network has 
been proven to work on a nonlinear helicopter 
model[9] but has not been applied to an aircraft 
simulation. 

left for the project is as follows, but not necessarily 
in the order given: 

Work on the aircraft is continuing and work 

1 

2 

3 

4 Complete parameter estimation of 

Simulate the SNAC controller with the 
Cessna 150. 
Simulate the outer loop control with the 
Cessna 150. 
Perform telemetry flight with Cessna 
150. 

stability and control derivatives. 

5 Implement dynamic inversion controller 

6 

7 

and flight test. 
Implement SNAC controller and flight 
test. 
Implement outer loop NN with SNAC 
controller and flight test. 

Conclusion 
Implementation of non-linear flight controllers 

in autonomous air vehicles is becoming a very 
important aspect of aerospace engineering. This 
paper consists of the system identification and the 
plan to implement nonlinear flight controllers via a 
30% scale Cessna 150 that is fitted with full state 
feedback equipment. The first control technique 
chosen for hardware validation was a modified 
dynamic inversion technique. After the dynamic 
inversion controller and the flight hardware have 
been proven, a SNAC controller will be 
implemented to test the viability and robustness of 
such a controller. Next, an extra control controller 
via an online learning neural network will be 
implemented around the SNAC controller to 
account for changes in the system dynamics. 

Many studies have been done to implement 
adaptive control in pilot controlled aircraft. When 
complete, this project will have validated the use of 
a SNAC controller for use in aircraft as well as 
studied its robustness in the presence of system 
uncertainties and actuator failures. This study will 
ftnther the knowledge in nonlinear control 
implementation by being one of the first to 
implement a nonlinear, optimal, and reconfigurable 
controller for an autonomous aircraft. 
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