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Grain oriented crystallization, piezoelectric, and pyroelectric properties
of „BaxSr22x…TiSi2O8 glass ceramics

Jianping Zhang, Burtrand I. Lee, and Robert W. Schwartz
Department of Ceramic and Materials Engineering, Clemson University, Clemson, South Carolina 29634

Zhenya Ding
Beijing Graduate School of Wuhan University of Technology, Beijing 100024, China

~Received 3 March 1999; accepted for publication 16 March 1999!

Polar, nonferroelectric (BaxSr22x)TiSi2O8 glass ceramics with highly oriented crystallites were
prepared by a gradient temperature heat treatment technique. The crystallization mechanism and
microstructures of (BaxSr22x)TiSi2O8 glass ceramics were investigated by means of differential
thermal analysis, x-ray diffraction and scanning electron microscopy, and the dielectric,
piezoelectric and pyroelectric properties were investigated for various compositions. The results
show that polar (BaxSr22x)TiSi2O8 glass ceramics have a low dielectric constant and a high
hydrostatic figure of meritdh3gh5;2500. This high hydrostatic figure of merit, along with other
unique characteristics, such as no aging or depoling problems and good stability at high
temperatures, high pressure, and in harsh environments, makes (BaxSr22x)TiSi2O8 glass ceramics
attractive for use as hydrophones and high temperature infrared detectors. ©1999 American
Institute of Physics.@S0021-8979~99!06712-2#

I. INTRODUCTION

Piezoelectric ceramics attract a lot of attention because
these materials have been used for various electronic de-
vices, particularly electromechanical actuators and sensors.
Different perovskite systems, such as barium titanate
(BaTiO3) and lead zirconate titanate~PZT! have been suc-
cessfully developed to meet the needs of numerous
applications.1 Usually, these piezoelectric ceramics are pre-
pared by the sintering of the ceramic powders, which leads to
a polycrystalline microstructure. The resulting ceramics are
macroscopically isotropic after cooling below the Curie tem-
perature, and exhibit no directional behavior such as macro-
scopic piezoelectricity or pyroelectricity, unless the ceramics
are polarized to make them active under an electric field.
However, piezoelectric materials inevitably face aging prob-
lems associated with domain wall movement after the poling
process.1 The aging of the materials leads to a degradation of
the piezoelectric and pyroelectric properties, and the failure
of the devices.

In order to avoid this problem, a novel idea2 was pro-
posed to prepare piezoelectric and pyroelectric materials
which do not require poling. Halliyal3 explored the possibil-
ity of preparing grain-oriented materials with piezoelectric
and pyroelectric properties and obtained some positive re-
sults. This article reports research on polar, grain-oriented
glass ceramics in the systemxBaO–~22x!SrO–TiO2–3SiO2.
Results are presented on the crystallization mechanism, grain
oriented growth, and piezoelectric and pyroelectric proper-
ties of these materials.

II. EXPERIMENT

A. Glass formation and grain-oriented growth

In order to possess piezoelectric and pyroelectric prop-
erties, the main crystalline phase in the glass ceramic must

be polar in nature. Because of the requirements of the main
crystal phase and need for glass formation, the glass system
xBaO– (22x)SrO–TiO2–3SiO2 ~BSTS! was selected. SiO2
~Shanghai Chemical Co.! was used as the glass former and
TiO2 ~Beijing Chemical Co., P. R. China! acted as the nucle-
ating agent. BaCO3 and SrCO3 ~Beijing Chemical Co., P. R.
China! were used to promote the growth of BaxSr22xTiSi2O8

polar crystallites during the glass crystallization. The glasses
in the present study were obtained by mixing and melting the
above starting materials with different ratios in a platinum
crucible at 1480 °C for 10 h. Transparent cylindrical glass
samples with a diameter of 3 cm and a height of 2 cm were
obtained by pouring the melt into a preheated graphite mold.
After the top and bottom surfaces of the cylindrical samples
were carefully polished, the samples were put on a gradient
temperature hot stage for grain-oriented crystallization. In
the gradient temperature hot stage, the polished bottom ends
of samples were placed on an Al2O3 substrate at which a
maximum temperature of 1020 °C was maintained, and a
temperature gradient of 300 °C was achieved along the
samples through a 3 cm distance. At the beginning, the
samples started to crystallize on the bottom surface and then
crystallization proceeded inside the samples slowly. After
the 15 h crystallization, highly oriented glass ceramics were
obtained.4 Subsequently, the samples were cut into 2 mm
thick disks for property measurements.

B. Sample characterization

The crystallization behavior was determined by a CR-G
DTA analyzer at different heating rates witha-Al2O3 pow-
der as a reference. The crystalline phases in the glass ceram-
ics were identified by a D/max-IV polycrystalline diffracto-
meter. An ASM-SX scanning electron microscope was used
to examine the microstructure and grain orientation of the
BSTS glass ceramics.
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For dielectric, piezoelectric, and pyroelectric property
measurements, samples were cut from cylindrical glass ce-
ramics normal to the direction of the temperature gradient.
Gold electrodes were deposited on the samples via sputter-
ing. The piezoelectric coefficientd33 was measured with a
quasistatic piezoelectricd33 meter ~Model ZJ-2!.5 The di-
electric constant and dielectric loss were measured using an
HP 4192A impedance analyzer, and the piezoelectricd31

constant, electromechanical planar coupling factorkp , and
thickness coupling factorkt , were calculated from the
admittance–frequency curves. The pyroelectric coefficient
p3 was measured by a modified glass method.6

III. RESULTS AND DISCUSSION

A. Crystallization mechanism and grain orientation
growth

Among the 32 point groups, only the 20 noncentrosym-
metric, polar crystal systems7 may demonstrate piezoelectric
behavior. Of these 20 groups, only ten groups are pyroelec-
tric, i.e., they demonstrate a spontaneous polarization.
Based on this criterion, in order to possess piezoelectric
and pyroelectric properties, the main crystallites of the glass
ceramics must be spontaneously polarized. In this work,
the polar, noncentrosymmetric fresnoite crystal phase8

(BaxSr22x)TiSi2O8, tetragonal space groupP4bm, was cho-
sen as the main crystalline phase by using the proper starting
materials.

In addition to the requirement of a polar crystalline
phase, the nucleation and growth behavior of the glass ce-
ramics, as well as the spatial distribution of the polar crys-
tallites will have a significant effect on the piezoelectric
and pyroelectric properties of BSTS glass ceramics. In
order to examine the crystallization mechanism, differential
thermal analysis ~DTA! curves for the composition
~Ba1.8Sr0.2!TiSi2O8 (x51.8) at heating rates of 1, 2, 5, 10,
and 20 °C/min were obtained. It is well known that the nucle-
ation and growth behavior of glasses can be described by the
Johnson–Mehl–Avrami equation:9–13

y~ t !512exp~2K3tn!, ~1!

wherey(t) is the fraction transformed from the amorphous
phase to the crystalline phase at timet, n represents the crys-
tallization index, andK is a function of temperature and can
be defined as:K5A exp(2E/RT). Based on the above equa-
tion and DTA curves obtained at different heating rates, two
more useful equations10,11,14can be derived as

logDT52
nE

4.57
3

1

T
1C1 , ~2!

and

logH52
E

4.57
3

1

Tm
1C2 , ~3!

where E is the crystallization activation energy,DT is the
temperature difference at a given temperatureT in the DTA
curve shown in Fig. 1,Tm is the crystallization peak tem-
perature of the DTA curve at different heating ratesH, and
C1 andC2 are constants.

The crystallization peak temperaturesTm at different
heating ratesH, are listed in Table I. Several sets ofT and
DT values were obtained by selecting several points around
the exothermic peak of the DTA curve in Fig. 1. Subse-
quently, after plotting logDT vs 1/T, and logH vs 1/Tm

~Figs. 2 and 3!, the crystallization activation energyE, and
the crystallization indexn were calculated from the slopes of
the two plots as:

E5238.3 kJ/mol, n52.9

According to Table II,14 which lists the relationships be-
tween the crystallization mechanisms and crystallization in-
dices, and the calculated crystallization index of BSTS glass
ceramics, we can conclude that the BSTS glass ceramics
experienced a crystallization process controlled by interface

FIG. 1. DTA curve of~Ba1.8Sr0.2!TiSi2O8 glass ceramic at a heating rate of
20 °C/min.

FIG. 2. Plot of logDT vs 1/T.

TABLE I. Crystallization peak temperatureTm at different heating rates for
the glass-ceramic system 1.8 BaO–0.2 SrO–TiO2–3 SiO2.

Heating rate
~°C/min! 1 2 5 10 20

Tm ~°C! 812 827 842 862 878
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~surface! with a fixed number of nuclei. This result agrees
with our experimental observations. It was found that the
samples started to crystallize at the surface and the crystalli-
zation proceeded inside the samples along the direction of
temperature gradient. On the other hand, because of a certain
amount of nucleating agent in the BSTS glass ceramics such
as TiO2, a major nucleating agent, it is reasonable to con-
sider the number of nuclei as a fixed number. This conclu-
sion is useful to control the crystal size by controlling the
density of nucleation sites via the inclusion of nucleating
agents such as TiO2, in the glass systems.

Figure 4 shows the x-ray powder diffraction patterns for
different compositions after a 15 h full crystallization at a
temperature of 1020 °C. It is noted that all of the samples
with different compositions,x50.2, 1.2, 1.4, 1.6, 1.8, and
2.0, showed a single phase structure. The main crystal phase
was identified as the fresnoite-type (BaxSr22x)TiSi2O8 polar
crystal phase. It is believed that the BSTS system exhibits
solid solution behavior and all phases such as Ba2TiSi2O8,
Sr2TiSi2O8, and (BaxSr22x)TiSi2O8 have the same crystal
symmetry. Therefore, these samples all show the same basic
XRD pattern.

The surface XRD patterns taken normal to the gradient
temperature for samples with different compositions after 15
h gradient heat treatments are shown in Fig. 5. It is found
that the~002! peak is the strongest for all samples, which
indicates that the (BaxSr22x)TiSi2O8 crystallites grow with
the C axis parallel to the temperature gradient.

Figure 6 shows scanning electron microscopy~SEM!
cross-sectional microstructures of BSTS glass ceramics at
different heat treatment conditions for the composition
~Ba1.8Sr0.2!TiSi2O8. Figure 6~a! shows a sample with 5 h heat
treatment in the gradient temperature. It is clear that this
sample is not fully crystallized and the piezoelectricd33 con-
stant is low (0.8310212C/N). After a longer time~8 h! heat
treatment, the sample shown in Fig. 6~b! demonstrates more
extensive nucleation and growth and relatively higher piezo-
electricd33 constant (5.5310212C/N) in comparison to the
first sample, but the crystallization is still incomplete. Figure

FIG. 3. Plot of logH vs 1/Tm .

FIG. 4. XRD powder patterns of BSTS glass ceramics with different BaO
molar fractions.

FIG. 5. XRD patterns of glass-ceramic surfaces normal to the temperature
gradient for BSTS samples with different BaO molar fractions.

TABLE II. Crystallization mechanisms and crystallization indexn ~after
Marottaet al.!.a

Crystallization
mechanisms

Crystallization
index

n

Crystal growth controlled Constant nucleation rate 4
by interface Fixed number of nuclei 3
Crystal growth controlled Constant nucleation rate 5/2
by diffusion Fixed number of nuclei 3/2

aSee Ref. 14.
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6~c! ~12 h heat treatment! shows small crystallites with good
orientation and higher piezoelectricd33 constant (10.8
310212C/N), but a large amount of amorphous material
still exists around the crystallites. This indicates that the
crystallization process is still not complete after 12 h of heat
treatment. The sample in Fig. 6~d! shows excellent grain
orientation with a grain size of 5–7mm after a 15 h gradient
temperature heat treatment. The columnal crystallites in the
sample formed a dense microstructure with only a small
amount of amorphous phase among the crystallites. This
sample showed the highest piezoelectricd33 constant (16
310212C/N) among the four samples. These results indicate
that the piezoelectricd33 constant is strongly dependent on
the volume fraction of the oriented fresnoite phase and the
orientation of (BaxSr22x)TiSi2O8 crystallites in the glass
ceramics.

B. Dielectric and piezoelectric properties

Grain-oriented BSTS glass ceramics with different com-
positions in the systemxBaO– (22x)SrO–TiO2–3SiO2

were prepared, and the dielectric and piezoelectric properties
were measured as a function of composition. Figure 7 shows
the dielectric constant and dielectric loss of BSTS glass ce-
ramics at room temperature for different compositions. It is
noted that the dielectric constant for different compositions
from x50.2 to x52.0 is about 10–12 with no significant

effect of composition observed. However, the dissipation
factor decreases slightly from 0.08 to 0.05 when the value of
x is increased from 0.0 to 2.0. It is believed that the similar
dielectric properties for the different compositions are attrib-
utable to the similar crystal structures of these materials as
shown by the XRD patterns in Fig. 4. The compositional
dependencies of the piezoelectricd33 constant and the planar
coupling coefficientkp are shown in Fig. 8. The maximum
d33 value was found to be 16310212C/N when the BaO
molar fractionx51.8. However, thekp decreased from 10%
to 7.6% when thex value increased from 0.0 to 2.0. The
change of thed33 and kp values may be caused by the
substitution of Ba21 by Sr21 in the solid solution. When
Ba21 ~larger radius! is replaced by Sr21 ~smaller radius!,
the crystal structure will contract from Ba2TiSi2O8 to
BaxSr(22x)TiSi2O8. This slight distortion of the crystal struc-
ture may lead to the change of the piezoelectric properties,
which are known to strongly depend on the crystal structure.

Figures 9 and 10 show representative admittance–
frequency curves for the composition 1.8BaO–0.2SrO–
TiO2–3SiO2 from which the piezoelectric constantd31, pla-
nar coupling factorkp , and thickness coupling factorkt were
obtained. The hydrostatic constantsdh andgh can be calcu-
lated by the following equations:7

FIG. 6. Cross-sectional SEM micrographs of BSTS glass ceramics in the
system 1.8BaO–0.2SrO–TiO2–3SiO2: ~a! 5 h, ~b! 8 h, ~c! 12 h, and~d! 15
h heat treatments. The temperature gradient direction is along the vertical
direction in the micrographs.

FIG. 7. Compositional dependence of the dielectric constant and dielectric
loss of BSTS glass ceramics after 15 h heat treatment.

FIG. 8. Compositional dependence of the piezoelectric charge coefficient
d33 and electromechanical thickness coupling factorkp after 15 h heat treat-
ment.
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dh5d3312d31, ~4!

gh5dh /e0K, ~5!

whereK is the dielectric constant ande0 is the permittivity
of free space. The measured and calculated piezoelectric
constantsd33, d31, dh , andgh , and the electromechanical
coupling factorskp and kt for the composition 1.8BaO–
0.2SrO–TiO2–3SiO2 are listed in Table III. The correspond-
ing properties of lead zirconate titanate~PZT! and polyvinyl
fluoride ~PVF! are also listed for comparison. As we note,
the d33 and dh constants for the BSTS glass ceramics are
lower than those of PZT-5 ceramics. However, because of
the low dielectric constant of the glass ceramics, theg33 and
gh constants of BSTS glass ceramics are much higher than
those of PZT-5. In addition, the hydrostatic figure of merit
dh3gh for the BSTS glass ceramics is an order of magnitude
higher than that of PZT-5.

Because BSTS glass ceramics are nonferroelectric, inor-
ganic materials in nature and there is no poling process in-
volved, no depoling or aging problems1 are expected. The
grain-oriented microstructures of the BSTS glass ceramics
were formed at high temperature and the piezoelectric prop-

erties associated with the grain-oriented crystallites will be
maintained unless the microstructures are destroyed at a high
temperature at which the BSTS glass ceramics soften. The
nature of inorganic materials also makes BSTS glass ceram-
ics resistant to strong acid, strong base erosion.

Several experiments were done in this study to evaluate
the stability of piezoelectric properties with time, under re-
peatedly heating/cooling cycles, and after exposure to strong
acid and base, as well as underwater pressure.4 It was proved
that the BSTS glass ceramics showed no change4 in the d33

constant after a period of 2 years, and exhibited goodd33

stability when the samples were subjected to ten heating/
cooling cycles from 950 to 25 °C. Moreover, the BSTS glass
ceramics also demonstrated stable hydrostatic piezoelectric
properties, e.g.,gh . The underwater pressure experiment in-
dicated that thegh constant showed no obvious change when
the underwater pressure was increased to 9 MPa. This is
because high hydrostatic pressures will not reshape the grain-
oriented microstructures which contribute to the piezoelec-
tric properties. It is also found that the BSTS samples dem-
onstrated good resistance to the strong acid and base after
being soaked in strong hydrochloric acid~5.0 N HCl! and
strong sodium hydroxide solution~4.0 N NaOH! for 2
weeks. No obvious erosion of the samples and change of the
piezoelectric constantd33 were observed.

FIG. 9. Plot of admittance vs frequency at the thickness mode for BSTS
glass ceramic at a BaO molar ratio of 1.8.

FIG. 10. Plot of admittance vs frequency at the planar mode for BSTS glass
ceramic with a BaO molar fraction of 1.8.

FIG. 11. Composition dependence of the pyroelectric coefficient in BSTS
glass ceramics after 15 h heat treatment.

TABLE III. Piezoelectric, pyroelectric properties of BSTS glass ceramic,
PZT ceramics, and PVF2 polymer.

Properties BSTS glass ceramics PZT-5 PVF2

K 10–12 1800 13
d33(10212 C/N) 10–16 450 30
d31(10212 C/N) 1–1.4 2205 218
dh(10212 C/N) 12–16 40 10
g33(1023 V m/N) 110–130 28 250
gh(1023 V m/N) 130–160 2.5 100
dh3gh(10215 m2/N) 1560–2560 100 1000
kt ~%! 30–32 49 19
kp ~%! 4–10.5 34 11.7
P3 ~mC/m2 K! 4.1–5.8
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In addition to the high hydrostatic figure of meritdh

3gh5;2500, the strong stability of piezoelectric properties
of the BSTS glass ceramics at high temperatures, high pres-
sure, and in harsh environments, makes (BaxSr22x)TiSi2O8

glass ceramics attractive for use as hydrophones.

C. Pyroelectric properties

As for the pyroelectric properties, the composition de-
pendence of the pyroelectric coefficient of BSTS glass ce-
ramics was investigated by measuring the pyroelectric coef-
ficient p3 . It is shown in Fig. 11 that the pyroelectric
coefficient reaches a maximum value of 5.8mC/m2 K at
room temperature whenx50.6. Figure 12 illustrates the de-
pendence of pyroelectric coefficient on temperature for the
systemx50.6. It was noted that the BSTS glass ceramics
show a positive coefficient in the temperature range from
250 to 200 °C in comparison with the negative pyroelectric
coefficient in most single crystals.8 The reason for this nega-
tive pyroelectric coefficient is because the secondary pyro-
electric coefficientpsec in this glass-ceramic system is larger
than the primary pyroelectric coefficient,8 pprim . For the
point group 4mm, the pyroelectric coefficient can be given
by the following relationship:15

pi
s5~]Ps /]T!E,S1d31~C11a11C12a11C13a3!

1d33~2C13a11C33a3!, ~6!

where pi
s is the total pyroelectric coefficient measured at

constant stress and (]P/]T)E,S is the primary pyroelectric
coefficient with a negative sign which is defined by the spon-
taneous polarization change with temperature. The next two
terms are the secondary pyroelectric coefficient with a posi-
tive sign which is contributed by the piezoelectric effect be-
cause the thermal expansion generates a strain when the
temperature changes.d31 andd33 are the piezoelectric coef-
ficients, C11, C12, and C13 represent the elastic stiffness
coefficients, anda1 anda3 are the linear expansion coeffi-
cients in the I and III directions.E, S, ands represent con-
stant electric field, strain, and stress, respectively. Since the

secondary pyroelectric coefficient is larger than the primary
pyroelectric coefficient in BSTS glass-ceramics system, the
overall pyroelectric coefficient exhibits a positive value.

The pyroelectric coefficients of BSTS glass ceramics at
room temperature are smaller than those of commercial py-
roelectric materials, such as TGS, LiNbO3, and LiTaO3, but
they show several advantages such as high temperature sta-
bility and good ability to withstand high power laser
radiation.16 Therefore, they have potential application in high
temperature infrared~IR! detectors.

IV. CONCLUSIONS

Nonferroelectric, polar BSTS glass ceramics with
piezoelectric and pyroelectric properties were prepared
by a gradient temperature technique. Highly oriented
(BaxSr22x)TiSi2O8 crystallites were obtained after 15 h of
gradient temperature heat treatment and it is believed that the
orientation crystallization was controlled by the surfaces of
the samples. The piezoelectric properties strongly depend on
the crystallite orientation of (BaxSr22x)TiSi2O8. The dielec-
tric, pyroelectric, and piezoelectric measurement results
show that the polar BSTS glass ceramics have a low dielec-
tric constant of;12, a low pyroelectric coefficient of 5.8
mC/m2 K, and a high hydrostatic figure of meritdh3gh

5;2500. This high hydrostatic figure of merit, along with
other unique characteristics of these materials, such as no
aging and no depoling problem, good stability in high tem-
perature, high pressure, and harsh environments, makes
BSTS glass ceramics attractive for hydrophone and high
temperature IR detector applications.
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