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Robust/Optimal Temperature Profile Control
of a High-Speed Aerospace Vehicle

Using Neural Networks
Vivek Yadav, Radhakant Padhi, and S. N. Balakrishnan

Abstract—An approximate dynamic programming (ADP)-based
suboptimal neurocontroller to obtain desired temperature for a
high-speed aerospace vehicle is synthesized in this paper. A 1-D
distributed parameter model of a fin is developed from basic
thermal physics principles. “Snapshot” solutions of the dynamics
are generated with a simple dynamic inversion-based feedback
controller. Empirical basis functions are designed using the
“proper orthogonal decomposition” (POD) technique and the
snapshot solutions. A low-order nonlinear lumped parameter
system to characterize the infinite dimensional system is obtained
by carrying out a Galerkin projection. An ADP-based neurocon-
troller with a dual heuristic programming (DHP) formulation is
obtained with a single-network-adaptive-critic (SNAC) controller
for this approximate nonlinear model. Actual control in the
original domain is calculated with the same POD basis functions
through a reverse mapping. Further contribution of this paper in-
cludes development of an online robust neurocontroller to account
for unmodeled dynamics and parametric uncertainties inherent
in such a complex dynamic system. A neural network (NN) weight
update rule that guarantees boundedness of the weights and
relaxes the need for persistence of excitation (PE) condition is
presented. Simulation studies show that in a fairly extensive but
compact domain, any desired temperature profile can be achieved
starting from any initial temperature profile. Therefore, the ADP
and NN-based controllers appear to have the potential to become
controller synthesis tools for nonlinear distributed parameter
systems.

Index Terms—Control of distributed parameter systems, neural
networks (NNs), proper orthogonal decomposition (POD), temper-
ature control.

I. INTRODUCTION

I N a strictly mathematical sense, almost all real-world engi-
neering problems are distributed in nature and can be de-

scribed by a set of partial differential equations (PDEs). Even
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though for many practical problems (e.g., dynamics of car, air-
plane, etc.) a lumped parameter representation is often adequate,
there are wide class of problems (e.g., heat transfer, fluid flow,
flexible structures, etc.) for which one must take the spatial dis-
tribution into account. These systems are also known as dis-
tributed parameter systems (DPS). In this paper, an ADP-based
neurocontrol of the temperature profile across the fin of a high-
speed aerospace vehicle, modeled as a nonlinear distributed pa-
rameter system, is considered.

An interesting historical perspective of the control of dis-
tributed parameter systems can be found in [22]. There exist
theoretical methods for the control of distributed parameter sys-
tems [10] in an infinite dimensional operator theory framework.
One engineering approach to control the distributed parameter
systems is to develop an approximate model of the system
based on finite difference techniques and applying the control
design tools directly on that approximated model [32]. Another
technique is to have a finite dimensional approximation of the
system using a set of orthogonal basis functions via Galerkin
projection [17].

Galerkin projection normally results in high-order lumped
system representations. For this reason, attention is being in-
creasingly focused in recent literature on the technique of proper
orthogonal decomposition (POD) [5], [6], [17], [35], [37]. In
this technique, a set of problem-oriented orthogonal functions
are designed to approximately span the solution space of the
original system of PDEs. This is done through the so-called
“snapshot” solutions, which are representative ensemble of the
system states at arbitrary instants of time. In the process, a very
low-order lumped model is created that is sufficient for prac-
tical controller design. For linear systems, it has been proved
that such an approach leads to an optimal representation in the
sense that it captures the maximum energy of the infinite dimen-
sional system with the least number of basis functions [17], [35].
Even though theorems do not exist, this idea has been success-
fully used in controller design for nonlinear systems [5], [37].

An important open question in this area is the construction of
proper input functions to collect representative snapshots. Quite
often, an open-loop controller is used for this purpose. Recently,
there have been some attempts at modifications to this technique
[3], [36] since a snapshot-solution-based model may not “see”
some modes that could be excited in a feedback situation. This
drawback is eliminated in our study with the use of a feedback
linearized controller [39] in generating snapshots.

The rest of this paper is organized as follows. Neural net-
work (NN)-based controllers are reviewed in Section II. In

1045-9227/$25.00 © 2007 IEEE
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Section III, a nonlinear model for the fin of a high-speed
aerospace vehicle that accounts for all of the three types of
heat transfer, namely conduction, convection, and radiation,
is developed. In Section IV, the controller design objectives
are presented and the related problem formulation is given.
In Section V, a POD-based basis function design and its sub-
sequent use in a Galerkin projection scheme are discussed.
In Section VI, the dual heuristic programming (DHP)-based
NN synthesis procedure to design the optimal controller is
described. Furthermore, the single-network-adaptive-critic
(SNAC) algorithm is presented. In Section VII, an online NN
controller development to provide robustness against uncer-
tainties is provided. In Section VIII, the numerical results are
analyzed. Conclusions are drawn in Section IX. Proofs of the
hypothesis used are presented in the Appendix.

II. BACKGROUND

There has also been a lot of interest in the use of NNs for
controller design that guarantees desired performance in the
presence of uncertainties and unmodeled dynamics. A multi-
stage NN robot controller with guaranteed tracking performance
was proposed by [24]. This controller was designed specifi-
cally for a serial link robot arm and was developed by using
a filtered error/passivity approach. Bounded tracking errors and
bounded NN weights were guaranteed. In [31], many architec-
tures of adaptive controllers using recurrent networks were pre-
sented. A robust adaptive output feedback controller for single-
input–single-output (SISO) systems with bounded disturbance
was studied by [2]. In [8], theoretical development and numer-
ical investigation of an adaptive tracking controller using NNs
were presented. They provided stable weight adjustment rules
for an online NN and simulation results for an F-18 aircraft
model. In [23], an online adaptive NN for use in a nonlinear
helicopter flight controller was designed. The network helped
the system with good tracking capabilities in the face of sig-
nificant modeling errors. An adaptive output feedback control
scheme for uncertain systems using NNs was proposed in [16].
In [24] and [25], the authors discussed an online NN that ap-
proximates unknown functions and is used in controlling the
plant. A robust adaptive control methodology that uses single
hidden-layer feedforward NNs was presented in [27]. In [18], a
Lyapunov-equation-based theory for robust stability of systems
in the presence of uncertainties was developed. The result is an
“extra control” which when added to the basic control effort kept
the system stable. This approach was illustrated through a he-
licopter problem. In this paper, we develop a version of extra
control to account for the unmodeled dynamics and parametric
uncertainties.

The method of dynamic programming [7], [25] is a powerful
tool to solve many real-life problems. It produces a comprehen-
sive solution by generating a family of optimal paths, or what
is known as the “field of extremals.” A major drawback of the
dynamic programming approach is that it requires a prohibitive
amount of computation and storage, and therefore, is imprac-
tical to use.

Fig. 1. Pictorial representation of the problem.

However, an approximate dynamic programming approach to
circumvent the computational load with an adaptive critic neu-
rocontroller synthesis has been proposed in [4], [34], [42], and
[43]. The adaptive critic methodology approximates and opti-
mizes a control law iteratively during the offline training of “ac-
tion” and “critic” networks, for an entire envelope of states. The
action networks capture the relationship between the state and
control variables, whereas the critic network captures the rela-
tionship between state and costate variables in the development
of optimal control theory. There are many variations of this tech-
nique in the literature [34]. Among many successful uses of this
method for nonlinear control design are [4], [12], and [41]. Is-
sues of convergence and stability of adaptive critic methods have
been addressed in [26].

III. MATHEMATICAL MODEL FOR THE PROBLEM

Mathematical model of heat transfer in a cooling fin of a
high-speed aerospace vehicle traversing through the earth’s at-
mosphere is developed in this section using concepts from basic
thermal physics [28]. The development is illustrated in Fig. 1.

The law of conservation of energy in the infinitesimal volume
at a distance , having length (as depicted in Fig. 1), for this
problem, is described in

(3.1)

where is the entering rate of heat conduc-
tion, is the rate of heat generation, and

is the rate of heat generation per unit volume (also a
function of both time and spatial location ) and acts as the
control variable for this problem. Note that the controller has
been assumed to be continuous in the spatial domain.
is the exiting rate of heat conduction,
is the rate of heat convection, is
the rate of heat radiation, and is the
rate of heat change [28].

A first-order Taylor series expansion is used to approximate
the exiting rate of heat conduction as

(3.2)
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TABLE I
PARAMETER DEFINITIONS AND NUMERICAL VALUES

represents the temperature, which varies with both time
and spatial location . Definitions of the various parameters

and the numerical values used in this paper are given in Table I.
Area and perimeter are computed assuming the fol-

lowing fin dimensions: . Note that a 1-D approxima-
tion for the dynamics is used. In the paper, this means a uniform
temperature in the other two dimensions being arrived at instan-
taneously.

By using the expressions for individual terms and defining
, , ,

and , the PDE representation of conservation of
energy in (3.1) becomes

(3.3)
Boundary conditions for (3.3) are

(3.4)

where the value of is dictated by the temperature profile
at . An insulated boundary condition at the tip is

assumed.

IV. CONTROLLER OBJECTIVES

Design objectives and preliminary steps in a temperature
feedback controller development for a high-speed aerospace
vehicle are presented in this section.

The main objective of the controller is to make the system
reach a desired temperature profile on the fin, as
time , where is the desired temperature distribu-
tion along the fin. The controller design is carried out such that

acts as a steady-state condition after . Tem-
perature is normalized between 0 and 1 to help with roundoff
errors. The normalized temperature is defined as

, where is the maximum
safe operating temperature of the fin ( 1100 K) and the nor-
malized time, is defined as , where .
Let be the nondimensional temperature corresponding to

. Defining the deviation (error) and

and substituting in (3.3), the error dynamics
become

(4.1)

where

(4.2)

Note that the coefficients of nonlinear terms (4.1) and (4.2) are
functions of the desired temperature profile. The controller de-
velopment now becomes a regulator problem. The steady-state
control solution is obtained by substituting in place of
in (3.3) and imposing the steady-state condition

(4.3)

The in (4.3) acts as a feedforward controller for this problem.
A feedback controller (see Section IV-A) is added to this control
to yield the total control.

A. Feedback Controller

The actual temperature and control variables are written in
terms of the desired final (steady)-state temperature profile

and the control

(4.4)
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In (4.4), and are the deviations from their respec-
tive steady-state values. Next, the deviation dynamics are devel-
oped by substituting (4.4) in (4.1) and simplifying the resulting
equation. Consequently, we get

(4.5)

where
.

Similarly, the boundary conditions are expressed in terms of
the deviations from the steady-state values as

(4.6)
The purpose of the feedback controller is to make the
deviations from the steady-state conditions, i.e., as
time . As the state deviations tend to zero with time, the
associated control effort goes to zero. These goals are achieved
by minimizing a quadratic cost function in

(4.7)

In (4.7), and are the weights that express the
designer’s concern for excessive deviations from the nominal
and the control effort, respectively. Equations (4.5)–(4.7) define
the complete optimal control problem.

V. LOW-ORDER LUMPED PARAMETER APPROXIMATION

This section discusses the development of low-order finite
dimensional models for controller synthesis.

A. Procedure to Generate Snapshot Solutions

Snapshot solutions are generated by starting the solution
process from different initial conditions that satisfy the boundary
conditions. In order to generate snapshot solutions, the simula-
tion is carried out for a fixed amount of time and snapshots are
selected at equally spaced instants on this trajectory. This process
is repeated for different initial conditions. Rather than using
chosen input functions, a feedback-linearization-based control
[39] is used to simulate the closed-loop behavior of the system.

B. POD: A Brief Review

The POD is a technique for determining an optimal set of
basis functions, with a set of snapshot solutions obtained by the
method described in Section V-A.

Let be a set of snapshot
solutions (observations) of a physical process over the domain

at arbitrary instants of time. Let the dimension of be
. The goal of the POD technique is to find a set of basis

functions such that is maximized in

(5.1)

As a standard notation, the inner product is defined as
. It has been shown [38]

that when the number of degrees of freedom required to de-
scribe is larger than the number of snapshots (always true
for infinite dimensional systems), it is sufficient to express the
basic functions as linear combinations of the snapshots as

(5.2)

Here, the coefficients are to be determined such that maxi-
mizes (5.1). Then, this approach consists of the following steps.

• Construct an eigenvalue problem

where

(5.3)

• Obtain eigenvalues and corresponding eigenvectors of
the matrix. Note that matrix is symmetric, and hence,
its eigenvalues are real. Also, it has been shown that all
eigenvalues of are nonnegative [35].

• Sort the eigenvalues of in a descending order
. Let the corresponding eigenvectors be

. A property of these eigenvectors is that
they are mutually orthogonal.

• Normalize the eigenvectors to satisfy

(5.4)

This will ensure that the POD basis functions are or-
thonormal.

• Cut off the eigenspectrum judiciously, so that the truncated
system with eigenvalues will satisfy

. Usually, it turns out that .
• Finally, construct the basis functions as

...

(5.5)

An interested reader can refer to [17], [35], and [36] for details
about this procedure.

C. Lumped Parameter Problem

The reduction of the infinite dimensional PDE-driven problem
to a finite set of ordinary differential equations and a related cost
function are explained in this section. After obtaining the basis
functions , and are expanded as follows:

(5.6)
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One can notice that both and are characterized
by the same basis functions. This implies that a state feedback
controller spans a subspace of the state variables, and hence,
the basis functions for the state are assumed to be capable of
spanning the controller as well. By substituting these expansions
of state and controller variables in (4.5), we get

(5.7)

Note that has a linear term and other

no-linear terms, hence can be written as

, where is defined as

. Next, taking the Galerkin projection of (5.7)
on the basis function (i.e., taking the inner product with
respect to ), and using the fact that the basis functions are
orthonormal, yields

(5.8)

Repeating this exercise for and arranging the
equations in order, leads to a set of ordinary differential equa-
tions of the form

(5.9)

where , and . Other
symbols are defined as follows:

(5.10)

Next, the terms in the cost function (4.7) that contain and
should be written in terms of and

(5.11)

where and

(5.12)

where . Thus, the cost function in (4.7) in terms of the
finite-dimensional states becomes

(5.13)

From (5.9) and (5.13), an analogous optimal control problem in
the lumped parameter framework can be defined. This problem
is solved next using the NNs in an approximate dynamic pro-
gramming (ADP) framework.

VI. ADP

In this section, the general discussion on the optimal control
of the distributed parameter systems is presented in an ADP
framework. Detailed derivations of these conditions can also
be found in [4] and [42] and are repeated here for the sake of
clarity and completeness. Development in this section will sub-
sequently be used in synthesizing the NNs for optimal cooling
control of the fin.

A. Problem Description and Optimality Conditions

Assume a scalar cost function, to be minimized, of the form

(6.1)

where and represent the state vector and
control vector, respectively, at time step . represents

the number of discrete time steps. is a nonlinear
cost function at step that represents the concerns of the control
system designer. Note that when is large, (6.1) represents
the cost function for an infinite horizon problem. Following the
aforementioned representation of the cost function, we denote
the cost function from time step as

(6.2)

In a standard dynamic programming form, the cost in (6.2) is
written in a recursive form by relating the cost from stage to
end given by as the sum of the cost from stage to
end given by and the cost of going from stage to stage

denoted by as

(6.3)

is known as the “utility function.” The costate vector
at time step is defined as

(6.4)
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Then, the necessary condition for optimality is

(6.5)

However

(6.6)
Therefore, the optimality condition reduces to

(6.7)

The costate propagation equation can be derived in the fol-
lowing way:

(6.8)

Equation (6.8) evaluated along the optimal path given by (6.7)
simplifies to

(6.9)

B. Optimality Equations for the Fin Problem

Temperature propagation equation across the fin can be
written in the following discrete form as

(6.10)

We notice that a discrete equivalent of the cost function in (5.13)
can be written as

(6.11)

where and . We also have

(6.12)

Then, equations for optimal control and costate can be written
as

(6.13)

(6.14)

It should be noted that explicit forms of the functions and
depend on the type of discretization procedure. With the avail-
ability of relationships in (6.10), (6.13), and (6.14), we can pro-
ceed to synthesize a neurocontroller as discussed in the fol-
lowing sections.

C. Single Network Adaptive Critic (SNAC)

Typically, ADP-based problems are solved by using two net-
works in a DHP formulation: one network to capture the re-
lationship between the states and the control at stage and a
second network to capture the relationship between the states
and the costates at stage . In contrast, the SNAC captures the
relationship between the states at and the costates at .

Even though the relationship between and can be
captured in a single network, in this paper, the network is split
internally into subnetworks, assuming one network (rather
one subnetwork) for each element of the costate vector. The
input to each subnetwork, however, is the entire state vector .
Having a separate network for each element of the costates has
been found to speed up the training process since cross coupling
of weights for different components of the output vector are
absent.

Choosing specific architectures for the subnetworks mostly
relies on experience and intuition. Use of small networks may
not be adequate to capture the nonlinearities whereas large net-
works may lead to slower training. In this paper, five feedfor-
ward NNs are used. A NN implies that the network
has five neurons in the input layer, five neurons in the hidden
layer, and one neuron in the output layer. For activation func-
tions, a tangent sigmoid function is used for all the hidden layers
and a linear function is used for the output layer.

D. State Generation for NN Training

Note that the lumped parameter states can be computed from
as shown by

(6.15)

Let and denote the vectors of maximum and min-
imum values of the elements of , respectively. Note that for
values close to zero, the effect of nonlinear term is negligible and
systems behave close to linear dynamics. Our offline training
process ensures that effects of nonlinear terms come in slowly
as the training set is expanded. Implementation is carried out by
training in a smaller domain and increasing it to accommodate
the entire range. Let . The initial training set is ob-
tained by setting and generating training points in

. Once the network is trained in this
set, is changed as for
and the network is trained again. This process is repeated until

.

E. Training of NNs

The NN training in this paper proceeds along the following
steps (Fig. 2).

1) Fix and generate (as described in Section VI-C).
2) For each element of , follow the steps below.

• Input to the networks to get . Let us denote it
as .

• Calculate , knowing and , from optimal con-
trol equation (6.13).

• Get from the state equation (6.10), using and
.

• Input to the networks to get .
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Fig. 2. Schematic of NN synthesis.

• Calculate and form the costate equation (6.9). Let
us denote this as .

3) Train the networks, with all as input and all corre-
sponding as output.

4) If proper convergence is achieved, stop and revert to step
1), with . If not, go to step 1) and retrain the networks
with a new .

For faster convergence, a convex combination
, as the target output for training, is used.

Moreover, to minimize the chance of getting trapped in a local
minimum, the batch training philosophy is followed, where the
network is trained for all of the elements of , simultaneously.
The Levenberg–Marquardt method [14] is used for training. For
each , 2000 input–output data points are chosen. After training
thenetworkswith2000datapointsfor25epochs, thenetworksare
checked for convergence (see Section VI-F) with another 2000
different data points. If the convergence condition is met, the net-
works are trained again with a different set of 2000 data points
in and so on. Otherwise, the training process is repeated by
generating another set of random data in .

F. Convergence Check

Before changing to and generating new profiles for
further training, it should be assured that proper convergence is
achieved for . For this purpose, a training set is generated in

and is used as described in the following.
1) Fix a tolerance value (in this paper, ).
2) By using the profiles from , generate the target out-

puts, as described in Section 6-C. Let the outputs be
.

3) Generate the actual output from the networks by simulating
the trained networks with the profiles from . The values
of the outputs are .

Check whether simultaneously
. If yes, it can be said that the networks have

converged.

G. Implementation of the Control Solution

After the network controller is synthesized offline, it is im-
plemented as a feedback controller, as shown in Fig. 3.

Note that the SNAC controller generates the control that will
take the current fin state from any temperature profile (within
the compact set used) to the desired temperature profile .

VII. ROBUST CONTROL DESIGN USING ONLINE NNS

Accurate thermal modeling of a high-speed aerospace vehicle
is very difficult. It is imperative that any thermal controller is ro-
bust to uncertainties due to modeling errors or parameter varia-
tions. In this section, an extra control scheme to compensate for
unmodeled dynamics is developed.

A. Problem Formulation and Uncertainty Description

Let the true model be given by

(7.1)

where represents the bounded uncertainty not cap-
tured by the nominal model.

The goal is to find an extra control that can offset the effects
of this uncertainty and help perform close to nominal system
behavior.

Note that the uncertainty can be expanded as explained in
Section V-C as follows:

(7.2)

By using (7.2) and taking inner product of (7.1) with the basis
functions, a reduced-order model for the true plant is obtained
as

(7.3)

where

B. Uncertainty Modeling With Online Network and Weight
Updates

This section describes how the system uncertainty is mod-
eled through an NN. The key idea is to capture the unmodeled
dynamics using an NN, the weights of which are updated on-
line. In order to ensure convergence, the weight update scheme
is so chosen as to yield bounded weight estimates. Note that the
output of an NN can be written as where is a ma-
trix of weights and is a vector of basis functions. The basis
functions are chosen in such a way that . It is
known that within a compact set of state there exists a matrix
of weights and a vector of basis functions that can approximate
the uncertainty into any desired accuracy, i.e.,

(7.4)

where is the matrix of ideal weights and is the approx-
imation error of the NN and, for any positive number , there
exists an NN such that .
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Fig. 3. Implementation of control solution.

The chosen basis functions that form the online network are
for all . Fourier series is

used because of its boundedness, orthogonality, and good non-
linear function approximation capabilities. The 20 terms of the
Fourier series are found to be sufficient for this application. For
this NN structure, the weight update rule is presented as follows.

Let denote the control generated by the adaptive critic
network controller for the nominal system

(7.5)

Let denote the extra control being applied to compensate
for uncertainty in the model. The total control applied in is

.
By substituting the previous expression for in the actual

plant model in (7.3) leads to

(7.6)

By choosing as , the uncertainty is shown
to be compensated for. By substituting for and from
(7.4), (7.6) becomes

(7.7)

Now, an “approximate” system mimicking the nominal system
is defined as follows:

(7.8)

where is of the form ( is scalar and is the identity
matrix).

This (observer-type) system (7.8) is introduced to get an ap-
proximation of the error between the states and (7.5) and (7.7).
The extra term is introduced to make (reduce) the
error between its states and (7.6) and when , (7.5) and
(7.8) become identical. We prove this by choosing the online
NN weight update rule as

(7.9)

where . Note that the weights are guaranteed to
be bounded and the bound on error between the approximate
plant and the actual plant can be made as small as possible by

choosing design parameters and (see the Appendix). is
the learning rate of the network. The first term in (7.9) is used to
realize a good approximation of the uncertainty in the model and
the second term helps ensure the boundedness of the weights.

C. Application to High-Speed Aerospace Vehicle Problem

It can be seen that the coefficients in the model are functions
of the desired temperature profile. Since the control scheme was
presented for the profile given by , for any other desired pro-
file (say ), the equation for deviation of states from
can be written as

where

(7.10)

It can be seen that the optimal control scheme developed cannot
be used directly to achieve . In order to achieve any desired
profile, the SNAC network must be trained again. In order to use
the same network trained to yield to help achieve , add
and subtract in (7.10) to get

(7.11)
This manipulation allows us to treat the last term

as unmodeled dynamics. Now, we can rewrite (7.11)
as

where

(7.12)

By using the online NN approach to compensate for this unmod-
eled dynamics, any desired profile can be achieved.

It should be pointed out that yet another type of important
uncertainty in physics modeling can be accommodated in this
framework. Viscous forces in high temperature are difficult to
model accurately. The heat generated due to viscosity can be
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Fig. 4. Implementation of robust control solution.

TABLE II
PARAMETER DEFINITIONS AND VALUES

considered as an unmodeled uncertainty. The shear stress gen-
erated due to viscosity is given by [1]

(7.13)

where is along and is perpendicular to the motion of the
vehicle (also fin surface), is the velocity of the air along ,
and is viscosity of air and varies linearly with temperature.
The viscosity term is evaluated at the surface of the fin. The
heat transfer equation with the effect of viscosity becomes

(7.14)
The robust control scheme formulated in this paper can handle
this type of uncertainty as well.

D. Implementation of the Robust/Optimal Control

Fig. 4 shows the control solution implementation scheme that
compensates for model uncertainties and/or change of desired
temperature profiles.

VIII. NUMERICAL RESULTS

Numerical simulations were performed in MATLAB. Five
basis functions were found to be adequate to describe
the high-temperature model for an aerospace vehicle. Simula-
tion results are presented in three parts. First part shows the
results from the SNAC design where the desired temperature
profile was a constant temperature along the spatial direction.
Second part presents the results from using the robust control

Fig. 5. Temperature profile.

scheme. In this paper, this relates to achieving any desired tem-
perature profile from a set of initial profiles. The third section
discusses results where the true plant has a viscosity-related
term and a resultant heat addition over the nominal model.
Values of the parameters used in the simulations are presented
in Table II.

A. SNAC Controller

This section presents the results obtained by using the SNAC
controller to achieve a constant temperature of 873 K across the
fin. It can be seen from the 3-D temperature history presented
in Fig. 5 that the desired final temperature profile is reached.

Fig. 6 presents the control effort from the adaptive critic con-
troller on the reduced-order side transformed to the original side.
Note that this additional control is used (on the reduced-order
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Fig. 6. Control output of the network.

Fig. 7. Temperature profile variation with time.

Fig. 8. Error between actual temperature and the desired temperature.

side) to take the deviations (again on the reduced-order side)
to zero. The steady-state control is not added to the computed
control. The finite dimensional model is used to compute the

Fig. 9. Temperature distribution.

Fig. 10. Control history.

additional amount of control needed to drive the error between
the desired profile and the current profile to zero; then, the basis
functions are used to transform this control effort to a true con-
trol and applied to the original model. As to be expected, this
history decays to zero, as in Fig. 6.

B. Online NN to Reach Any Desired Final Profile

The method proposed in Section VII-C is tested in a case to ob-
tain an exponential profile. If the SNAC controller is used alone to
drive the error between the desired state and the final state to zero,
then the desired temperature is not achieved because the SNAC
was designed to obtain a single specific desired profile although
it can achieve it from any starting temperature profile. However,
with the use of the online NN for compensation of unmodeled
dynamics, any desired profile can be achieved. The parameters
used for the simulations of this network are and .

Fig. 7 presents the temperature history in the case of the de-
sired exponential profile. Note that the temperature error his-
tory (from the desired profile) is presented in Fig. 8 and it goes
to zero with time. Fig. 9 shows the desired temperature profile
along the fin and the actual temperature at steady state. Note
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Fig. 11. Temperature variation with time with and without uncertainty compensation.

that they are almost identical. Control history, a sum of SNAC
output and extra control, is presented in Fig. 10.

C. Online NN (Robustness to Viscosity Effects)

This section presents the simulation results where the con-
troller design is shown to be robust to unmodeled viscous forces.
In the first case, the SNAC is designed as in Section VIII-A
to produce a constant temperature across the fin using a model
without the viscous terms. The online NN is used to compensate
for the viscous effects. It can be seen from Fig. 11 that the de-
sired final temperature is achieved when there is online compen-
sation but it is quite different without it. Fig. 12 shows that the
final temperature achieved with the online network and without
it. The end results are quite different.

IX. CONCLUSION

In this paper, ADP-based formulations were used to synthe-
size suboptimal neurocontrollers for high-speed aerospace ve-
hicles traversing through the atmosphere. An adaptive-critic-
based SNAC controller was shown to be able to drive any given
initial temperature profile to a desired profile. In order to com-
pensate for the effect of uncertainty and to use the same adap-
tive critic network for achieving any desired profile, an online
NN was used. The weight update rule proposed in this paper
ensures boundedness of the weight estimates, and hence, re-
laxes the persistence of excitation condition. It was shown in
simulation studies that the proposed robust control scheme can
achieve any desired end profile and can compensate for viscous
effects that are difficult to model (unmodeled dynamics). The
technique developed in this paper is implementable. Simulation
results demonstrate that the proposed technique has excellent
promise and could be very useful for a variety of applications
since the formulation uses very few assumptions in its develop-
ment.

APPENDIX

In this section, it is shown that the weight update scheme
(7.9) drives the error between actual and approximate plant to
zero and also guarantees that the weights are bounded. First,

Fig. 12. Final temperatures with and without uncertainty compensation.

an expression for the error dynamics is obtained. Next, a Lya-
punov-function-based analysis is used to obtain an upper bound
on magnitude of norms of error and it shows that the weight ma-
trix of the network is bounded. As the weights are bounded, the
need to satisfy the persistence of excitation condition is relaxed.
Variables and parameters used in the proof are listed in Table III.
All the norms used in the proof are two-norms.

By defining and , equations
for the error and the weight update are

(A.1)

where

(A.2)

By defining a Lyapunov function candidate as

(A.3)
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TABLE III
DESCRIPTIONS OF VARIABLES AND PARAMETERS

and taking time derivative of (A.3), we get

(A.4)

By substituting error equation in (A.4)

(A.5)

Rewrite in (A.5) in a trace form to get

(A.6)

Since and , (A.6) can be rewritten
as

(A.7)

By using the weight update equation, the trace term in is modi-
fied to get

(A.8)

Note that and . Therefore,
(A.8) becomes

(A.9)

The third term in has a summation representation given by

(A.10)

It can be proved that

(A.11)

Hence

(A.12)
A. Upper Bounds on and

1) Upper bound on . In order to establish an upper bound
on , the square on needs to be completed in

(A.13)

(A.14)

(A.15)

Equation (A.15) implies that

(A.16)

Therefore, is upper bounded although the bound is con-
servative. However, this bound can be made as small as de-
sired with a proper choice of the design parameters and .
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2) Upper bound on . To establish an upper bound on
, the square term with is completed

(A.17)

The Lyapunov function is decreasing if the expression in-
side in (A.17) is positive. That is, if

(A.18)

Therefore, if

(A.19)

then, from (A.16) and (A.18), it can be concluded that
and are uniformly upper bounded.
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