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Summary

As part of the efforts to mitigate climate change, there has been rapidly increas-
ing share of renewable power generation in the European electricity system. In
the interest of bridging the gap between corporate and academic research inter-
ests, this PhD project presents a research collaboration on renewable electricity
systems between Aarhus University and the energy trading company Danske
Commodities.

The first part of this dissertation has the perspective of a central planner exploring
the optimal system design based on simplified fundamental models of the
European electricity system. The aim is to determine the optimal locations and
capacities of renewable generation sources while keeping the system reliable
and cost-efficient. A subsequent step is to allocate the costs associated with
the investments needed for the optimal electricity system of the future. I apply
power flow tracing techniques for allocation of transmission system usage,
cost allocation of generation capacities as well as consumption-based carbon
accounting.

In the second part, the perspective is changed to that of individual investors in
renewable generation technologies, specifically wind turbines. I apply economet-
ric models in the form of copulas to jointly model wind power production and
power spot price. The goal is for an energy trading company to minimize the
risk associated with long-term wind power purchase agreements, which, in turn,
minimizes the risk of investors in these wind turbines. This provides additional
incentives for similar investments and thereby increasing the share of renewable
power generation in the European electricity system.

Applying physical and financial models to different aspects of the European
electricity system has led to insights on the differences between the two mod-
eling perspectives. The central planning perspective is useful when exploring
pragmatic solutions to the overall design of the European electricity system of
the future, but provides no guidance for the individual actors in the system. In
contrast, an investor in renewable generating assets focuses on a set of business
goals with little regard to their impact on the overall electricity system.

The link between the two perspectives is the policy makers, who regulate the
electricity system. The results from system models using the central planning
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perspective can be used by the policy makers as guidelines to provide the right
incentives for investors, and other actors in the system, such that the current
European electricity system develops towards the optimal and sustainable system
of the future.
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Resume

Der er sket en hastig stigning i andelen af vedvarende energikilder i det eu-
ropæiske elsystem som følge af bestræbelserne på at formindske klimaforan-
dringer. Dette PhD-projekt er et forskningssamarbejde mellem Aarhus Univer-
sitet og energihandelsselskabet Danske Commodities med det formål at bygge
bro imellem erhvervsmæssige og akademiske forskningsinteresser med hensyn
til det europæiske elsystem.

Første del af afhandlingen har en central planlæggers perspektivet, som ud-
forsker det optimale systemdesign baseret på simplificerede fundamentale mod-
eller for det fremtidige europæiske elsystem. Målet er at fastlægge de optimale
placeringer og kapaciteter af vedvarende energikilder og samtidigt sørge for
at systemet er pålideligt og omkostningseffektivt. Et efterfølgende skridt er
at allokere omkostningerne i forbindelse med de nødvendige investeringer for
at nå det optimale fremtidige system. Jeg anvender flow-tracing metoder til
at allokere brugen af transmissionsnetværket, allokering af omkostninger ved
generationskapaciteter og et forbrugsbaseret CO2-regnskab.

I anden del skifter perspektivet til individuelle investorer i vedvarende energik-
ilder, specifikt vindmøller. Jeg anvender økonometriske modeller i form af copu-
laer til at lave en fælles model for vindproduktion og spotprisen i elmarkedet.
Målet for en energihandelsvirksomhed er at minimere risikoen i forbindelse
med længerevarende fastpriskontrakter for vindenergi, som derved minimerer
risikoen for investorer i vindmøller. Dette giver incitament til yderligere in-
vesteringer i vedvarende energikilder, som dermed forøger andelen af ved-
varende energi i det europæiske elsystem.

Anvendelsen af fysiske og finansielle modeller til forskellige aspekter af det eu-
ropæiske elsystem har ført til indsigt i forskellene mellem de to perspektiver. En
central planlæggers perspektiv er brugbart til at udforske pragmatiske løsninger
til det overordnede design af det fremtidige europæiske elsystem, men giver
ingen vejledning for individuelle aktører i systemet. I modsætning fokuserer
individuelle investorer i vedvarende energikilder på et sæt af forretningsmål
uden at tage højde for disses effekt på det overordnede elsystem.

Forbindelsen imellem de to perspektiver er politikerne, som regulerer elsystemet.
Resultaterne fra modeller med perspektivet af en central planlægger kan bruges
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af politikerne som inspiration til at implementere de rette incitamenter for
investorer, og andre aktører i systemet, sådan at det nuværende europæiske
elsystem udvikler sig mod det optimale, fremtidige, bæredygtige system.
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Preface

This dissertation presents the results of a research collaboration between Aarhus
University and Danske Commodities. Throughout this project, I have spent
approximately half of my time at each party. The purpose of the project has been
to bridge the gap between corporate and academic research interests within the
fields of energy system modeling and electricity trading. This has put me in
a unique position to learn from, and draw on, expert knowledge from Aarhus
University in relation to analyses carried out for Danske Commodities and vice
versa, which has proven valuable for both organizations during the project.

Researching future scenarios for the European electricity system using funda-
mental energy system models, while being part of Danske Commodities, has
enabled me to concurrently evaluate the practical applicability of my research. It
has also highlighted the differences between the central planner perspective of
energy system models and the perspective of individual investors in the electric-
ity system. Furthermore, the contrast between the requirements and deadlines
of an operational organization and the thorough and comprehensive nature of
academic research has been challenging. It has also helped qualify the corporate
as well as academic aspects of my research.

In my time at Danske Commodities, I have contributed to several quantitative
business analyses all focusing on improving the business case of long-term
wind power purchase agreements. The main outcome of this work was the
development of a new model for pricing and hedging long-term wind power
purchase agreements, which was subsequently implemented in the business.
The development of this model also led to an academic publication, which is
included here.

The following is dedicated to presenting my academic contributions. During this
project, I have contributed to 10 academic publications. The five most important
of these are highlighted as individual chapters. The dissertation is split into two
parts. The first part presents the results of my work on energy system models at
Aarhus University. The second part presents the results of my work on pricing
and risk management of long-term wind power purchase agreements at Danske
Commodities. In addition to written contributions, I have presented my work at
three conferences and internally at Vestas and NRGi.
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1

General introduction

It is widely acknowledged that human activities, in the form of greenhouse
gas (GHG) emissions, have led to changes in the global climate, specifically
in the form of global warming [11]. Global warming negatively impacts our
environment, e.g., by increasing the frequency and intensity of extreme weather
events. To mitigate climate change, many countries are now transitioning the
energy system away from traditional fossil-fuel power plants to low-carbon
renewable technologies such as hydro, solar and wind power generation.

This wide acknowledgment of climate change has not always existed. It all began
in 1983 when the United Nations (UN) formed the World Commission on Envi-
ronment and Development. It was a response to several global environmental
challenges not being adequately addressed following the 1972 United Nations
Conference on the Human Environment. The output of the commission was
the report Our Common Future published in 1987 [12]. The report is particularly
known for the modern definition of sustainable development:

Sustainable development is development that meets the needs of the
present without compromising the ability of future generations to
meet their own needs.

. . .

Thus, the goals of economic and social development must be defined
in terms of sustainability in all countries – developed or developing,
market-oriented or centrally planned [12].

The work of the commission and the publication of the report had an impact on
subsequent UN conventions leading to the adoption of the Kyoto Protocol in 1997.
This led to 193 countries committing to reduce greenhouse gas concentration
in the atmosphere to “a level that would prevent dangerous anthropogenic
interference with the climate system” [13].
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In 2011, the European Union set an ambitious long-term goal to reduce green-
house gas emissions by 80–95% by 2050, compared to 1990 levels [14]. This goal
was reinforced in 2015 by the Paris Agreement with the long-term goal to hold the
increase in the global average temperature well below 2◦C above pre-industrial
levels and to limit the temperature increase to 1.5◦C above pre-industrial lev-
els [15].

In 2018, The Intergovernmental Panel on Climate Change (IPCC) published a
special report on the impacts of global warming of 1.5◦C above pre-industrial
levels and related global greenhouse gas emission pathways [11]. The report
suggests zero GHG emissions by 2050 in all scenarios to meet the goals of the
Paris Agreement. It further suggests net negative CO2 emission from 2050
onwards.

In November 2018, the European Union [16] adopted a new long-term vision for
a climate neutral economy by 2050 in line with the Paris Agreement. It concludes
with the statement:

Internationally, over the coming year the EU should expand its co-
operation closely with its international partners, so that all parties
to the Paris Agreement develop and submit a long-term national
mid-century strategy by 2020 in the light of the recent IPCC Special
report on 1.5◦Celsius [16].

It is clear from this time line that the view on climate change has escalated
significantly during the last three decades. A large contribution to the GHG
emissions comes from the energy sector. More than 80% of the global electricity
generation has been originating from fossil fuel for several decades [17]. As a
result, electricity and heat production account for 25% of global GHG emissions
[18]. In order to mitigate the GHG emissions from electricity production, it
has been suggested for a decade that the electricity system should undergo a
transition away from fossil-fueled power plants to renewable sources, e.g., hydro,
solar, and wind power [19–25].

Such a transition is currently in progress in many countries. However, it is not
without challenges. Power generated from renewable sources like hydro, solar,
and wind depends on variable weather patterns and is, thus, variable. For a
system to fully rely on renewable generation, it needs flexibility mechanisms to
balance this variability. Such flexibility can be provided by large-scale storage
units providing flexibility over time, and long-range transmission lines providing
flexibility in space across large geographical areas [26, 27].
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The focus of this dissertation is to explore solutions to the challenges mentioned
above by: 1) investigating the optimal layout of renewable generation capaci-
ties (assuming cooperation between the European countries and subsequently
allocate costs based on actual usage), and 2) improving risk management of
long-term wind power purchase agreements. These two points of focus are
addressed in Part 1 and Part 2, respectively.

OUTLINE

This dissertation is split in two parts as follows.

Part 1: The first part has the perspective of a central planner exploring the
optimal system design based on simplified fundamental models of the Euro-
pean electricity system. The aim is to determine the optimal locations and
capacities of renewable generation sources while keeping the system reliable
and cost-efficient. A subsequent step is to allocate the costs associated with
the investments needed for the optimal electricity system of the future. Flow
tracing is the central methodology for the cost allocation mechanisms. When
the optimal system has been found, it is up to the policy makers to implement
policies that provide incentives for individual investors such that the current
electricity system develops towards the optimal system of the future. Such policy
implications are outside the scope of this dissertation.

Part 2: In the second part, the perspective is that of individual investors in
renewable generation technologies in particular wind turbines. The purpose is
to improve the risk management associated with the variable nature of wind
production. The goal is for an energy trading company to minimize the risk
associated with long-term wind power purchase agreements, which, in turn,
minimizes the risk of investors these wind turbines. This provides additional
incentives for similar investments and thereby increasing the share of renewable
power generation in the European electricity system.

Chapter 9: This chapter provides a general conclusion to the work presented
in Part 1 and Part 2.
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Part I

Cost allocation in renewable
electricity networks





2

Introduction

2.1 MOTIVATION

The European Union has set a goal to reduce carbon emissions by 80%–95%
in 2050 compared to 1990 levels [14]. Reaching this goal requires the entire
European energy system to undergo a massive change, decreasing the share of
traditional fossil-fuel power plants and increasing the share of variable renewable
sources such as hydro, solar and wind.

Such a shift from traditional power plants with scheduled production to variable
renewable sources disrupts the traditional planning ability of the electricity
system since all aspects become dependent on the feed-in of renewable electricity,
which, in turn, depends on the weather conditions. In the following, electricity
and power are used interchangeably.

Electricity systems with high shares of variable renewables have a high need of
flexibility to ensure security of supply. Flexibility can be provided by long-range
power transmission allowing pooling of resources across large geographical
areas, storage units providing flexibility over time, fossil-fueled backup peaker
plants e.g. gas turbines, or coupling the electricity system to other parts of the
energy sector e.g. heating and transport.

The main research questions for the sustainable European electricity system of
the future with a high share of renewables are:

1. How much renewable generation, transmission, and storage capacity
should be installed?

2. Where should it be installed?

3. Who benefits from the renewable generation capacities and added flexibility
of transmission and storage?

7



2. Introduction

4. Who should pay for the necessary investments?

The first two questions are approached by modeling the fundamental physical
and economic aspects of the electricity system. The perspective of the modeling
applied is that of cooperation between the European countries with the objective
to minimize the total system cost and not the costs of individual countries.
Cooperation refers to renewable generation capacities being placed according to
the best weather resources. This results in a need for additional transmission and
storage capacity to balance the supply and demand on an hourly basis across
the countries in the model.

Answering the latter two questions should incorporate a measure of the grid
usage associated with power import and export between the involved countries.
These questions can be answered using power flow tracing methods. Flow tracing
follows the path of power flows through the transmission network connecting
the location of generation with the location of consumption, thereby mapping the
path in between. Flow tracing provides a measure of the share of transmission
grid usage for each generation technology for each country. This measure can be
used to quantify the benefits from additional installed generation capacities as
well as the added flexibility of transmission and storage capacities.

2.2 METHODS

The four articles presented in this part follow a similar methodology. All use
flow tracing methods for different applications. The first three articles apply
flow tracing to outputs of energy system models whereas the last article applies
flow tracing to a historical sample of real-time system data.

2.2.1 Electricity system modeling

The main purpose of energy system models is planning of current and future
systems. Here, I focus exclusively on future scenarios for the European electricity
system with high shares of renewable electricity generation. Due to the variable
nature of renewable electricity generation with patterns on diurnal, synoptic and
seasonal time-scales, these models must decide on the dispatch of generation,
storage and imports/exports to continually balancing the electricity supply and
demand.

I start with a simplified model of the European electricity network, in which each
country is modeled as an aggregated node and transmission lines are aggregated
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2.2. Methods

to single links between neighboring countries. The model is further simplified in
such a way that all countries have the same share of renewable generation relative
to the individual electricity demand. This is referred to as renewable penetration
and the assumption is that the average electricity generation from wind and
solar combined is equal to the average demand for each country – a scenario for
2050 in accordance with the EU climate goals. Additionally, the mix between
wind and solar generation is fixed to 0.7 for all countries meaning that 70% of
the renewable generation comes from wind. Fixing the renewable penetration
and mix between wind and solar to the same value for all countries leads
to a homogeneous layout. I also explore heterogeneous layouts of renewable
generation capacities, which ensure that wind turbines and solar photovoltaics
are installed in the locations with the best weather resources for maximum
utilization and cost-optimal investments. Only three generation technologies are
considered: variable solar and wind, as well as a generic dispatchable backup
power for balancing. Time series for wind and solar production as well as
electricity demand are used to determine the hourly nodal power balances,
imports, exports and backup power needed. These are not determined by an
optimization, but rather what is known as synchronized balancing in which the
balancing assigned for every hour to each country is proportional to its average
demand [28]. This way all countries are forced to cooperate on balancing the
variability of the renewable power generation.

In a later study, I consider the techno-economic optimization model PyPSA [29]
to determine the optimal investments in generation and storage capacities as well
as dispatch. The objective is to minimize the total system cost in a low-carbon
2050 scenario for the European electricity system. This model features a set of six
generation technologies and three storage technologies. Additionally, it features
a higher spatial resolution of 64 nodes representing 33 European countries,
which enables capturing patterns on regional scales within larger countries.
The network topology considered in this study is based on clustering the full
transmission network of Europe. For a discussion on network aggregation
methods and the role of spatial scale in electricity system modeling, see [30].

While the studies presented here focus exclusively on the power sector, other
studies have started investigating the effects of coupling with other sectors like
heating and transport through electric vehicles and heat pumps [31, 32].

Extensions of the transmission grid beyond Europe and interconnecting the
continents has been proposed to utilize renewable sources far from load centers
[33] and to balance the variability of renewable power generation on a global
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2. Introduction

scale [34].

In addition to studying future electricity system scenarios, another important
aspect is to model the transition from the current system. This provides pol-
icy makers with the necessary insights to implement policies that encourage
investments in the right places at the right time for the system to follow an
optimal transition path towards being fully renewable. The transmission needs
during the transition of a European power system are studied in [35]. The
roles of energy storage, grid exchange and flexible electricity generation in a
transition towards a 100% renewable electricity system in the Baltic region is
studied in [36]. The transition across the entire energy system for Germany
towards 100% renewable in 2050 is studied in [25], finding the transition to be
possible both from a technical and economic perspective. Additionally, two
ambitious studies have modeled the global transition towards 100% renewable
energy systems [24, 37].

Recently, the usage of energy system models has received criticism, questioning
the feasibility of a 100% renewable electricity system [38]. A detailed literature
review shows that none of the raised issues are critical for feasibility or viability
and that “each issue can be addressed at low economic cost, while not affecting
the main conclusions of the reviewed studies” [39].

2.2.2 Power flow tracing

Flow tracing was formalized in the late 1990s by Bialek [40] and Kirschen [41]
independently of each other. Following the deregulation of electricity markets
flow tracing was introduced as a method to assess the impact of a specific
generator or load on the power system. The initial proposed application of flow
tracing was for transmission loss allocation [40]. Bialek proposed a method based
on solving linear equations. Kirschen’s method is based on an iterative approach
where the problem is solved using recursive equations. A recent comparison of
the two approaches, in relation to cost allocation in distribution networks, found
that Bialek’s method had a higher accuracy for determining distribution factors
than Kirschen’s method [42].

Both approaches require that Kirchhoff’s current law (KCL) be satisfied for all
nodes in the network i.e. the sum of currents flowing into a node equals the sum
of currents flowing out. Additionally, both approaches introduce the proportional
sharing principle, which states:
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Figure 2.1: Nodal power balances and import/export (left). Flow tracing applied
to exports (right). Reproduced from [43].

If the proportion of the inflow which can be traced to generator i is xi,
then the proportion of the outflow which can be traced to generator i
is also xi [41].

An analogy to the KCL and proportional sharing principle is the mixing of water
flows in pipe systems. An example of the proportional sharing principle is
shown in Figure 2.1. The left part shows an example of three exporting nodes (1,
2, 5) and two importing nodes (3, 4) as well as power flows on the connecting
links. The right part shows that the exports from node 1 and 2 mixes equally
at node 3 and subsequently serves the load of node 3 with the remainder being
exported to serve the load of node 4.

The proportional sharing principle is also referred to as average participation
in the literature. It has been criticized since it considers total flows on each
transmission line not allowing for supposition of opposing counter flows [44].
An alternative approach to flow tracing is the marginal participation method,
which is based on power transfer distribution factors (PTDFs). This method
considers the “sensitivity of each branch’s active power flow to changes in the
power balances of the nodes” [44]. Bialek presents three ways of rationalizing
the use of the proportional sharing principle in [45]. The conclusions of his
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2. Introduction

arguments are:

1. For loss allocation to be fair, the sharing must be linearly proportional to
the power flow

2. The proportional sharing principle coincides with the Shapley value from
cooperative game theory when considering loss allocation as a coalition
game

3. An argument based on the maximum entropy principle leads to propor-
tional sharing of the mixing within each node

Considering the above criticism and rationalization of the proportional sharing
principle, it is proposed for the application of transmission usage allocation in
large-scale electricity networks due to its intuitiveness and lack of additional
parameters [46].

In efforts to successfully implement the European Internal Electricity Market,
cross-border tariffs were replaced by the Inter-Transmission System Operator
Compensation (ITC) mechanism in 2004. The purpose of the mechanism is to
provide compensation to transmission system operators for the costs associated
with losses incurred by, and making infrastructure available to, cross-border
flows of electricity [47–49]. Initially, the mechanism used a postage stamp method
for infrastructure usage and a With and Without (WWT) method for loss alloca-
tion [48]. The postage stamp method allocates the transmission usage to each
participant according to the its power injected/withdrawn in proportion to the
total power injected/withdrawn in the system. The WWT method compares the
flows through a country’s transmission network with the flows in case all transits
between third parties are removed. For a thorough description and comparison
of these and other flow allocation methods, see [44, 50, 51]. Both of the initially
used methods in the ITC mechanism have limitations and have been criticized in
a number of studies, particularly for the lack of a “logical link between actual
transits and the ITC charges” [49, 52].

The Agency for the Cooperation of the Energy Regulators (ACER) was tasked to
develop a new compensation mechanism by 2014. ACER published a “recom-
mendation on a new regulatory framework for ITC” in 2013, concluding that a
new regulatory framework should be developed to replace the existing meth-
ods [53]. However, to this day, there has been no agreement on a new method
for the ITC. Studies comparing several different methods for flow allocation in
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2.3. Main findings

relation to the ITC mechanism have all recommended to use the proportional
sharing flow tracing [50, 51, 54].

The following chapters present applications of flow tracing based on Bialek’s
method. These applications include: transmission usage, cost allocation and
carbon accounting. Transmission usage is a direct output of flow tracing. Cost
allocation and carbon accounting are both based on identifying trading partners
(importers/exporters) and subsequently multiplying the exchanged power with
infrastructure and operations costs for cost allocation or carbon emission intensity
for carbon accounting.

2.3 MAIN FINDINGS

The first study acknowledges the limitation of proportional sharing flow tracing
that it only considers the total flow on each transmission line and does not allow
studying counter flows. It proposes two alternative methods by decomposing
injection patterns that can be associated with individual contracts. These two
new variants are compared with the ordinary flow tracing by calculating the
transmission grid usage for every country for each of the three methods. The
three methods reveal different flow allocation patterns for individual hours, but
the results are similar when averaged over the entire time series. This is mostly
driven by the average imports and exports of each country.

The second study explores optimal heterogeneous placement of renewable gen-
eration capacity with the objective to minimize total system cost. It is found
that an optimal heterogeneous layout, which places the renewable generation in
the places with favorable weather resources, reduces the system levelized cost
of electricity (LCOE). Nodal LCOEs are explored using flow tracing. Capital
and operational costs associated with power generation as well as transmission
capacity costs are allocated based on exported and imported power. It is found
that cooperation in the form of exporting excess power and heterogeneous place-
ment of generation capacity not only reduces the system LCOE, but also reduces
the nodal LCOE for all countries compared to a case without cooperation (no
transmission). In the case of cooperation and a heterogeneous layout, the net
exporters are the main beneficiaries.

The third study presents an application of flow tracing that is extended to include
the charging and discharging of storage units. Using flow tracing, it is possible
to determine the composition of storage inflow with respect to the different
generation technologies. It is found that battery storage is predominantly used
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by solar power. Hydrogen storage is almost completely charged with power
from onshore and offshore wind power. The results of flow tracing confirm the
intuition from the spatial distribution of generation and storage capacities. For
the three considered storage technologies (battery, hydrogen and pumped hydro),
most of the discharged power is consumed locally within the discharging node.
However, when the discharged power is exported, it tends to be transmitted
several hundred kilometers suggesting the importance of storage to provide
flexibility across the transmission system given sufficient transmission capacities.

The fourth study uses flow tracing to construct a consumption-based carbon
emission accounting method for a historical sample of real-time system data.
Substantial differences are found between the production-based (from the local
generation mix) and consumption-based carbon accounting for many of the EU28
countries studied. The differences between the two accounting approaches and
the associated impact of imports on consumption-based carbon intensity empha-
size the importance of including cross-border flows for increased transparency
regarding carbon emission accounting of electricity.
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Decompositions of injection patterns for
nodal flow allocation in renewable
electricity networks

This chapter is published as “Decompositions of injection patterns for nodal
flow allocation in renewable electricity networks” by Mirko Schäfer, Bo Tranberg,
Sabrina Hempel, Sefan Schramm and Martin Greiner in the European Physical
Journal B [1].

3.1 INTRODUCTION

In view of climate change and the finite time horizon and political instability of
fossil fuel supply, the transition towards a sustainable energy system is one of
the main challenges for our modern society. As of today, wind and solar power
generation are mature technology options which can provide electricity on a
large scale at increasingly competitive costs [55]. Nevertheless, the fluctuating
nature of these renewable generation technologies requires a new energy system
design compared to past and present infrastructures, which are mostly based
on centralised dispatchable fossil fuel power generation. Elaborate computa-
tional models seek to capture the respective relevant physical, technological and
economical boundary conditions [56].

Applied Theoretical Physics can contribute another perspective to this challenge.
By focussing on simplified, more abstract models it is often possible to identify
the fundamental relationships and key dynamics of larger complex systems, and
to develop and test new methods and concepts.

One focus for this kind of approach has been on network representations of
electricity systems, which assess for instance structural properties [57] or the
topological robustness of power grids [58, 59]. Another strong line of research
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3. Decompositions of injection patterns

investigates synchronisation properties of power grid models [60–63], for instance
under decentralisation [64] or link removal [65].

In contrast, the modelling approach which we term ‘complex renewable energy
networks’ addresses the analysis and design of energy systems with a high share
of renewable generation. The renewable generation as well as the electricity
consumption in these models is based on realistic data, whereas the system
representation (constituents and network structure), the backup power dispatch
and the power flow equations are simplified. In this context, the optimal mix
between solar and wind power generation [66], the influence of storage and an
associated phase transition [67, 68], or the benefit of power transmission have
been investigated [35, 69].

The transmission needs associated with the smoothing of spatial fluctuations
of renewable power generation [69] provide a strong motivation to analyse the
flow patterns occurring in complex renewable energy networks. The necessary
transmission infrastructure crucially depends on the geographical distribution
of load and generation capacities, and on the spatio-temporal correlations in the
renewable generation patterns, in particular for wind power generation [70, 71].
Flow allocation methods assign a share of the total power flow to the individ-
ual importing and/or exporting nodes in the system, thus providing valuable
information about their role in the overall flow pattern and an estimate of their
usage of transmission capacity. These techniques are to some degree related to
measures which relate the collective dynamics of a network to small parameter
changes of the system [72], in particular with respect to robustness against link
failures [65]. The method of flow tracing for instance has been discussed in the
context of the transmission system operator compensation mechanism regarding
transient cross-border flows in the European power grid [51, 53]. In [43] this
allocation method, also known as average participation, has been applied to a
simplified model of the European electricity grid. From a complex networks
perspective, flow tracing can be understood as a directed diffusion process on the
directed acyclic flow graph [6,43,73]. The partial flows assigned to the respective
exporting or importing nodes are thus always oriented in the same direction
as the total power flow. This might be in contradiction with individual market
transactions between importers and exporters, which can produce counter flows
in the opposite direction.

Figure 3.1 illustrates this limitation of the flow tracing approach. In the depicted
system state, Germany (DE) is a net exporter of electricity, whereas France (FR) is
a net importer. This situation suggests the possibility of a trade contract between
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Figure 3.1: Flow tracing: Illustration of the partial flows of Germany (DE),
Norway (NO), and Spain (ES) at an exemplary time step in a simplified model
of the European electricity system. The nodes are colour-coded according to the
magnitude of their exports (green) and imports (red) at this time, respectively.
The left figure shows the total power flows in the system. The partial power
flows assigned to Germany (blue), Norway (orange), and Spain (purple) based
on the flow tracing method are displayed in the right figure. The size of the
arrows for partial flows are scaled to the maximal partial flow of the respective
country. For clarity only arrows for partial flows larger than a small threshold
equal to 5% of the largest partial flow occuring in the system are shown.

these countries, leading to an associated partial power flow from Germany to
France. Since the total power flow is oriented from France to Germany, such
a contract and the associated partial flow cannot be represented by the flow
tracing method. In this article we propose an alternative approach to flow and
transmission capacity allocation based on decompositions of injection patterns.
These decompositions allow to associate partial flows to individual transactions
between importers and exporters, and factor in explicitly the patterns of nodal
imports and exports. Here we use the decomposition method to analyse power
flows in highly renewable electricity systems, but this technique can also be
adapted to other models of networked systems, in which line flows depend
linearly on nodal injections (for instance hydraulic networks [74], vascular
networks [75], or network diffusion [76]).

This article is organized as follows: After briefly reviewing the linearised power
flow equations, Sec. 3.2 provides a description of the flow tracing method and
introduces the decomposition method of injection patterns. Two specific imple-
mentations (proportional and random contract decomposition) are described,
and the conceptual differences to flow tracing are discussed. Sec. 3.3 compares
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3. Decompositions of injection patterns

flow tracing and the decomposition method of injection patterns in the context
of a simplified model of a highly renewable European electricity network, which
is specified in more detail in Appendix A. A conclusion and outlook is given in
Sec. 3.4.

3.2 METHODS OF FLOW ALLOCATION

Flow allocation methods attribute a share of the total power flow on a network
to the net power in- or outflow associated with a specific node or subset of
nodes [51]. Due to the indistinguishability of the electrical power flow in the
network, such an attribution in general is not unique and has to be based on
intuitive algorithms. In the following sections we briefly state the linearised
power flow equations [77] and review the tracing method of flow allocation [40,41,
43, 78]. We then introduce decompositions of injection patterns as an alternative
way of allocating power flows, which is based on a decomposition of the net
power inflows and outflows, and discuss this method in a comparison with the
flow tracing approach.

3.2.1 The DC power flow equations

The majority of todays power grid infrastructure can be represented as AC
networks. Although the power flow in these AC networks is governed by the
full AC power flow equations, for the stable network operation the so-called DC
approximation can be applied [77]. The directed active power flow Fm→n on a
link from node m to n is then given by

Fm→n = bmn (θm − θn) , (3.1)

with θn the voltage angle at node n and bmn the line susceptance of the link. The
voltage phase angles have to fulfill the linear equations

Pn =

(
∑
m

bnm

)
θn −∑

m
bnmθm = ∑

m
Bnmθm , (3.2)

where we have introduced the nodal susceptance matrix Bnm with

Bnm =

{
−bnm if n 6= m
∑m bnm if n = m

, (3.3)

and Pn denotes the net power injection at node n. In the present article we con-
sider a coarse-grained model of the European electricity grid and for simplicity
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3.2. Methods of flow allocation

set bnm = 1 for all links [28]. In this case, the nodal susceptance matrix Bnm

corresponds to the Laplacian of the network [73].

In the DC approximation Pn represents the input to the calculation of the power
flows. Solving Eq. (3.2) then yields the voltage phase angles, which via Eq. (3.1)
determine the power flow on the links of the network. The resulting linear
relationship between injection pattern and power flow can be expressed using
the matrix of power transfer distribution factors Hln (PTDF matrix):

Fl = ∑
n

HlnPn . (3.4)

Here we use the index l = l(m, n) for the link between nodes m and n. The
PTDF matrix H can be calculated as

H = ΩKTB† , (3.5)

where B† denotes the Moore-Penrose pseudo inverse of the nodal susceptance
matrix B, the diagonal matrix Ω contains the line susceptances on the links l,
and KT is the transposed incidence matrix with

KT
ln =


1 if link l starts at node n ,
−1 if link l ends at node n ,
0 otherwise .

(3.6)

Note that Eq. (3.2) with Eq. (3.1) yields the law of flow conservation at the nodes:

Pn = ∑
m

bnm (θn − θm) (3.7)

= ∑
m

Fn→m −∑
k

Fk→n . (3.8)

The left part of Fig. 3.1 shows the DC power flows at a specific point in time
for a simplified model of the European transmission network (see Appendix A).
Note that the power flows form a directed acyclic network without loops, which
transports power from the exporting nodes (sources) to the importing nodes
(sinks) of the system.

3.2.2 Flow Tracing

The method of flow tracing dissects the total flow pattern into strands originating
from the different generators [40, 41, 43, 78]. If one visualises the power flow as a
water flow from source nodes (net generators) to sink nodes (net loads), a specific
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3. Decompositions of injection patterns

colour can be added to the flow originating from the individual generators. These
colour flows then will propagate and mix downstream throughout the total flow,
until they end up in the loads at the different sink nodes. The colour mix on the
connecting links then represents the partial flows attributed to the generators at
the source nodes. This process corresponds to a directed diffusion process on
the directed acyclic graph representing the power flows in the network [43, 73].
The right part of Fig. 3.1 illustrates the share of the total power flow allocated to
two exporting countries in a simplified European transmission network using
this flow tracing approach. Note that these partial flows always point in the
same direction as the total flow.

Using a more formal description of this method, one seeks the share P−n,s of the

load P−n and the share F(s)
k→n of the total power flow Fk→n, which can be traced

back to the generation P+
s at node s. Here the notation P+

n = Pn for an exporting
generator n with Pn > 0, and P−n = −Pn for an importing load n with Pn < 0 is
used. That is, the total flow pattern Fk→n and the injection pattern Pn containing
the nodal exports and total imports is the input for this method. The tracing
algorithm then yields as outputs the partial flows F(s)

n→k and the composition of
the imports P−n,s according to the origin of the corresponding power flow. For the
method of flow tracing one first assumes partial flow conservation:

δn,sP+
n + ∑

k
F(s)

k→n = P−n,s + ∑
m

F(s)
n→m . (3.9)

Additionally it has to be determined how these incoming or locally generated
shares of the total flow are distributed to the local load and to the downstream
neighbours. By following the principle of proportional sharing it is usually as-
sumed that all incoming fractions are equally mixed and passed on [40]. This
can be written as

δn,sP+
n + ∑

k
q(s)k Fk→n = q(s)n P−n + ∑

m
q(s)n Fn→m , (3.10)

where q(s)n is what we term – following the colour flow visualization – the
colour mix passed on at node n, and P−n,s = q(s)n P−n . The colour mixtures can
be calculated iteratively starting from pure sources without any inflows, or by
interpreting Eq. (3.10) as a matrix equation and solving for q(s)n [6, 46]. Following
this method of tracing based flow decomposition the partial flow on line l to the
generator n is attributed as

F(n)
l = q(n)t(l)Fl . (3.11)
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3.2. Methods of flow allocation

For the notation it is assumed that the directed links l are orientated along the
total power flow Fl , and t(l) denotes the tail of the directed link l, that is the
node at its origin.

The description of flow tracing in the last paragraphs attributes partial flows to
the net generating nodes (exporters) in the network. Flow allocation to importers
can be obtained by inverting both the injection pattern Pn → −Pn and the flow
pattern Fl → −Fl , and then apply the flow tracing algorithm to these inverted
patterns. It is also straightforward to consider a generalisation of the flow
tracing method which follows the power originating from specific generation
technologies or inflow distributions at the source nodes [6, 46].

3.2.3 Decomposition of injection patterns into import/export patterns

The method of flow tracing dissects the total power flow in the network, making
use of a directed diffusion process following the principles of flow conservation
and proportional sharing. The linearity of the power flow equations in Eq. (3.4)
suggests an alternative decomposition of the power flow pattern, based instead
on a decomposition of the injection pattern. For this purpose we decompose the
injection pattern into balanced elementary patterns. Associated with the index α,
an elementary injection pattern P(α)

n with ∑n P(α)
n = 0 leads to the partial flow

pattern

F(α)
l = ∑

n
HlnP(α)

n . (3.12)

We call a collection of elementary injection patterns P(α)
n a decomposition of a

given injection pattern Pn, if ∑α P(α)
n = Pn. The linearity of Eq. (3.4) then ensures

that the superposition of all partial flows F(α)
l gives the total flow on link l as

Fl = ∑α F(α)
l . The input to this method is the PTDF matrix Hln representing

the solution of the linearised power flow equations for the network under
consideration, and a collection of elementary injection patterns P(α)

n which sum
up to the given total injection pattern Pn. Equation (3.12) then yields as the
output the corresponding partial power flows F(α)

l . Note that the use of the
general index α allows arbitrary decompositions of the injection pattern, for
instance according to individual contracts, or identifying the electricity mix
(conventional, wind, solar,...) injected into the grid at a specific node or subset of
nodes [44, 46].

For our investigation in this article we select a class of decompositions with an
elementary injection pattern associated to every exporting or importing node.
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At a specific instant in time, we partition the set of nodes N into the exporting
nodes N+ with Pn > 0, and the set of importing nodes N− with Pn < 0. If
there is a transient node with Pn = 0 we add it to the set of exporting nodes.
An export decomposition is given by the set of elementary injection patterns
{P(s)

n }s∈N+ with

P(s)
n =

{
P+

s δns if n ∈ N+

−Pex
s→n if n ∈ N− . (3.13)

The elementary injection pattern P(s)
n thus describes the total power Ps exported

by node s through the network, with each sink n ∈ N− covering the share Pex
s→n

of its respective deficit P−n by imports from node s. Given an injection pattern
Pn, the components Pex

s→n thus have to fulfill the conditions

∑
s∈N+

Pex
s→n = P−n , (3.14)

∑
n∈N−

Pex
s→n = P+

s . (3.15)

Analogously we define an import decomposition as the set of elementary injec-
tion patterns {P(b)

n }b∈N− with

P(b)
n =

{
−P−b δnb if n ∈ N−
Pim

n→b if n ∈ N+ . (3.16)

In the following we will consider two specific implementations for export/import
decompositions, which are each motivated by a different variant of electricity
market trading. Proportional decompositon can be interpreted as a stylised model
of a centralised market-clearing procedure, in which the participants interact via
a central authority, which equates supply and demand based on the submitted
bids. In the corresponding decomposition scheme the pooling nature of this
market is represented by a homogeneous distribution of imports and exports in
the system. In contrary, random contract decomposition serves as a coarse model of
over-the-counter trading. In this interpretation, the participants engage directly
in bilateral transactions without an intermediate central authority. The collection
of all these contracts then determines the individual imports and exports. In
the following we will consider these two schemes separately, but a mixture
of both approaches would be a straightforward generalisation. Although for
both implementations our general definition of import/export decompositions
allows to define Pex

s→b 6= Pim
s→b, the respective entries of the import and export

decompositions coincide for a given injection pattern.
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3.2. Methods of flow allocation

Proportional decomposition In this case the share Pex
s→n of exports from node

s to the importing node n is given by the share of this node’s export with respect
to all exports in the system:

Pex
s→n =

P+
s

P+
P−n , (3.17)

with
P+ = ∑

s∈N+

P+
s = P− = ∑

b∈N−
P−b (3.18)

the total exports and imports for a balanced system. This elementary injection
pattern corresponds to the situation that the exporting node s serves all sinks
in the system, with their imports uniformly scaled down in such a way that the
pattern is balanced. Analogously we define the import decomposition as

Pim
n→b =

P−b
P−

P+
n . (3.19)

With P+ = P− it is easy to see that Pex
s→b = Pim

s→b.

Random contract decomposition In this scenario we assume a situation where
the import and export decompositions are based on randomly assigned contracts
between importers and exporters. In order to ensure that the conditions Eq. (3.14)
and Eq. (3.15) are fulfilled while circumventing any complications due to finite
block sizes of these contracts, we implement the following random assignment
algorithm. We start with the node which has the lowest value of imports or
exports. For now we assume that this node is an importing node b. We randomly
choose one exporter n, which by definition is able to completely cover the
respective import of the node first chosen. This procedure defines a contract
between this node n and the importing node b with size cn→b = P−b . We now
remove the node b from the set of importing nodes N−, and update the export of
node n as Pn → (Pn − cn→b). Then we repeat this procedure until no node is left.
If the node with the lowest import or export at some iteration of the algorithm
is an exporter s, we randomly choose an importing node n and assume that all
(remaining) exports from node s go to this importer n. Note that during this
algorithm often contracts between smaller countries are selected initially, with
the imports and exports of the larger countries covered among each other in the
final iterations. This bias in the distribution is build in on purpose to obtain
an import/export pattern which is statistically different from the proportional
decomposition discussed above.
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Figure 3.2: Decomposition of injection patterns: Illustration of the partial flows
of Germany (DE) and Norway (NO) at an exemplary time step in a simplified
model of the European electricity system (see the left part of Fig. 3.1 for the total
power flow). The left figure shows the partial flows assigned to Germany (blue)
and Norway (orange) according to the proportional decomposition scheme,
whereas the right figure follows the random contract decomposition scheme. For
the scaling of arrow sizes and the respective threshold see Fig. 3.1. To allow for
a clearer visualisation, the partial flows associated with Spain are not shown in
this figure.

After processing the algorithm, we define the import and export compositions
based on this random assignment of contracts as follows:

Pex
s→b = cs→b = Pim

s→b . (3.20)

3.2.4 Flow tracing vs. decompositions of injection patterns

We want to emphasize some fundamental methodological differences between
flow allocation techniques based on decompositions of injection patterns and
the tracing based approach. In the former case one defines partial injection
patterns and calculates partial flows via the linearised power flow equations.
Both the amount of partial inflow at the net generators and outflow at the net
loads are inputs to the calculation. In the latter case of flow tracing the inflow
from the generators at the source nodes and the total power flow pattern are
the inputs to the algorithm, which yields both the partial flows on the links and
the corresponding shares of outflow at the sink nodes. Furthermore, since flow
tracing dissects the total flow pattern into different strands from source nodes
to sink nodes, the partial flows always follow the orientation of the total flow.
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3.3. Power flow decomposition

In contrast, the superposition of partial flow patterns under the decomposition
method allows partial flows which are opposite to the total flow. These partial
counter-flows mitigate the total power flow on a transmission line.

As an example, compare Fig. 3.2 to Fig. 3.1, that is the illustration of some partial
flows for the simplified model of the European electricity system obtained via the
method of flow tracing (Fig. 3.1) and based on proportional and random contract
decomposition (Fig. 3.2). We observe that flow tracing leads to a decomposition
of the import/export pattern based on geographically localised partial flows.
The elementary injection patterns obtained from proportional decomposition on
the contrary lead to partial flows spanning the whole system. For the random
contract decomposition we observe a pattern with partial flows from Germany
covering the south, whereas the partial flows from Norway are mostly restricted
to the north. Note that for both implementations of decomposing injection
patterns numerous counter-flows occur in the system.

3.3 POWER FLOW DECOMPOSITION IN A SIMPLIFIED MODEL OF A

HIGHLY RENEWABLE EUROPEAN ELECTRICITY NETWORK

As a test case we apply the methods from the last section to a simplified model
of a highly renewable European electricity system (see Appendix A for details
about the model), and discuss the import/export transfer functions as well as
the nodal usage of transmission link capacities. Five years of data from 2010
to 2014 with hourly resolution for the load and projected renewable generation
are used, leading to 43822 different injection patterns Pn(t) and resulting flow
patterns Fl(t).

3.3.1 Export and import transfer functions

Both methods, flow tracing and decomposition into elementary patterns, do
not only lead to a decomposition of the power flow in the system, but also to a
partition of the injection pattern which associates the exports from one country
to the imports of another. Whereas for the decomposition method this partition
is an input into the method which yields a decomposition of the flow pattern,
for the method of flow tracing these import/export patterns are a result of the
algorithm (see Sec. 3.2.4).

Given the whole time series, we quantify these import/export patterns using the
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Figure 3.3: Export transfer function based on flow tracing (blue), proportional
decomposition (green), and random contract decomposition (red). Top left:
Germany (DE). Top right: Great Britain (GB). Bottom left: Denmark (DK). Bottom
right: Lithuania (LT). The transfer functions resulting from the application of
the flow tracing method emphasize transfers between geographically close
countries, whereas the proportional decomposition yields a more homogeneous,
delocalised distribution. The random contract decomposition scheme leads to
transfer functions showing stronger exports among the larger countries as well
as among the smaller countries, respectively, resulting from an implicit bias in
the underlying contract algorithm.

following export transfer function [43]:

En→m =
〈q(n)m P−m 〉
〈P+

n 〉
, En→m =

〈Pex
n→m〉
〈P+

n 〉
. (3.21)

Here the first definition refers to the method of flow tracing, whereas the
second definition corresponds to the decomposition method. This export transfer
function gives the share of the average exports of a country n which are associated
with imports from a country m. An import transfer function can be defined
analogously, but gives very similar results for the set-up chosen for our simplified
system with 〈P+

n 〉 = 〈P−n 〉 (see Appendix A).

In Fig. 3.3 we display the export transfer function based on flow tracing and
the two injection pattern decomposition schemes for four selected countries:
Germany (DE), Great Britain (GB), Denmark (DK), Lithuania (LT). We observe
that, as expected, the method of flow tracing yields an export transfer function
which emphasizes transfers between geographically close countries, see for
instance exports from Denmark to Sweden (SE), Norway (NO) and Finland (FI),
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3.3. Power flow decomposition

or from Great Britain to France (FR). The corresponding localisation of the partial
flows has already been illustrated in Fig. 3.1. The elementary injection patterns
based on proportional decomposition yield a more homogeneous, delocalised
distribution, which is mainly determined by the correlation between the imports
and exports of the respective countries:

En→m =
〈Pex

n→m〉
〈P+

n 〉
=
〈 P+

n P−m
P+ 〉
〈P+

n 〉
. (3.22)

The results for the random contract decomposition mirror the bias in the under-
lying contract algorithm: Germany as a country with a comparatively large load
often exports to other large countries in the system, that is France, Italy (IT), or
Great Britain, whereas Lithuania shows an export distribution characterised by
exports to other smaller countries. Also consult Fig. 3.2 for exemplary partial
power flow patterns which illustrate the import/export patterns obtained via
proportional and random contract decomposition.

3.3.2 Usage of transmission capacity

The patterns of imports and exports discussed in the last section are associated
with power flow patterns, which make use of the transmission capacity of the
grid. Analogously to [43, 69] we define the transmission capacity Kl of a link l
as the 99% quantile of the flow distribution P( fl):

0.99 =

Kl∫
0

P( fl)d fl . (3.23)

Here fl = |Fl | denotes the absolute flow on a link l. We want to compare methods
of capacity allocation which assign a usage share K(n)

l of the total link capacity
to the different nodes n of the network. We use the usage measure introduced
in [43], which is based on the ensemble of total and partial power flows (Fl , F(n)

l ):

K(n)
l =

Kl∫
0

dK
1−PC

l (K)

Kl∫
K

Pl( fl)

〈
F(n)

l
Fl
| fl

〉
d fl . (3.24)

This measure incorporates correlations between the associated partial flows and
the total power flows on a link and thus provides a fairer capacity allocation
compared to simplified approaches using the average load, average import/-
export or average partial flow [6, 43]. In Fig. 3.4 we illustrate the statistics of
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3. Decompositions of injection patterns

Figure 3.4: Statistics of total power flow and partial flow attributed to Germany
for the link from France to Germany (top) and from France to Great Britain
(bottom). The partial flows are obtained using the method of flow tracing (left)
and the decomposition method with proportional decomposition (middle) and
random contract decomposition (right). The method of flow tracing yields partial
flows which are always oriented in the same direction as the total flow, whereas
partial flows based on proportional or random contract decomposition can be
oriented opposite to it. These counter flows are emphasised with red colour in
the figure.

the total power and the partial power flow attributed to Germany for the link
from France to Germany and from France to Great Britatin. The results are
based on the different methods of flow decomposition discussed in the previous
sections. For simplicity, here we only consider situations in which Germany is
an exporter. Considering the flow tracing method, we observe that Germany
only gets assigned partial flows in the direction towards France. This is due to
the consideration of exports only, which will never be oriented in the opposite
direction. In contrast, for the more remote link between France and Great Britain,
Germany gets assigned partial flows in both directions. By definition, using the
flow tracing method, we never observe counter flows, or partial flows larger
than the total flow on a link. This is different for the partial flows based on
the decomposition methods. Situations in which Germany is exporting power

28



3.3. Power flow decomposition

to France despite a total power flow in the opposite direction are represented
as partial counter flows in these schemes. We also observe partial power flows
exceeding the total flow on the link. In this case, the partial flows associated with
Germany are dominating the total power flow, which is reduced by opposing
contributions from other countries. The same features are visible for the more
remote link between France and Great Britain. With respect to the difference
between the proportional and random decomposition scheme, we observe a
more scattered distribution for the latter. These larger partial flows result from
random contracts exceeding the respective proportional decompositions.

Based on the respective total and partial power flow statistics, in Fig. 3.5 we show
the share of transmission capacity K(n)

l /Kl assigned to the different nodes for
each link in the network, based on the different methods of flow decomposition
discussed in the previous sections. For each method we calculate the usage
measure according to imports and exports separately, and then display the
average over both these results. Overall we observe that despite the significant
differences in the underlying patterns at individual time steps, the statistical
measure in Eq. (3.24) leads to similar results for the capacity allocation of the
different links for the three methods. However, as for the import/export pattern
the flow tracing based decomposition leads to more localised partial flows
and thus a less distributed attribution of transmission usage. A noteworthy
feature of the capacity allocation derived from the decomposition method is
the occurrence of negative capacity allocations. This negative allocation results
from a high share of counter-flows assigned to the respective countries, which
lead to a reduction of the total power flow and thus savings in transmission
capacity. These negative allocations are observed for both proportional and
random contract decomposition, most prominently on the link between Norway
(NO) and Denmark (DK). We finally compare the total transmission capacity
costs allocated to the system nodes according to Eq. (3.24) for the different
methods of flow allocation. We approximate the cost of a transmission line
l = m → n as the transmission capacity Kl and the distance dl between the
capitals of the countries represented by node n and m. The total transmission
cost in the network is then given by

M = ∑
l

dlKl . (3.25)

A share of this total transmission cost is associated with country n due the
capacity allocation K(n)

l :

Mn = ∑
l

dlK
(n)
l . (3.26)
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Figure 3.5: Partial transmission capacities K(n)
l of all links in the simplified

European electricity network assigned to the different countries according to
the network usage measure defined in Eq. (3.24). The underlying partial flows
F(n)

l have been obtained using the method of flow tracing (left) and proportional
decomposition (right). The random contract decomposition leads to results
which are very similar to the proportional decomposition and are not shown.
The transmission capacities are less distributed for the flow tracing method due
to a stronger localisation of the partial flows. The occurrence of counter flows
leads to the allocation of some negative partial capacities under the proportional
decomposition method, for instance on the link between Norway (NO) and
Denmark (DK).

In Fig. 3.6 we compare the cost allocation Mn derived from the flow decompo-
sition according to the three different methods presented in this article with a
simplified allocation proportional to the average import/export of the individual
nodes:

Mn =
〈 |Pn| 〉

∑k〈 |Pk| 〉
M . (3.27)

We observe that these aggregated statistical measures of transmission capacity
based on different flow allocation methods yield very similar results. This
accordance contrasts with the significantly different partial flows according to
the flow tracing method or decomposition method at individual time steps (see
Figs. 3.1 and 3.2). After statistical aggregation over the whole time series and
the whole network, for the considered methods the average import/export of a
country is the most determining factor for the allocation of network usage. The
variances visible in Fig. 3.6 due to the application of different decomposition
methods depend on the geographical location of the respective country in the
network, and in particular on the spatio-temporal correlations in the injection and
resulting power flow patterns. While it is possible to trace back the influences
underlying these differences by considering link specific partial and total power
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Figure 3.6: Top: Share of the total transmission system cost allocated to the
different nodes of the network. The cost allocation is based on the usage
measure in Eq. (3.24), with the partial flows determined either via flow tracing
or the method of decomposing injection patterns (proportional and random
contract decomposition). As a comparison, a simplified measure based on the
average import/export of the respective nodes is also displayed. Bottom: This
figure shows the same results as the top figure, but now as the relative difference
compared to the simplified average import/export measure.

flow statistics (see Fig. 3.4) or individual system snapshots (see Figs. 3.1 and
3.2), it is difficult to deduce general trends for the aggregated usage measure.
An exception is the localisation of partial flows for the flow tracing method as
illustrated in Fig. 3.1, which benefits four of the five largest importers/exporters,
while assigning a higher share of transmission capacity to smaller countries at
the periphery like Finland (FI), Serbia (RS) or the baltic countries [43].

3.4 CONCLUSION

Flow tracing uses a directed diffusion process on the total flow graph to assign
power flows to generators or loads in electricity networks [40, 41, 43]. Although
the downstream dissection of the total flow into different strands emerging
from the individual source nodes represents an intuitive technique for the flow
allocation problem, this approach implies limitations for possible economic in-
terpretations: The application to the total flow graph does not allow to associate
power flows to individual trade contracts or other bilateral import/export pat-
terns. In particular, partial power flows due to commercial exchanges which
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3. Decompositions of injection patterns

are not aligned with the overall total power flow (as for example a possible
contract between Germany and France in Fig. 3.1) cannot be represented by this
method. In this contribution, we propose an alternative method of flow alloca-
tion, which decomposes the overall injection pattern into elementary injection
patterns. These patterns can be associated with individual contracts or other
commercial exchange patterns. Two different variants of this decomposition
method are compared with the flow tracing technique by applying them to a
simplified model of a highly renewable European electricity system. We observe
that the respective partial flow patterns differ significantly for individual net-
work flow events. These differences are still visible in the resulting partial flow
statistics evaluated for a time series of fluctuating injection patterns. For the
event-averaged import/export patterns and an aggregated statistical measure
of total network capacity usage, the methods studied in this contribution yield
similar results, which are mostly driven by the respective average imports and
exports of the individual countries.

The decomposition method introduced in this contribution depends on the
linearity of the equations describing the power flow in the network. Accordingly,
for the application of this method, the accuracy of the DC approximation to the
full AC power flow equations has to be assured. Whereas this usually is the case
for the stable operation in high-voltage grids, for the power flow in distribution
grids, in particular with infeed from renewable generation, one often has to
consider voltage support or reactive power management not represented in the
DC approximation [79]. On the other hand, the linear relationship between link
flow and nodal injection is not exclusive to the DC power flow model, but also
occurs for instance in models of network diffusion [76], hydraulic networks [74]
or vascular networks [75]. Accordingly, the decomposition method can also be
straightforwardly applied to such models, with a suitable choice of elementary
injection patterns depending on the specifications of the system.

With respect to the application to electricity systems, it would be interesting to
compare the decomposition method of injection patterns with further methods
of flow allocation, for instance with marginal participation methods which also
make use of the matrix of power transfer distribution factors [44, 80, 81]. The
application to a more detailed model of the electricity system, in particular with
a more realistic network representation and market-based dispatch schemes,
could allow to learn more about the economical implications of the methods of
flow allocation presented in this contribution. We emphasise that the analysis
presented in this paper assumes an ex-post allocation of usage or costs to
the users of the transmission system, that is the injection pattern itself is not
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3.4. Conclusion

influenced by this allocation. For an efficient design of the electricity system, both
the short-term operational and the long-term investment decisions of the system
users should incorporate the resulting transmission costs. This feedback process
proposes interesting research questions for simplified models of networked
electricity systems, incorporating methods from game theory or control theory.
We also expect that for such a feedback loop the influence of the specific choice of
the allocation method increases significantly. If for example congestion-relieving
counter-flows are rewarded, the network nodes are incentivised to cause flows
opposite to the flows attributed to the remaining nodes. From the system
perspective, this concept then shows some similarity to the principles found in
minority games [82].
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4

Flow-based nodal cost allocation in a
heterogeneous highly renewable
European electricity network

This chapter is published as “Flow-based nodal cost allocation in a heterogeneous
highly renewable European electricity network” by Bo Tranberg, Leon J. Schwenk-
Nebbe, Mirko Schäfer, Jonas Hörsch and Martin Greiner in Energy [2].

4.1 INTRODUCTION

A future sustainable electricity system will strongly depend on the large-scale
integration of fluctuating renewable power generation from wind turbines and
solar photovoltaics [14, 22, 83]. The weather-dependent resource quality and thus
cost efficiency of these variable renewable energy sources (VRES) is unevenly
distributed across the European continent. An efficient placement of generation
capacity will thus result in a heterogeneous layout, in which locations with
favorable conditions will be net exporters of electricity, whereas regions with less
favorable conditions import electricity as power flows through the transmission
grid [69,84–86]. Despite its efficiency in terms of reducing global system costs [7,
87], such a heterogeneous layout represents a political and economical challenge.
Countries with favorable weather conditions will get assigned disproportionally
high shares of generation capacity, which to a large degree will be exported and
serve electricity consumption abroad. The associated investment costs thus must
be incentivized by appropriate renumeration schemes, which in todays system
are largely based on electricity markets complemented with different kinds of
state-regulated support schemes [88–90]. Nevertheless, the increasing share of
fluctuating renewable generation represents a challenge for the design of future
market rules. A deeper understanding of the nodal structure of system costs
might provide guidance to the development of a suitable regulatory framework,
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4. Flow-based nodal cost allocation

which supports the transition towards an efficient sustainable system design by
providing a fair allocation of costs and target-oriented incentives for investors.

Using a flow tracing technique based on average participation [40, 41] in this
contribution, we derive nodal levelized costs of electricity (LCOE) which factor
in the share of the system-wide operational and capital costs associated with the
electricity consumption (load) of the individual nodes [42, 91]. We apply this
formalism to a coarse-grained model of the European electricity system with a
high share of renewable generation [7].

This paper is organized as follows: Section 4.2 describes the simplified model
of the European electricity network and presents the respective infrastructure
measures, cost modelling and heterogeneous renewable capacity layouts. Further-
more, the method of flow tracing is reviewed, which represents the cornerstone
of the flow-based nodal cost allocation defined in Section 4.3. In Section 4.4
the application of this method is discussed for different renewable generation
layouts and transmission cost allocation schemes. The paper is concluded with a
discussion of the results and an outlook to future research.

4.2 MODELLING AND METHODS

4.2.1 The electricity network

In this study we use a simplified model of the European electricity network,
shown in Figure 4.1. Each node represents an aggregated country and each
link represents coarse-grained interconnector transmission capacity between the
countries, distinguishing between AC lines and HVDC lines. The size of the
nodes visualizes the average load. Wind and solar PV generation constitute the
nodal VRES power generation:

GR
n (t) = GW

n (t) + GS
n(t) . (4.1)

As described in [7] the VRES generation is modeled using eight years of hourly
weather data from 2000 to 2007 with a spatial resolution of 50× 50km2 [66, 92].
The weather data is converted into generation time series using country-specific
capacity layouts from Eurostat [93, 94]. For simplicity this model focuses only
on onshore wind and solar PV generation. We use two parameters to describe
the renewable generation in Equation (4.1). The renewable penetration, which
determines the amount of renewable generation relative to the load of a node

〈GR
n 〉 = γn〈Ln〉 , (4.2)
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Figure 4.1: The simplified European electricity system. The size of the nodes
shows the average load of the respective countries. AC lines are colored red and
DC lines are colored green.

where the load time series Ln(t) is based on historical data from ENTSO-E,
and the mixing parameter αn, which fixes the ratio between wind and solar
generation

〈GW
n 〉 = αn〈GR

n 〉 , (4.3)

〈GS
n〉 = (1− αn)〈GR

n 〉 . (4.4)

Note the usage of averages which means that γn = 1 describes a country that
on average covers its entire load by renewable generation. The hourly nodal
mismatch between VRES generation and load

∆n(t) = GR
n (t)− Ln(t) (4.5)

will be balanced by the dispatch of backup power generation, curtailment of
excess generation, and power transmission between the countries. For simplicity,
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4. Flow-based nodal cost allocation

storage is not considered. The resulting nodal balancing equation reads

GR
n (t)− Ln(t) = ∆n(t) = Bn(t) + Pn(t) . (4.6)

Here Bn(t) represents the nodal balancing consisting of curtailment of excess
power Cn(t) = max(Bn(t), 0) and the dispatch of backup generation GB

n (t) =

−min(Bn(t), 0), and Pn(t) represents the power injected (ejected) to (from) the
network. It is assumed that the model is balanced such that ∑n Pn(t) = 0. We
assumed that the dispatchable backup generation is realized by Combined Cycle
Gas Turbines (CCGT). The dispatch of the nodal backup and curtailment is
determined using the synchronized balancing scheme [28]:

Bn(t) =
〈Ln〉

∑k〈Lk〉∑
m

∆m(t) . (4.7)

Combining Equation (4.6) and Equation (4.7) fixes the injection pattern Pn(t).
The injection pattern in turn determines the flows Fl(t) on the links l:

Fl(t) = ∑
n

HlnPn(t) . (4.8)

Here we have used the DC approximation to the AC power flow equations [44,79],
in which the entries Hln of the matrix H are the power transfer distribution factors
(PTDF) representing the influence of the line susceptances and network topology
on the power flows. The PTDF matrix H can be calculated as

H = ΩKTB† , (4.9)

where B† denotes the Moore-Penrose pseudo inverse of the nodal susceptance
matrix B and the entries of the diagonal matrix Ω are the line susceptances on
the links l. The matrix KT is the transposed incidence matrix with

KT
ln =


1 if link l starts at node n ,
−1 if link l ends at node n ,
0 otherwise .

(4.10)

For simplicity the susceptances are all chosen to be identical and Ω is the identity
matrix.

4.2.2 Infrastructure measures

The energy system cost is based on measures of the installed generation and
transmission capacities as well as on the backup energy introduced in [87]. The
nodal backup energy is given by the average backup power generation:

EB
n =

〈
GB

n

〉
. (4.11)
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Excluding extreme events that are assumed to be covered by emergency equip-
ment or flexible demand outside the model, the backup capacity is defined as
the 99% quantile of the backup generation events:

0.99 =
∫ KB

n

0
dGB

n pn(GB
n ) . (4.12)

The transmission capacity KT
l is defined in a similar way as the 99% quantile of

flow events,

0.99 =
∫ KT

l

−KT
l

dFl pl(Fl) , (4.13)

assuming identical capacity in both directions. The total backup capacity is
calculated by summing the nodal capacities KB = ∑nKB

n . The total transmission
capacity is calculated as the weighted sum

KT = ∑
l

dlKT
l , (4.14)

taking into account the link length dl approximated by the distance between the
capitals of the countries. From the renewable penetration and the wind/solar
mix we derive the capacities of wind and solar generation:

KW
n =

γnαn〈Ln〉
CFW

n
, (4.15)

KS
n =

γn(1− αn)〈Ln〉
CFS

n
. (4.16)

The capacity factors CFW/S
n represent the average renewable generation as a

fraction of the installed capacity. They are taken from [7] where they are based
on data from [93, 94].

4.2.3 Cost modelling

We follow the cost modelling in [7]. The present value of investment V for each
type of generation capacity is defined as

V = CapEx +
Tlife

∑
t=1

OpExt
(1 + r)t , (4.17)

where r, the rate of return, is assumed to be 4% per year. Cost assumptions for
capital expenditures (CapEx) and operational expenditures (OpEx) are listed in
Table 4.1.
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4. Flow-based nodal cost allocation

Table 4.1: Cost assumptions separated into capital expenditures (CapEx) and
fixed and variable operational expenditures (OpEx) as well as expected lifetimes.

Asset CapEx OpExfixed OpExvariable Lifetime
[e/W] [e/kW/y] [e/MWh] [years]

CCGT 0.90 4.5 56.0 30
Solar PV 0.75 8.5 0.0 25
Onshore wind 1.00 15.0 0.0 25

The present value of a transmission line is calculated as the cost of the line

VT
l = KT

l dlcl , (4.18)

where dl is the line length and cl is the specific transmission capacity cost:

cl =

{
400e/km (AC line),

1500e/km (DC line).
(4.19)

The total present value of the transmission system is

VT = ∑
l

VT
l + NHVDC · 150, 000e. (4.20)

The second term accounts for the cost of a pair of converter stations for each
HVDC line [7, 84, 95]. The layout of AC and HVDC lines has been constructed
in [69] based on the existing European network in the year 2011 [96] as well as
new predicted lines until 2014 [97, 98].

The system costs are measured using the Levelized Cost of Electricity (LCOE),
which represents the average cost per consumed unit of energy during the system
lifetime [99, 100]:

LCOEV =
V

∑Tlife
t=1

LEU,t
(1+r)t

. (4.21)

The system LCOE is calculated by summation over the LCOEs for the system ele-
ments, which takes into account the different life times for solar PV, onshore wind,
CCGT plants, and transmission infrastructure [7]. For V ∈ {VW , WS, VB, VT}:

LCOEEU = ∑
V

LCOEV . (4.22)
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4.2.4 Optimal heterogeneity

All countries have a natural upper limit of the geographical potential for renew-
able generation capacity. A lower limit is set by the willingnesses of the countries
to be dependent on imports from other countries. A stylized model of hetero-
geneity within these boundaries, which avoids specifying the exact renewable
potentials in each country, is introduced by the heterogeneity parameter K:

1
K
≤ γn ≤ K . (4.23)

The specific choice K = 1 results in a homogeneous layout, in which the average
load 〈Ln〉 corresponds to the average renewable power generation 〈GR

n 〉 in each
country. In [7] this condition was used to optimize the set of γn and αn, a total
of 60 variables, with the objective to minimize the system LCOE, and with the
constraint that the renewable penetration of Europe is γEU = 1. This was done
using a Greedy Axial Search (GAS) algorithm [101]. The optimized layouts are
refered to as GAS layouts. In the following, GAS→ GAS* refers to an additional
optimization, in which the transmission capacities have been uniformly scaled
down from the definition in Equation (4.13), to yield a more cost effective
constrained system despite a slightly higher cost for backup energy [7].

Figure 4.2 shows the sets γn and αn of three optimized scenarios. The GAS-
noT layout in the top panel assumes a European system without transmission
capacity between the individual countries. Setting the parameter γn = 1 for
all nodes n, we assume that on average every country individually covers its
load from renewable generation, with the instantaneous mismatch balanced
by local backup power generation. This leaves the nodal mix between wind
and solar αn to be optimized by the GAS algorithm. For countries with strong
wind resources like Denmark (DK) or Sweden (SE), a 100% wind layout is
optimal, whereas southern countries like Italy (IT) or Greece (GR) introduce
higher shares of solar power into the renewable energy mix. The middle panel
represents a system allowing transmission between the nodes, allowing a more
efficient placement of generation capacity and providing a spatial smoothing
of fluctuations in the renewable generation. Whereas the GAS* (K=1) case still
assumes a homogeneous parameter γn = 1 for all nodes, the optimized mix of
renewable generation represented by the parameters αn differs from the GASnoT
scenario due to the possibility of power transmission. The GAS* (K=2) scenario
describes a heterogenous system layout, in which also the parameters γn have
been optimized under the condition Equation (4.23) with K = 2 and an overall
VRES penetration of γEU = 1. The bottom part of Figure 4.2 illustrates this
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Figure 4.2: The renewable penetration parameter γn for GASnoT, GAS* K=1,
and GAS* K=2 obtained in [7]. The mixing parameters αn between wind (blue)
and solar (yellow) power generation are also indicated.
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heterogeneity: solar and wind generation capacity is concentrated at locations
with favorable resource quality, leading to higher VRES penetration γn for these
nodes. In this layout, nodes with γn > 1 are net exporters, whereas nodes with
γn < 1 are net importers.

The overall system LCOE for the three layouts of Figure 4.2 are as follows. The
GASnoT layout without transmission has the highest cost of 63 e/MWh. The
more efficient placement of renewable capacity in the GAS* K=1 layout leads to
a reduction of system LCOE to 56.6 e/MWh, just by introducing transmission.
When introducing additional heterogeneity in the GAS* K=2 layout the resulting
power flows in the system lead to higher transmission capacity costs. However,
the total system LCOE can be further reduced to 53.8 e/MWh [7].

4.2.5 Flow tracing

The technique of flow tracing allows to follow the power flows from the exporting
source nodes through the network to the importing sink nodes [40, 41]. This
method has for instance been proposed as a flow allocation scheme in the context
of the European inter transmission system operator compensation mechanism [51,
53], and has been used as an analytical tool for transmission capacity allocation
in a simplified model of a highly renewable European electricity system [43].
Here we will follow the extended formulation as presented in [1, 46], using a
decomposition of power flows across the network into strands associated with
the injecting export node and the type of generation. For this purpose we
define the in-partition qin

(n,µ), which describes the share of the total power P+
n :=

max(Pn, 0) injected at node n associated with generation type µ ∈ {W, S, B}
(wind, solar, backup power generation). This in-partition represents the input to
the flow tracing algorithm, which then yields the following flow-partition and
out-partition:

• The flow partition
{

ql,(n,µ)

}
dissects the flow Fl on a link l into the com-

ponents Fl,(n,µ) = ql,(n,µ)Fl that are attributed to the exporting node n and
generation type µ.

• The out-partition
{

qout
n,(m,µ)

}
describes the composition of power P−n :=

−min(Pn, 0) imported by node n. The respective share of this import
P−n attributed to the exporting node m and generation type µ is given by
qout

n,(m,µ)P
−
n .
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4. Flow-based nodal cost allocation

The algorithm which determines this output from the in-partition is based on
(m, µ)-flow conservation and the principle of proportional sharing [40, 41]:

δn,mqin
(n,µ)P

+
n + ∑

k
qk→n,(m,µ)Fk→n

= qout
n,(m,µ)P

−
n + ∑

k
qn→k,(m,µ)Fn→k , (4.24)

with
qout

n,(m,µ) = qn→k,(m,µ) (4.25)

for the link l = n → k directed from node n to node k. The links are oriented
along the total power flow Fl . We solve Equation (4.24) iteratively by starting at
an exporting node without any inflow and following the power flow downstream.
This is possible since the power flows on the network can be represented as a
directed acyclic graph without loops [1].

The flow tracing algorithm has to be applied to every instantaneous injection
pattern Pn(t) and corresponding power flow pattern Fl(t). The resulting out-
partitions qout

n,(m,µ) can be integrated into the following average export transfer

function Eµ
m→n:

Eµ
m→n = 〈qout

n,(m,µ)P
−
n 〉 . (4.26)

This measure describes the average amount of power injected at node m and
resulting from generation type µ, which is exported through the network to the
importing node n.

Prioritization of intrinsic renewable generation and decomposition of nodal
exports We use a simplified model of the European electricity network, in
which each country is represented by a single node. By disregarding the internal
transmission networks, we aggregate over power generation and consumption
on smaller scales, and determine the corresponding coarse-grained curtailment,
backup power generation, imports, and exports on country scale. Nevertheless,
since the flow tracing methodology considers the composition of the coarse-
grained power flows and imports/exports, we have to introduce some additional
rules on the nodal country level.

Recall that the total net injection Pn(t) of node n is determined by the nodal
balancing equation Equation (4.6):

Pn(t) = GR
n (t)− Ln(t) + GB

n (t)− Cn(t) . (4.27)
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Figure 4.3: Nodal electricity partition cases. For every hour and every node one
of these cases applies. Cases a-c all apply to nodal exports (P+

n = Pn > 0), while
cases d-f all correspond to nodal imports (P−n = −Pn > 0).

Here we have written the balancing Bn(t) in terms of backup power generation
GB

n (t) and curtailment Cn(t). Both the renewable generation GR
n (t) and nodal

load Ln(t) are given by the respective time series, whereas the balancing is
determined from the heuristic scheme introduced in Equation (4.7). Although
all terms in this equation are uniquely defined, the composition of exports P+

n
or load Ln(t) can be interpreted in different ways. Consider in particular an
exporting node with Pn > 0, which besides renewable generation GR

n (t) provides
backup power generation GB

n (t). In this case, which part of the renewable and
backup power generation is assigned to the load Ln(t) and which part to the
net injection P+

n (t)? In order to clarify this and related issues, in Figure 4.3 we
distinguish between six different nodal electricity partition cases.

For the stated example, we apply a prioritization of intrinsic renewable gen-
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4. Flow-based nodal cost allocation

eration, that is we assign as much intra-nodal renewable power generation as
possible to the respective load, whereas a maximum of possible backup power
generation is exported. Inside the boundaries of the simplified model considered
here, this approach assumes that the individual countries use their generation
capacity to their own benefit by exporting more expensive backup power genera-
tion from gas turbines, while using cheaper renewable generation for their own
consumption. Note that the applied dispatch scheme distributes both backup
power generation and curtailment to all countries relative to their average load.

The different nodal electricity partition cases illustrated in Figure 4.3 determine
uniquely the in-partition q(n,µ) for the flow tracing algorithm, and are consistent
with a prioritization of intrinsic renewable generation:
Case (a):

qin
(n,µ)(t) =



GW
n (t)

GR
n (t)

for µ = W

GS
n(t)

GR
n (t)

for µ = S

0 for µ = B

. (4.28a)

Case (b):

qin
(n,µ)(t) =


0 for µ = W

0 for µ = S

1 for µ = B

. (4.28b)

Case (c):

qin
(n,µ)(t) =



GW
n (t)

GR
n (t)

GR
n (t)− Ln(t)

GB
n (t) + GR

n (t)− Ln(t)
for µ = W

GS
n(t)

GR
n (t)

GR
n (t)− Ln(t)

GB
n (t) + GR

n (t)− Ln(t)
for µ = S

GB
n (t)

GB
n (t) + GR

n (t)− Ln(t)
for µ = B

. (4.28c)

Cases (d), (e), (f):

qin
(n,µ)(t) =


0 for µ = W

0 for µ = S

0 for µ = B

. (4.28d)

Here, (4.28a) refers to case (a) in Figure 4.3 and so forth. Note that only cases (a),
(b), and (c) lead to a non-zero in-partition.
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4.3. Flow-based nodal cost allocation

Transmission network usage measure The system participants make use of
the transmission infrastructure through the power flows resulting from their
imports and exports. The respective infrastructure costs thus have to be allocated
to these users based on a suitable network usage measure. Although such a
measure could be derived from nodal properties only, like average imports and
exports (postage stamp method), this approach would ignore the role of the
individual nodes in the fluctuating spatio-temporal flow pattern. In the following
we apply a flow-based transmission capacity allocation measure, which has been
introduced in [43]. Using the flow tracing method, this measure attributes the
transmission capacity of a link KT

l , defined in Equation (4.13), to each country n
based on the statistics of the corresponding partial flows Fl,n(t) = ql,n(t)Fl(t):

KT
l,n =

∫ KT
l

0
dK 1

1− Pl(K)

∫ KT
l

K
dFl pl(Fl)〈ql,n|Fl〉 . (4.29)

Here pl is the probability distribution of the flow on the link l, Pl is the cumulative
probability function, and 〈ql,n|Fl〉 is the average fraction of the flow assigned
to the source node n, given that the total flow is equal to Fl . Note that we
here do not discriminate different generation technologies and thus omit the
index µ. In [43] this measure is derived by virtually decomposing the total
capacity KT

l,n into infinitesimal increments dK for the whole time series. Each of
these increments is then weighted according to the respective flow-based usage
by the node n. The structure of the expression Equation (4.29) assures that the
first increments of the total capacity are assigned to all users with partial flows
on the respective link, whereas the last increments close to the total capacity
are only assigned to those system participants which make use of the link in
high-flow situations. For a further discussion of this approach we refer the
reader to [1, 43, 46].

4.3 FLOW-BASED NODAL COST ALLOCATION

4.3.1 Nodal cost allocation

The system LCOE Equation (4.22) is an aggregated measure of the cost of
electricity across all countries. Allocating costs for individual nodes requires a
nodal LCOE measure. Here we introduce such a measure with the requirement
that the weighted sum of nodal costs reproduces the aggregated system costs

LCOEEU = ∑
n

〈Ln〉
〈LEU〉

LCOEn . (4.30)
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The costs related to the individual system components in Equation (4.17) and
Equation (4.20), constituting the LCOE Equation (4.21), have to be allocated to
the respective countries. This corresponds to the introduction of a node index
on the set of present values:

{VW , VS, VB, VT} ⇒ {VW,n, VS,n, VB,n, VT,n}. (4.31)

In the following we differentiate between generation capacity costs and trans-
mission infrastructure costs. A straightforward method for the attribution of
generation capacity costs would be according to their respective geographical
location, that is for instance the cost of wind power generation capacity is as-
signed to the country in which the respective turbines are installed. Such an
allocation ignores the fact that in an interconnected system with transmission a
significant amount of generated power might be exported to and thus consumed
in another country. In order to establish nodal LCOEs which take into account
these import/export patterns, we thus have to connect the location of generation
with the location of consumption. This connection is realized by the flow tracing
method and expressed by the export transfer function Eµ

m→n. Based on this
function, we define the measure Kµ

m→n, that describes the generation capacity of
type µ ∈ {W, S, B} located at node m which is used by node n:

Kµ
m→n =


[

Eµ
m→n

〈Gµ
m〉−〈C

µ
m〉

]
Kµ

m if m 6= n

Kµ
m −∑s 6=mK

µ
m→s if m = n .

(4.32)

Here 〈Gµ
m〉 and 〈Cµ

m〉 denote the average generation and curtailment of generation
type µ in node m, respectively. In the case m 6= n this measure attributes a share
Kµ

m of the generation capacity of type µ in node m to an importing node n. The
attribution is proportional to the respective export transfer function Eµ

m→n and
the amount of power of type µ generated at node m that is not curtailed. The
capacity that gets attributed to node m itself is the remaining capacity after the
attribution to all importing nodes n. With this measure we can calculate the total
share of system generation capacity of type µ which is attributed to node n:

K̃µ
n = ∑

m
Kµ

m→n . (4.33)

In a similar way the share of the total system backup energy generation is
attributed to a node n by:

ẼB
n = 〈GB

n 〉 − ∑
m 6=n
EB

n→m + ∑
m 6=n
EB

m→n (4.34)

= ∑
m

KB
m→n
KB

m
〈GB

m〉 . (4.35)
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Here we have used the definition in Equation (4.32) and 〈CB
m〉 = 0. Combining

the nodal generation capacities Equation (4.33) and the nodal system backup
energy usage Equation (4.34), the nodal LCOE is calculated as

LCOEn = ∑
µ

Ṽµ
n

∑
Tµ

life
t=1

Ln,t
(1+r)t

+
VT

n

∑
TT

life
t=1

Ln,t
(1+r)t

, (4.36)

where the nodal present values of investment Ṽµ
n are now based on K̃µ

n and
ẼB

n where applicable. For the allocation of transmission capacity costs VT
n in

the nodal LCOEs we consider different schemes. A simple realization based
on nodal properties only is an assignment according to the average load of a
country:

VT
n =

〈Ln〉
〈LEU〉

VT . (4.37)

An alternative flow-based transmission infrastructure cost allocation makes use
of the capacity usage measure KT

l,n in Equation (4.29):

VT
n = ∑

l
KT

l,ndlcl . (4.38)

Here we assume that the cost for the DC converter stations are allocated following
the assignment of the corresponding HVDC lines. Note that KT

l,n can be either
based on exports or imports, depending on how the flow tracing algorithm is
applied.

4.3.2 Variation of nodal costs

Our primary goal with the introduction of heterogeneity is to reduce the overall
system costs. As a side effect, the introduced heterogeneity of the renewable
generation capacities might lead to a change in the variation of the individual
nodal costs. To measure this change, we use the weighted standard deviation
(WSD) of the nodal LCOEs:

WSD =

√√√√ N

∑
n=1

〈Ln〉
〈LEU〉

(LCOEn − LCOEEU)
2 . (4.39)

4.4 RESULTS

4.4.1 Patterns of imports and exports

We now look at the patterns of imports and exports for the GAS* K=2 layout.
In the top panel of Figure 4.4 we show the six largest average exports for six
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countries, which are all, except for Serbia (RS), net exporters with γn > 1; see
Figure 4.2 for reference. The average exports are calculated using the export
transfer function Equation (4.26) and displayed in terms of the mean load of the
country of interest. The percentage in parenthesis denotes the amount of the
country’s total average export accounted for by the sum of the six bars. Similarly,
the bottom panel shows the six largest average imports for six countries, all net
importers with γn < 1.

The leftmost part of the top panel displays the top six countries that Great
Britain is exporting to (normalized to the mean load of Great Britain). It shows
that 79% of the average exports of Great Britain are accounted for by only six
countries. Similarly, the leftmost part of the bottom panel shows the top six
countries contributing to the imports of Germany (normalized to the mean load
of Germany). In both panels the six countries of interest are sorted by descending
mean load.

The mix between wind and solar, which is shown in Figure 4.2, is visible in the
export components in the top panel, with GB and DK having only wind and ES
having a solar dominated mix.

All net importers in the bottom panel are importing from GB, and almost all are
importing from ES as well. This holds even for countries far away in the network,
such as FI, BG, RS, see Figure 4.1 for reference. GB and ES have considerable
mean load and γn close or equal to 2, which is why their exports are ubiquitous
in the network. Note that the renewable mix of Spain is solar dominated while
GB is purely wind.

Serbia is included in both panels of Figure 4.4. It is a net importer with γn = 0.5.
We see that even net importers will be exporting during some hours. Since for
Serbia αn = 0, solar and backup power generation accounts for the entire export.
The imports of Serbia are almost entirely wind, which is due to the dominance
of wind power generation in the net exporting neighboring countries.

4.4.2 Nodal cost of electricity

We apply the method of flow-based nodal LCOEs as defined by Equation (4.36)
to the two GAS* optimized scenarios with transmission and heterogeneity limits
K=1 and K=2 (see Section 4.2). For the heterogeneity constraint of K=1 the
results are shown in the top part of Figure 4.5, whereas the bottom part shows
the results for the more heterogeneous layout for K=2. In these figures, the
transmission capacity costs are attributed equally to the countries based on
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Figure 4.4: Average exports (top) and imports (bottom) for selected countries
in the GAS* K=2 layout. Results are calculated using the export Equation (4.26)
transfer function. The percentage in parenthesis denotes the amount of the
country’s total average export (top) or import (bottom) accounted for by the sum
of the six bars.

their respective mean load according to Equation (4.37). We observe that the
external capacity and backup energy costs allocated using the flow tracing
method represent a significant part of the nodal LCOE. This becomes particularly
apparent for Serbia, which is assigned almost none local wind power capacity
(see Figure 4.2), but uses a substantial amount of external wind power generation
to cover its electricity demand; see also Figure 4.4. Similarly, for both layouts
with transmission France has no local solar generation capacity, but to some
extent imports such solar power generation through the transmission grid. The
usage of backup power capacity and backup energy is relatively homogeneously
distributed for most nodes, which has its origin in the synchronized balancing
scheme (recall the definition in Equation (4.7)).

In [7] it was shown that power transmission between the European countries and
a higher degree of heterogeneity lowers the total system LCOE from 63e/MWh
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Figure 4.5: Nodal component-wise LCOE for the GAS* K=1 (top) and the GAS*
K=2 (bottom) layout. The components are split into their local and external parts.
In both cases the transmission cost component of the LCOE is distributed accord-
ing to the average load of the individual countries as defined in Equation (4.37).

to 53.8e/MWh. This is shown in the leftmost bar of Figure 4.6. How does this
cost reduction translate to the nodal LCOEs associated with the individual coun-
tries? Remarkably, the transition from the GAS K=1 layout without transmission
to the GAS* K=1 layout with transmission leads to reduced nodal LCOE for
every single country; see Figure 4.6. This shows that under a flow-based cost
allocation mechanism, cooperation in a European electricity system through
power transmissions does not only lead to a global, but also to a system-wide
local cost reduction. Allowing a more heterogeneous GAS* K=2 layout decreases
the system LCOE further from 56.6e/MWh to 53.8e/MWh. Apart from a few
exceptions (France, Sweden, Netherlands, Bulgaria, Ireland) this global cost
reduction is again related with reduced or unchanged LCOEs on the nodal level.
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Figure 4.6: Comparison of nodal LCOEs for GASnoT (blue), GAS* K=1 (green),
and GAS* K=2 (red). Allowing transmission reduces the system LCOE and all
nodal LCOEs. Increasing the heterogeneity from K=1 to K=2 leads to a decrease
of the system LCOE and all nodal LCOEs except small increases for FR, SE, NL,
BG and IE.

Compared with the system layout without transmission, we observe the largest
drop in nodal LCOEs for Denmark (DK) and Luxembourg (LU), with a nodal
cost reduction of 17e/MWh and 16e/MWh, respectively, compared to an overall
cost reduction of 9.2e/MWh. In the case of Luxembourg this cost reduction is
due to its low capacity factor for local wind energy [7], whereas for Denmark
the cost reduction can be explained in an efficient usage of abroad generation
capacity combined with a high local capacity factor for wind energy.

In both panels of Figure 4.5, we see fluctuations in nodal LCOEs around the
EU average shown on the left. In Table 4.2 we display the WSD as defined
in Equation (4.39) as a measure of the heterogeneity of nodal LCOEs for the
scenario without transmission and for the scenarios with transmission (hetero-
geneity parameter K=1 and K=2). We observe that K=1 the incorporation of
power transmission reduces the WSD from 7.27 e/MWh to 5.38 e/MWh. This
shows that the spread in nodal LCOEs is at first reduced by cooperation between
the European countries, which can be explained by the partial smoothing out of
the heterogeneity in the renewable generation resources and the accompanying
generation costs. For increasing heterogeneity K=2 we then observe an increas-
ing WSD from 5.38 e/MWh to 8.54 e/MWh. This shows that even under the
flow based nodal cost allocation scheme the system-wide cost reduction due to
higher heterogeneity is unequally distributed among the different countries. In
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particular, net exporting countries with γn > 1 are the main beneficiaries of the
transition from the K=1 to the K=2 scenario (see Figure 4.6). These countries
are able to consume higher shares of renewable generation, therefore saving
costs in backup power generation, while exporting the involved surplus and the
related capacity costs. However, this benefit from heterogeneity goes along with
a disproportional usage of the transmission grid, which is not represented in the
transmission cost allocation based on average loads applied so far. In the next
section we explore how a respective flow based allocation affects the spread in
the nodal LCOEs.

4.4.3 Transmission cost allocations

Besides a transmission cost allocation according to the average load of a country,
in the following we consider three variants of the flow based cost assignment
in Equation (4.38): 1) the importer alone pays for transmission, 2) the transmis-
sion expenses are shared equally between both importer and exporter, and 3)
the exporter alone pays for the transmission. The respective underlying network
usage measure Kl,n in Equation (4.29) in general is used to allocate transmission
capacity to exporters by tracing the exported power flows. This is the export
picture, which is described in Section 4.2.5 and is used for case 3). To allocate
transmission capacity to importers we swconsentec2006h to the import picture,
that is Pn(t) → −Pn(t) and Fl(t) → −Fl(t), and apply Equation (4.29) to trace
the imported power flows for case 1) [43]. Case 2) is an average of the import and
export picture. These three cases of flow based transmission cost allocation are
compared with the one based on average loads in Figure 4.7. The nodal LCOEs
values are, except for the transmission component, equal to the results shown
in Figure 4.5. For this reason we highlight the transmission cost component of
the nodal LCOEs in Figure 4.7, leaving the other components grey. The four
green bars shown for each country represent from left to right the four cases
described above.

The top panel of Figure 4.7 shows results for the homogeneous GAS* K=1 layout
with γn = 1, while the bottom panel shows results for the more heterogeneous
GAS* K=2 layout with 0.5 ≤ γn ≤ 2. For the K=1 layout for all node there are
only minor differences between the three cases of transmission cost allocation.
This is due to the fact that, on average, each country serves its own load by
its own renewable generation, and only the fluctuating surpluses are subject
to power transmission. In the more heterogeneous case of K=2, however, we
see significant differences between the three transmission cost allocations. In
this scenario the occurrence of net importers and net exporters lead to a more
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Figure 4.7: Comparison of four transmission cost allocations. Leftmost of the
green bars: assignment proportional to average loads. Then from left to right:
importing countries alone pay for the transmission line costs, equal sharing of
expenses between both importer and exporter, and transmission cost allocated
to exporting countries. Note that all transmission cost allocations will always
result in the same weighted average value of the total European LCOE.

disproportionate usage of the transmission grid. As discussed in the previous
section, the transition from the K=1 to the K=2 scenario mainly benefits the net
exporting countries. Accordingly we observe in Table 4.2 an increasing WSD
if we allocate transmission costs using the flow based methodology based on
imports. The equal partition between exports and imports then reduces the
WSD compared to the case of a transmission cost assignment based on average
loads due to its incorporation of some of the exporters significant transmission
usage. Although such an allocation scheme could be considered as most fair
by representing the individual countries role in the overall flow pattern, it does
not balance the benefit of higher heterogeneity in terms of nodal LCOEs for
net exporters. Accordingly, the WSD in Table 4.2 as expected adopts its lowest
value in the case of a purely export based transmission cost allocation. Such an
attribution mainly affects the six countries with γn close or equal to 2, which
incur the strongest benefit from the increasing heterogeneity in the system. The
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Table 4.2: The weighted standard deviation (WSD) of the fully usage-based
nodal LCOE for different shares of the transmission cost between the importing
and exporting countries. Results are shown for different values of the constraint
parameter K and different flow allocation schemes. The LCOEEU values are
shown for reference. All results are obtained for the GAS* layouts and all values
are expressed in units of e/MWh.

Heterogeneity LCOEEU WSD WSD for import/export:
constraint 100/0 50/50 0/100

K= 1 (no trans.) 63.0 7.27
K= 1 56.6 5.38 5.28 5.22 5.17
K= 2 53.8 8.54 10.22 6.72 3.83

respective countries are Great Britain, Spain, Norway, Portugal, Denmark and
Croatia (see Figure 4.2 for reference), which as shown in Figure 4.7 display
disproportionally large allocations of transmission infrastructure costs.

4.5 CONCLUSION AND OUTLOOK

In this contribution we study flow-based nodal levelized costs of electricity
(LCOEs) in the framework of a simplified model of a highly renewable European
electricity network with countries as aggregated network nodes. As shown in [7],
an optimal heterogeneous placement of renewable generation capacity reduces
the system-wide LCOE in this model. In order to be able to investigate LCOEs
on a nodal level, we use a flow tracing technique to connect the location of
power generation with the respective location of consumption. This method
allows to assign shares of capital and operational costs associated with imported
power from generation capacities abroad, and to allocate transmission capacity
costs based on the countries role in the fluctuating spatio-temporal power flow
patterns. We observe that for the model of the European system, both cooperation
between the countries by importing and exporting excess generation, and a more
efficient heterogeneous capacity placement not only lead to a reduction of the
system LCOE, but also to a reduction of the nodal LCOE for all countries
compared to the case without transmission. It is shown that net exporters are the
main beneficiaries of a heterogeneous system layout, with an export flow-based
attribution of transmission infrastructure cost reducing the related spread of
nodal LCOEs.

Methodologically it would be interesting to use other flow allocation measures
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for the transmission cost allocation, for instance methods based on the PTDF
matrix [1, 44], and compare the resulting influence on the nodal LCOEs. Also
the allocation of backup power capital costs as used in this contribution could
be expanded to include correlations to the injection and flow pattern, similar to
the approach used for the network usage measure in [43].

For the investigation in the present contribution we have used a coarse-grained
model where the heterogeneity has been limited to country aggregates. However,
the capacity factors vary within each country, which can be exploited by using a
model with higher spatial resolution. A recent paper has shown that the cost of
renewable generation capacity in a heterogeneous system is up to 10% lower for
a high resolution network of 362 nodes when compared to a 37 node network
with one node per country [30]. It would be interesting to apply the concept of
nodal LCOEs and understand the distribution of costs in such a more detailed
model.

The method of flow-based nodal LCOEs first and foremost serves as an analytical
tool to investigate the system costs of an interconnected electricity system on a
nodal level. By definition, it does not take into account the role of markets as
the prevalent way to allocate costs and remunerate investors in todays electricity
system. Nevertheless, comparing a statistical measure of market prices with
the nodal LCOEs could point towards how additional capacity pricing mecha-
nisms could lead to a fair distribution of the respective costs in a cost-efficient
heterogeneous highly renewable energy system.
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5

Flow-based analysis of storage usage in a
low-carbon European electricity scenario

This chapter is published as “Flow-Based Analysis of Storage Usage in a Low-
Carbon European Electricity Scenario” by Bo Tranberg, Mirko Schäfer, Tom
Brown and Jonas Hörsch and Martin Greiner in the proceedings of the 15th
International Conference on the European Energy Market (EEM) [3].

5.1 INTRODUCTION

The European Union has set a target to reduce CO2 emissions by 80-95% in 2050
compared to 1990 levels [14]. Most scenarios for reaching this target rely on the
large-scale integration of intermittent wind and solar power generation, which
requires future investments in transmission and storage capacity to smooth
the variable generation over large spatial distances and appropriate time scales.
The seeming dichotomy of these two flexibility sources emphasises the need to
understand their actual interplay in cost-efficient scenarios of a future low-carbon
electricity system.

Energy system models often employ a global optimisation approach to derive
cost optimal scenarios [102]. Even when all input data and modelling details
are available, the complexities and interdependencies inherent to such models
tend to impede a deeper understanding of the mechanisms at play in an optimal
combination of resources and technologies. This in particular applies to the role
of the electricity grid, given that the pooling nature of power transmission in
general disguises the influence of individual nodes on the global flow pattern.
In this context, the method of flow tracing has been shown to yield important
insights. By following the path of partial power flows through the transmission
network, this technique allows to connect the location of consumption with
the location of generation, and to allocate power flows on transmission lines
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to exporters and importers [40, 41, 46]. It has been proposed for instance as
a flow allocation method as part of the inter transmission system operator
compensation (ITC) mechanism [51], or as the basis of a demand-side-oriented
carbon emission allocation method [103]. In the context of the system analysis of
highly renewable electricity scenarios, flow tracing has been applied to allocate
transmission capacities [6, 43], or as a technique to introduce flow-based nodal
systems costs [2, 8]. In this contribution we introduce an extended application of
the generalised flow tracing method, which traces flows in and out of storage
and is able to keep track of the originating source of generation. We apply
this method to a low-carbon future European electricity scenario first presented
in [30].

This article is organised as follows: Section 5.2 introduces the modelling of
dispatch and investments in generation capacities of a low-carbon European
electricity scenario. Section 5.3 reviews the flow tracing methodology and
introduces the formulation for including storage facilities. Results are presented
and discussed in Section 5.4, and Section 5.5 presents the conclusions.

5.2 POWER SYSTEM MODELLING

The input data for the system model is based on PyPSA-Eur, a dataset of the
European electricity system containing spatially detailed information about the
transmission network topology, conventional generators, hydro power, and time
series for wind and solar power potential and demand, compiled from various
sources [29, 104]. The 5612 transmission lines and 4653 substations within the
dataset are merged using the k-means clustering algorithm to 64 nodes and
132 transmission lines covering 33 countries, see Figure 5.1. The distribution
of generation capacities as well as generation and load time series are also
aggregated to yield corresponding nodal representations. We choose a spatial
resolution of 64 nodes for the European system in order to work on a coarse-
grained level while still being able to capture patterns on regional scale within
larger countries. See [30] for further details on the underlying data set, and
in particular for a discussion of network aggregation methods and the role of
spatial scale for electricity system modelling.

The model uses a techno-economic optimisation minimising total annual system
costs:

min
Gα

n ,Fl ,
gα

n(t), fl(t)

[
∑
n,α

cα
nGα

n + ∑
l

cl Fl + wt ∑
n,α,t

oα
ngα

n(t)

]
. (5.1)
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Here Gα
n are the capacities of generation and storage technologies α at node

n and their associated fixed costs cα
n, gα

n(t) is the nodal dispatch during hour
t and the associated operating cost oα

n, and Fl are the line capacities and their
associated fixed costs cl . The model is run using weather and demand data for
a representative year chosen to be 2012. To keep computation time reasonable
the model is run for every third hour of the representative year leading to the
weighting wt = 3 in the objective function and following constraints. As fossil
fuel generators we assume open cycle gas turbines, which are more flexible but
less efficient than combined cycle gas turbines. Renewable generators include
solar PV, onshore wind and offshore wind. Batteries and hydrogen storage are
used as extendable storage options, whereas hydroelectricity capacities (run-
of-river, reservoirs and pumped storage) are fixed to today’s level. All cost
assumptions are given in [30].

For every (weighted) hour, the demand at each node dn(t) must be met by
local generation and storage discharge or by imported power flows fl(t) on
transmission line l,

∑
α

gα
n(t)− dn(t) = ∑

l
Kn,l fl(t) , (5.2)

where Kn,l is the incidence matrix representing Kirchhoff’s Current Law. For
the HVAC part of the network also Kirchhoff’s Voltage Law is enforced by
demanding that the voltage differences around any closed cycle must sum to
zero [30, 105].

The dispatch gα
n(t) of conventional generators is constrained by their capacity,

expressed by the condition 0 ≤ gα
n(t) ≤ Gα

n. Similarly, the dispatch of renewable
generators is constrained by their capacity, 0 ≤ gα

n(t) ≤ ḡα
n(t)Gα

n, where ḡα
n(t) is

the fraction of capacity available depending on the weather conditions obtained
from historical reanalysis weather data. When the generation is less than the
available energy the remainder is curtailed.

The state-of-charge of all storage facilities must be consistent across all hours:

socα
n(t) = socα

n(t− 1) + wtgα
n,inflow(t)− wtgα

n,spillage(t)

±
{

wtη1gα
n(t), charging

wtη
−1
2 gα

n(t), discharging
.

(5.3)

Here η1 and η2 are the charging and discharging efficiencies, respectively. These
efficiencies ensure that the storage facilities are only charged when there is an
oversupply of power, and discharged only when generators and imports are not
able to fully serve the demand. The state of charge is limited by the storage
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energy capacity, 0 ≤ socα
n(t) ≤ Eα

n, which is defined by the nominal power Gα
n

through
Eα

n = hα
maxGα

n . (5.4)

Here hα
max is the maximum number of hours that a storage facility can charge

or discharge at the full nominal power. We set hα
max = 6h for battery storage

and pumped hydro, and hα
max = 168h for hydrogen storage [86]. This constraint

implies that there is no separate optimisation of storage power and energy
capacity.

The power flow on the transmission lines is constrained by the transmission
capacities, | fl(t)| ≤ Fl . The sum of the product of transmission capacities and
transmission line lengths are constrained by an overall maximum capacity

∑
l

ll Fl ≤ CAPtrans, (5.5)

which is fixed to a moderate expansion corresponding to 150% of the current
transmission capacities

CAPtrans = 1.5 ·∑
l

ll F
today
l . (5.6)

CO2 emissions are limited by a global constraint CAPCO2 , defined by specific
emissions eα in CO2-tonne-per-MWh of the fuel α and the efficiency ηα of the
generator

∑
n,α,t

1
ηα

wtgα
n(t)eα ≤ CAPCO2 . (5.7)

This constraint is set to a reduction of emissions of 95% compared to 1990 levels.
Since the only fossil fuel generators in the model are open cycle gas turbines,
the constraint Equation (5.7) directly translates into the amount of fuel burned
by these generators, and thus into the amount of power generated from this
source [86, 106].

5.3 FLOW TRACING

For clarity we omit in this section the time index t and decompose the gener-
ation term in the hourly nodal power balance Equation (5.2) into generators
(conventional and renewable) gα

n, storage discharging sα,+
n , and storage charging

sα,−
n . We define the net nodal inflow into the network and the net nodal outflow

62



5.3. Flow tracing

from the network as

Pin
n = max

(
∑
α

[
gα

n + sα,+
n − sα,−

n
]
− dn, 0

)
, (5.8)

Pout
n = max

(
dn −∑

α

[
gα

n + sα,+
n − sα,−

n
]

, 0

)
. (5.9)

We rewrite Equation (5.2) as

Pin
n + ∑

k
fk→n = Pout

n + ∑
k

fn→k , (5.10)

where the incidence matrix has been replaced with the sums of inflows and
outflows. Assuming perfect mixing of the various flow components, the method
of flow tracing follows the different nodal inflows Pin

m downstream through the
network. The share qn,m of outflow from node n (both through the network and
into node n), which has been an inflow at node m has to fulfil the following
partial flow conservation:

δn,mPin
n + ∑

k
qk,m fk→n = qn,mPout

n + ∑
k

qn,m fn→k . (5.11)

Rearranging this equation yields the matrix equation formulation of flow tracing

δn,mPin
n = ∑

k

[
δn,k

(
Pout

n + ∑
k′

fn→k′

)
− fk→n

]
qk,m (5.12)

which can be inverted to calculate the nodal mixes qn,m [46]. We can now derive
the fraction of load dn or storage charging sβ,−

n associated with nodal inflow from
generation technology α at node m. For this purpose we first define the internal
mix for net exporters with Pin

n > 0:

rin
n,α =

gα
n + sα,+

n

∑α

(
gα

n + sα,+
n
) . (5.13)

This internal mix is then attached to the nodal inflow from node n and followed
through the network, leading to the internal mix for net importers n with
Pout

n > 0:

rout
n,(m,α) =

δm,n
(

gα
n + sα,+

n
)
+ qn,mrin

m,αPout
n

∑α

(
gα

n + sα,+
n
)
+ Pout

n
. (5.14)

The share of load and storage charging at node n associated with generation or
storage discharging from technology type α at node m is then

dn(m, α) = δn,mrin
n,αdn , sβ,−

n (m, α) = δn,mrin
n,αsβ,−

n (5.15)
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Generation capacities
Solar
Offshore wind
Onshore wind
Gas
Run of river
Hydro

Solar
Offshore wind
Onshore wind
Gas
Run of river
Hydro

Storage capacities
Battery
Hydrogen
Pumped hydro

Battery
Hydrogen
Pumped hydro

Figure 5.1: Optimised generation layout (left) and storage layout (right) resulting
from the optimisation Equation (5.1). AC lines in green and DC lines in blue.

for net exporters, and

dn(m, α) = rout
n,(m,α)dn , sβ,−

n (m, α) = rout
n,(m,α)s

β,−
n (5.16)

for net importers. The scheme applied here assumes that first all inflow and
outflow inside a node is aggregated, and then this aggregated flow is coupled to
the network. This description is suitable for a coarse-grained system representa-
tion as used for this contribution. For a spatially more detailed representation,
alternatively all inflows and outflows could be directly coupled to the network.
The influence of choosing either approach on the flow tracing results will be
studied in a forthcoming publication.

5.4 RESULTS

The distribution of generation capacities in the scenario resulting from the system
optimisation Equation (5.1) is shown in the left panel of Figure 5.1. This layout
is sensitive to the input parameters and optimisation constraints, in particular to
the cap on the total transmission capacities and CO2 emissions in Equation (5.5)
and Equation (5.7) [106]. The figure shows that solar generation capacities
are predominantly located in the southern half of the system, in line with the
favourable solar radiation conditions in the southern countries. Offshore wind is
located mainly at the North Sea and Baltic Sea along with minor capacities in
the Black Sea and the Mediterranean Sea. Onshore wind is spread more evenly
throughout the northern and western countries.
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Figure 5.2: Average hourly inflow per storage technology decomposed into the
six generation technologies. The total average inflow is denoted in the title.

The right panel of Figure 5.1 displays the distribution of the optimised nominal
power for storage technologies Gα

n in Equation (5.4). This corresponds to the abil-
ity of the storage facilities to balance hourly fluctuations in electricity production
and demand. The total energy capacity can be calculated from Equation (5.4).
Scaling the nominal power with hα

max shows that the energy capacity is largest for
hydrogen storage followed by battery storage and last pumped hydro storage.

The spatial distribution of the generation and storage capacities proposes that
the short term battery storage is paired with solar generation capacity to balance
the strong diurnal pattern of solar power generation, whereas the long term
hydrogen storage is associated with wind power generation capacity to balance
weekly and seasonal weather patterns.

This intuition is confirmed by tracing the composition of power inflow for the
charging of the different storage technologies. Figure 5.2 shows aggregated
average hourly inflows 〈∑n,m sβ,−

n (m, α)〉 for the three storage technologies for
each of the six generation technologies. Corresponding with the spatial dis-
tribution shown in Figure 5.1, hydrogen storage is mainly utilised for wind
power generation, whereas battery storage mostly receives inflow from solar
power generation. The pumped hydro storage capacities are fixed to today’s
layout, leading to a mixed utilisation of different generation technologies, but
dominated by solar.

Tracing the power flow originating from generation and storage technologies
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Figure 5.3: Average local vs. non-local consumption per technology split between
the source node and externally (shaded area). The absolute average consumption
for each technology is written in GW above each bar.

allows to assess how locally this power is consumed. Figure 5.3 shows how much
of the average generation or storage discharging is consumed inside the same
node, or alternatively is transmitted as a power flow over the network for con-
sumption in another node (shaded area). Using the expressions in Equation (5.15)
and Equation (5.16) this can be expressed as 〈δn,mdn(m, α)〉 and 〈∑m 6=n dn(m, α)〉,
respectively. The absolute average consumption associated with each genera-
tion or storage discharge is noted in GW above each bar. Note that due to the
efficiencies in Equation (5.3) the total storage discharging is lower than the total
storage charging as given in Figure 5.2.

We observe that pumped hydro discharging, gas and run of river power genera-
tion is predominantly consumed locally (87%, 89% and 85%, respectively). While
the placement of pumped hydro and run-of-river capacities is not optimised
in the system, the cost structure of open cycle gas turbines (low capital costs,
high marginal costs) proposes that this technology is locally deployed for peak
demand covering when other flexibility options are not cost optimal. Solar
and hydro power generation are also mostly consumed locally (80% and 66%,
respectively), since they represent the predominant local generation capacities
when they are installed in a node. Nevertheless, for battery and hydrogen
storage the 30% to 38% of non-local usage show that the system uses these
storage technologies as a system-wide backup. Wind power generation is con-
sumed locally up to 55% (onshore) and 40% (offshore), but due to its massive
deployment in the system it is also to a comparatively higher share transmitted
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Figure 5.4: Cumulative average consumption as a function of distance. Only
exported power is included hence the starting point at zero. The lines in this
figure correspond to the shaded areas in Figure 5.3.

over the network for consumption at other nodes. These results also reflect the
spatial distribution of renewable generation resources for wind and solar power
PV: whereas favourable wind power conditions occur in general only distant
from load centres, solar PV is less locationally sensitive within each country
and can be built close to the loads. Note that for simplicity we do not use the
ability to inter-temporarily trace power flow through the storage and discard the
information of the original source of the storage outflow.

Figure 5.4 shows the cumulative average consumption per technology as a
function of the spatial distance between the exporting and consuming node.
The figure is cut off at 2036km at which point all technologies have reached
99%. For reference, the largest distance between two nodes in the network is
3455km. The lines in this figure correspond to the shaded areas in Figure 5.3. The
three storage technologies (highlighted with thicker lines) have a tendency to be
consumed more locally than the generation technologies. Most of the generation
and storage technologies follow a similar pattern, except reservoir hydro, and, to
a lesser extent, run of river, which are both being exported over large distances in
the network. The results in this figure emphasize the importance of transmission
capacity for the system. Although the power from most generation and storage
technologies on average is consumed predominantly locally, in case of exports it
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is often distributed over wide parts of the system.

5.5 DISCUSSION & CONCLUSIONS

In this article we have extended the application of flow tracing to power flows
associated with charging and discharging of storage capacities in a low-carbon
scenario of a future European electricity system first presented in [30]. Using
this tracing approach we are able to determine the composition of storage inflow
with respect to the different generation technologies present in the system. We
observe that short-term battery storage is predominantly used by solar power
generation, whereas longer-term hydrogen storage is almost completely charged
with power from onshore and offshore wind power generation. This flow-based
result quantitatively confirms the intuition gained from the spatial distribution
of generation and storage capacities. Bearing in mind the limits of the spatial
resolution of 64 nodes for the European electricity system we furthermore
determine how much of power generation or storage outflow is consumed in the
same node or alternatively distributed over the transmission network to loads at
other nodes in the system. It is shown that storage outflow is mostly consumed
locally inside the same node. This is similar for the usage of hydro or solar PV
power generation, with the local usage even more pronounced for power from
open cycle gas turbines. In contrast, power generation from onshore wind is less
locally consumed, and offshore wind power is predominantly exported to other
nodes in the network. Whereas these findings propose an interpretation of a
generally more local usage of storage technologies, the analysis of the exported
power flows show that these often stretch across large parts of the system. For all
generation and storage technologies around 20% of the average exported power
flow is consumed at nodes which are more than 1000 km away from the location
of network inflow. Our flow-based analysis thus suggests a local-but-global
usage of storage capacities – whereas on average these capacities are deployed
locally, if needed their flexibility is used also by distant nodes connected through
sufficient transmission capacities of the power grid.

The study presented in this contribution calls for an extension in several di-
rections. Increasing the spatial resolution of the system representation and
considering different levels of transmission expansion allows a more detailed
investigation of the local-but-global usage of storage capacities in a low-carbon
European electricity system. Analysing the time-series of corresponding flow
patterns will further shed light on the system conditions which correspond to
either a local or global impact of different generation and storage technologies.
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5.5. Discussion & conclusions

Combining this information with a flow-based nodal cost allocation mechanism
could inspire new economic contract concepts for future electricity markets with
a high share of renewable generation. Equally important, by revealing the details
of the system benefit of power transmission, the flow-based system analysis as
advocated in the presented analysis is a valuable contribution in the context of
public discussions on transmission expansion.
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Real-Time Carbon Accounting Method for
the European Electricity Markets

This chapter has been submitted as “Real-time carbon accounting method for
the European electricity markets” by Bo Tranberg, Olivier Corradi, Bruno Lajoie,
Thomas Gibon, Iain Staffell and Gorm Bruun Andresen to Energy Strategy
Reviews [4].

6.1 INTRODUCTION

For several decades, more than 80% of the global electricity generation originates
from fossil fuel [17]. As a result, electricity and heat production account for 25%
of global greenhouse gas (GHG) emissions [18]. Furthermore, electricity demand
is widely expected to rise because of electrification of vehicles [107]. These
facts highlight the importance of an accurate and transparent carbon emission
accounting system for electricity.

Reducing emissions related to electricity consumption requires accurate mea-
surements readily available to consumers, regulators and investors [108]. In
the GHG protocol [109], “Scope 2 denotes the point-of-generation emissions
from purchased electricity (or other forms of energy)” [108]. A major challenge
regarding Scope 2 emissions is the fact that it is not possible to trace electricity
from a specific generator to a specific consumer [110, 111]. This has lead to the
use of two different accounting methods: the of grid average emission factors or
the market based method [108, 111]. Grid average factors are averaged over time
and therefore not specific to the time of consumption due to limited availability
of emission factors with high temporal resolution. The market based method
entails purchasing contractual emission factors in the form of different types
of certificates, which do not affect the amount of renewable electricity being
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generated, and therefore fail to provide accurate information in GHG reports.
For a detailed criticism of both approaches, see [108].

In this case study, we propose a new method for real-time carbon accounting
based on flow tracing techniques. This method is applied to hourly market
data for 28 areas within Europe. We use this method to introduce a new
consumption-based accounting method that represents the underlying physics of
the electricity system in contrast to the traditional input-output models of carbon
accounting [112–114]. The approach advances beyond [103], where a similar flow
tracing methodology is used to create a consumption-based carbon allocation
between six Chinese regions. However, the data for that study was limited to
annual aggregates and different generation technologies were also aggregated.
We apply the method to real-time system data, including the possibility of
distinguishing between different generation technologies, providing real-time
signals for all actors involved. This increases the overall transparency and
credibility of emission accounting related to electricity consumption, which is of
high importance [115]. To investigate the impact of the new consumption-based
accounting method we compare it with the straightforward production-based
method (i.e. looking at the real-time generation mix within each area). For
discussions on the shift from production-based to consumption-based accounting
and the idea of sharing the responsibility between producer and consumer, we
refer to [116, 117].

6.2 METHODS

6.2.1 Data

The method is applied to data from the electricityMap database [118], which
collects real-time data from electricity generation and imports/exports around
the world. The European dataset, consisting of 28 areas, is used with hourly
resolution for the year 2017. Data sources for each individual area can be
found on the project’s webpage [119]. Figure 6.1 shows the 28 areas and the
47 interconnectors considered. Power flows to and from neighboring areas, e.g.
Switzerland, are included when available. The black arrows show a snapshot of
hourly power flows between the areas. In the results, we aggregate the two price
areas of Denmark and, thus, compare 27 countries.

The top panel of Figure 6.2 shows stacked daily-average production for each
technology for Austria. The bottom panel shows daily-average exports and
imports. The black line represents the sum of the hourly exports and imports
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Figure 6.1: The 28 areas considered in this case study, and the power flows
between them for the first hour of January 1, 2017. The width of the arrows is
proportional to the magnitude of the flow on each line. Power flows to and from
neighboring countries, e.g. Switzerland, are included when available, and these
areas are shown in gray. The cascade of power flows from German wind and
Polish coal are highlighted with blue and brown arrows, respectively.

showing Austria’s net import/export position. The daily averages in this figure
are based on the full 8760 hours in the dataset representing the full year 2017.

Carbon emission intensities are derived from the ecoinvent 3.4 database to
construct an accurate average intensity per generation technology per country
decomposed in lifecycle, infrastructure and operations [120]. The operations
intensities are used for the production and consumption-based carbon allocation
in this study. Operational emissions include all emissions occurring over the
fuel chain (from extraction to supply at plant) as well as direct emissions on
site. For fossil fuels, operational emissions are therefore higher than only direct
combustion emissions. For solar, geothermal and wind, the emissions are strictly
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Figure 6.2: Daily-average stacked power production for each technology for
Austria during 2017 (top) as well as exports, imports and power balance (bottom).

from maintenance operations.

The operations intensity per technology averaged over all countries is summa-
rized in Table 6.1. The dashed line indicates the split between non-fossil and
fossil technologies. For details on country-specific values, see Table 1–3 in the
supplementary material.

6.2.2 Carbon emission allocation

The consumption-based accounting method proposed in this case study builds
on flow tracing techniques. Flow tracing was originally introduced as a method
for transmission loss allocation and grid usage fees [40, 41]. It follows power
flows on the transmission network mapping the paths between the location of
generation and the location of consumption. It works in such a way that each
technology for each country is assigned a unique color mathematically. This is a
mathematical abstraction since it is not physically possible to color power flows.
For each hour local production and imported flows are assumed to mix evenly at
each node in the transmission network (see Figure 6.1) and determine the color
mix of the power serving the demand and the exported flows. As an example,
the colored arrows in Figure 6.1 show the cascade of power flows resulting from
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Table 6.1: CO2 equivalent operation intensity per technology averaged across
countries. The dashed line indicates the split between non-fossil and fossil
technologies. For details, see Table 1–3 in the supplementary material.

Technology Intensity [kgCO2eq/MWh]
solar 0.00410
geothermal 0.00664
wind 0.141
nuclear 10.3
hydro 16.2
biomass 50.9
gas 583
unknown 927
oil 1033
coal 1167

flow tracing of German wind power (light blue) and Polish coal power (brown)
for the first hour of January 1st, 2017. The size of the colored arrows shows how
much of the total power flow (in black) is accounted for. A threshold has been
applied such that the technology specific flows are only shown if they account
for at least 2% of the total power flow for each interconnector.

Flow tracing has been proposed as the method for flow allocation in the Inter-
Transmission System Operator Compensation mechanism for transit flows [51,53].
Recently, the method has been applied to various aspects of power system
models to allocate transmission network usage [6, 43], a generalization that
allows associating power flows on the grid to specific regions or generation
technologies [46], creating a flow-based nodal levelized cost of electricity [2], and
analyzing the usage of different storage technologies [3].

The challenge of cross-border power flows in relation to carbon emission ac-
counting has previously been studied in [103, 110]. Both studies simplify nodes
as being either net importers or net exporters and neither are able to distinguish
between different generation technologies. Those simplifications are not neces-
sary in our approach as we can deal with both imports, exports, consumption
and generation simultaneously at every node while also distinguishing between
different generation technologies. Additionally, Figure 6.1 exhibits loop flows.
However, these do not affect the validity of the flow tracing methodology [103],
and no effort has been made to eliminate them as they occur naturally in the
transmission system at the area level [121].
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Flow tracing methods are almost unanimously applied to simulation data –
typically with high shares of renewable energy. In this case study, we apply the
flow tracing method to hourly time series from the electricityMap [119]. From this
we are able to map the power flows between exporting and importing countries
for each type of generation technology for every hour of the time series. Applying
country-specific average carbon emission intensity per generation technology
to this mapping, we construct a consumption-based carbon accounting method.
For details on the mathematical definitions, see Section B in the supplementary
material.

The production-based accounting method used for comparison, is calculated as
the carbon intensity from local generation within each country.

6.3 RESULTS

Figure 6.3 shows a comparison of average production and consumption intensity
as a function of the share of non-fossil generation in each country’s generation
mix. The consumption intensity is calculated using flow tracing. The size of
the circles is proportional to the average hourly generation and consumption in
MWh, respectively. A vertical gray line connects the production and consumption
intensity corresponding to the same country. We see a decline in intensity with
increasing share of non-fossil generation. For high shares of non-fossil generation,
the consumption intensity tends to be higher than the production intensity due to
imports from countries with higher production intensity. The pattern is reversed
for low shares of non-fossil generation. The values plotted in this figure are
shown in Table 4 in the supplementary material.

Some countries exhibit a huge difference between production and consumption
intensity. An example of this is Slovakia (SK), which has a high share of nuclear
power and Austria (AT), which has a high share of hydro power, but both rely
heavily on imports of large amounts of coal power especially from Poland (PL)
and Czech Republic (CZ). Denmark (DK) is an extreme example of the opposite
case, having a high share of coal and gas power and importing large amounts of
hydro and nuclear power from Norway (NO) and Sweden (SE).

While this figure only shows average values, Figure 7 in the supplementary ma-
terial highlights the interval of hourly variation of production and consumption
intensity per country. This interval is high for all countries except the ones with
very high non-fossil share (FR, SE, NO).

From a national perspective, it is important to know the source electricity that is
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Figure 6.3: Comparison of average hourly production and consumption intensity
as a function of the share of non-fossil generation in the country’s generation
mix. Size of circles are proportional to mean generation and mean consumption
for each country.

being imported, and whether it increases a country’s reliance on high-carbon,
insecure, or otherwise undesirable sources of generation.

Figure 6.4 shows the consumption-based intensity per country. The height of
each bar corresponds to the consumption intensity for each country shown in
Figure 6.3. This figure decomposes the consumption intensity for each country
and shows how much of a particular country’s consumption intensity is caused
by the local generation mix compared with the generation mix of imported
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Figure 6.4: Average hourly consumption intensity per consumed MWh per
country (stacked bar) split in contributions from local generation and imports.
The countries are sorted by average consumption intensity.

power. We see that for many countries it is important to be able to distinguish
between local generation and imports since the imports make a substantial
contribution to the country’s consumption-based emission. In cases with a large
difference between the intensity of local power production and the imported
power, imports have a high impact. As mentioned in an earlier example, this
is the case for both Austria and Slovakia. For details on the average intensity
of imports and exports between the countries, see Figure 9 and Table 5 in the
supplementary material.

6.4 CONCLUSION

In this study we have introduced a new method for consumption-based carbon
emission allocation based on flow tracing applied to a historical sample of
real-time system data from the electricityMap.

With this method we have found substantial differences between production
and consumption intensities for each country considered, which follow a trend
proportional to the share of non-fossil generation technologies.

The difference between production and consumption intensities and the as-
sociated impact of imports on average consumption intensity emphasize the
importance of including cross-border flows for increased transparency regarding
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carbon emission accounting of electricity. While there are limitations to the
accuracy of this method due to data availability and the approximation of flow
tracing, we believe that this method provides the first step in a new direction for
carbon emission accounting of electricity.

This case study focuses on the European electricity system. When additional
sources of live system data become available this approach could be extended
to cover a wider geographical area or a higher spatial resolution. Another
interesting application of this method would be to include additional sectors
such as heating, since these are coupled through technologies like heat pumps,
resistive heaters, and power plants with cogeneration. This could lead to real-
time carbon emission signals for the entire energy system.
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Managing wind risk





7

Introduction

7.1 MOTIVATION

For more than a decade, the installed capacity of wind power has been increasing
rapidly [122], with expectations of continued future increases [123]. See Figure 7.1
for historical and expected capacities for EU. In 2017, the total EU capacity
reached 168.7 GW of which 15.6 GW was installed in 2017. The country shares
of new wind capacity installed in 2017 is shown in Figure 7.2.

Price setting in the day-ahead (spot) electricity market is based on matching bids
of supply and demand. For an introduction to price setting in electricity markets
with nodal as well as zonal pricing, see [124]. The supply curves are constructed
according to increasing marginal prices, the so-called merit order principle. The
marginal cost of production are close to zero for wind power resulting in wind
power constituting the left-most part of the supply curve. Wind is a variable
natural phenomenon hence wind power production is variable. In situations of
high (low) wind production, the supply curve is shifted to the right (left) leading
to low (high) market clearing prices. This negative dependence has been found
in several studies [125–128]. The variable nature of wind power production
combined with this negative dependence is referred to as wind risk and is
strengthened by the fact that electricity in contrast to traditional commodities
cannot (yet) be stored in large quantities over long periods of time and, thus,
must be consumed simultaneously with production.

I consider the perspective of a energy trading company entering into long-term
power purchase agreements (PPAs), in which fluctuating wind power is bought
from a producer at a fixed price. The increasing wind power capacity in turn
increases the effect of wind on the electricity price in the day-ahead market.
This is of high importance for energy trading companies in relation to pricing,
hedging, and risk management of PPAs.
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Figure 7.1: Cumulative installations onshore and offshore in the EU [122]. Ex-
pected future capacities from [123].
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Figure 7.2: EU country shares of new wind capacity installed during 2017 [122].
Numbers in parentheses indicate percentages. The total capacity is 15.6 GW.
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7.2. Methods

The main research questions regarding risk management of long-term PPAs are:

1. What is the financial risk associated with a long-term PPA?

2. What is the appropriate method of modeling this risk?

3. To what extent can the risk be mitigated using a hedge?

In the following, I decompose the general wind risk into price risk and volumetric
risk. These risks are assessed by a joint model of wind power production and
electricity spot prices using copulas, with the goal of improving risk management
of long-term PPAs for energy trading companies.

7.2 METHODS

The methodology is split in two parts. First, I perform model selection and
parameter estimation. Second, I apply the model to risk management of long-
term PPAs.

The area of interest is the West Denmark price area (DK1). I use publicly available
data on hourly wind power production and electricity spot price, as well as daily
installed wind power capacity. The data exhibits a strong negative correlation
between wind production and spot price. Because of this, I use copulas to create
a joint model of the two variables, which is able to model the correlation.

A copula is a multivariate cumulative distribution function (CDF) whose uni-
variate marginal distributions are all uniform [129]. In this case, the marginals
are the wind power production and electricity spot price, which I seek to model
jointly. I need to uniformly transform the marginals to use copulas to model the
dependence between them. An example is shown in Figure 7.3. The left panel
shows the joint distribution of two Gaussian random variables (the marginals)
with a correlation of -0.5. Applying the probability integral transform (PIT)
to each marginal variable result in the uniform variables u1 and u2 with joint
distribution shown in the right panel. The procedure is then to fit a copula
to this joint distribution, jointly simulate the two univariate variables from the
fitted copula and lastly inverse transform them to the distribution of the original
variables Z1 and Z2. This is the principle of the joint model of wind power
production and electricity spot price in the following chapter.

Copulas are sensitive to the fits of the marginal models. I use an ARMA-GARCH
model for the wind marginal, which includes terms describing autoregression,
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Figure 7.3: Joint distribution of two Gaussian random variables with a negative
correlation of -0.5 (left). Joint distribution of the probability integral transforms
of Z1 and Z2 (right).

moving average and stochastic volatility of a stationary time series. This choice
is in accordance with [130]. The electricity spot price exhibits both long memory
and a non-negligible number of extreme values. Hence, I propose using a
score-driven model, specifically multiple-components models, which are able
to handle long memory and are more robust to extreme events compared to
ARMA-GARCH models.

The joint model for wind power production and electricity spot price is used
to simulate profits of long-term power purchase agreements. From these sim-
ulations, I estimate the profit distribution and Value-at-Risk (VaR) as well as
determine the fair price of the contract and the optimal hedging volume. When
a hedge volume H∗ is performed, the profit of a PPA during a time interval from
t1 to t2 is given by

πH =
t2

∑
t=t1

Qt (St − (F− c)) + H∗ (F− S̄) , (7.1)

where Qt is the hourly wind power production, St is the hourly electricity spot
price, F is the forward price, and c is the price of correlation risk. The latter two
constitute the fair contract price

R = F− c, (7.2)
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which is offered to the owner of the wind farm. The price of correlation risk is
calculated as

c = F−
E

Q
t0

(
∑t2

t=t1
QtSt

)
E

Q
t0

(
∑t2

t=t1
Qt

) , (7.3)

where the latter term is the wind-weighted spot price.

7.3 MAIN FINDINGS

The findings are based on benchmarks against a previously published model
using constant and time-varying copulas with ARMA-GARCH marginals [130].

In the benchmark, I find that using a score-driven model as marginal model for
the spot price is superior to marginal models of the ARMA-GARCH type.

When the dependence between wind power production and electricity spot price
is ignored the VaR is underestimated by 7.7%, which shows the importance of
using copulas to model the dependence structure.

I confirm the results in [130] that time-varying copulas outperform constant
copulas, since the negative dependence between wind power production and
electricity spot price is observed to vary with time.

The best-performing model is found to be a time-varying Gaussian copula with
an ARMA(3,1)-GARCH(1,1) for the wind power production marginal and a
two-component score-driven model for the electricity spot price marginal. In
the benchmark, this model results in lower VaR and most importantly higher
accuracy in predicting the VaR. The improvement of predictive accuracy is found
to be statistically significant.
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8

Managing volumetric risk of long-term
power purchase agreements

This chapter has been submitted as “Managing Volumetric Risk of Long-term
Power Purchase Agreements” by Bo Tranberg, Rasmus Thrane Hansen and
Leopoldo Catania to Energy Economics [5].

8.1 INTRODUCTION

The last decade has seen a huge increase in renewable power generation capacity
all over the world. In this period the installed capacity has doubled in Denmark
which is the focus of this study. In 2016 wind power alone accounted for 44.4%
of the total power generation in Denmark, with all renewable sources combined
reaching 52% [131]. In the same year 33.4% of the electricity consumption in
the ENTSO-E area1 was covered by renewable generation of which wind power
accounted for 12.2 percentage points [131]. These numbers are set to increase
over the coming decades as the [14] has set a target to reduce CO2 emissions by
80-95% in 2050 compared to 1990 levels.

The increasing share of variable, non-dispatchable renewable power generation
is a structural change to the electricity system and markets compared with the
traditional thermal power sources where production can be planned if necessary.

In a study of the German electricity market [125] found that the spot price
decreases with increasing shares of wind and solar power. This was named the
merit order effect as these technologies have very low marginal costs leading to a
shift of the supply curve, which, in combination with the demand for electricity
being inelastic in the short-run, causes lower average spot prices. The same effect

1Currently covering 36 countries: https://www.entsoe.eu/about/inside-entsoe/
members/.
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8. Managing volumetric risk of long-term power purchase agreements

has been found for Germany [126], Denmark [127], and California [128]. This is
evidence of a negative dependence between wind power generation and power
spot price.

Another study of the German electricity market found that variable wind power
not only decreases the wholesale electricity price but also increases its volatility
[132]. A robust result that holds for various specifications of GARCH models. A
similar effect was found for the Australian electricity market in [133].

A particular feature of electricity markets is the occurrence of negative prices.
A new phenomenon, which started in 2009 on the Nord Pool exchange [134].
Negative prices might occur in periods of high supply from non-dispatchable re-
newable sources combined with low demand, which pose a substantial challenge
in energy risk management [134].

The variable nature of renewable power generation exposes investors to two
forms of risk: price risk in the spot market and volumetric risk in the produced
power. Both of these risks were assessed using a joint model of wind power
production and power spot price in [130] using copulas to model the negative
dependence. Copulas are a flexible tool for describing dependence between
a number of random variables while allowing for arbitrary marginal models.
Copulas have been widely applied to financial time series [135]. Recent applica-
tions of copulas in relation to electricity markets include modeling dark/spark
spreads [136] and forecasting portfolio Value-at-Risk (VaR) [137].

The importance of hedging for risk management under joint price and volumetric
risk in the electricity market has been studied for the demand-side in [138–140].
Recently, similar challenges for the production side have been studied based on
copula models in [130, 141].

In this study we follow the approach of [130] using time–varying copulas to
create a joint model of the wind power production and power spot price for the
western Denmark price area (DK1). Copula estimation is sensitive to the fit of the
marginal models [142]. We show that the spot price time series exhibits both long
memory and a non-negligible number of extreme values. This argues against
using a simple ARMA-GARCH marginal model as in [130]. Instead, we propose
to use score-driven models, in particular multiple-components models [143, 144],
which are able to handle long memory and are more robust to extreme events
compared to ARMA-GARCH models [144, 145].

We present a simulation study with applications to risk management of long-
term power purchase agreements (PPAs) for wind power production in DK1. In
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such a contract a buyer guarantees a fixed price per unit of energy produced
regardless of the price in the market at time of production and the volume
produced. This means the buyer takes on both price and volumetric risk from
the owner of the power generating asset. We use the model of [130] as benchmark.
Performance of the models is measured by the resulting profit and VaR as well
as a statistical test of the ability to predict the VaR, which is fundamental for
traders and financial institutions when designing portfolio risk management
strategies [146].

This paper is structured as follows: Section 8.2 introduces the methods used
for estimating marginal models and combining these with copulas to create a
joint model. In Section 8.3 we estimate and compare models for the western
Denmark price area. Section 8.4 presents a simulation study with applications to
risk management in which we compare the performance of the introduced score-
driven model with a previously published model. In Section 8.5 we conclude on
this study.

8.2 MODELING FRAMEWORK

We use copulas to model the dependence between power spot prices and wind
power production and thereby creating a joint forecast. Copulas are a flexible tool
for studying the dependence between random variables and have been proved
useful in many fields of research like finance, economics, and engineering,
see [147] for a textbook treatment of copulas. Let Fi,t = σ(Yi,s, s ≤ t) be the
filtration generated by the stochastic process {Yi,t} up to time t, for i ∈ {1, 2}
where i = 1 and i = 2 are referred to the power spot price and wind power
production series, respectively. Let h(y1,t, y2,t|Ft−1) be the joint density function
of (Y1,t, Y2,t) conditional on Ft−1 = {F1,t−1,F2,t−1}. By exploiting the [148]’s
theorem and its extension to conditional copulas discussed in [149], we factorize
the joint density as:

h(y1,t, y2,t|Ft−1) = ct(u1,t, u2,t|Ft−1)p1,t(y1,t|F1,t−1)p2,t(y2,t|F2,t−1), (8.1)

where ui,t = Pi,t(yi,t|Fi,t−1) is the probability integral transform (PIT) of yi,t
according to its cumulative distribution Pi,t(yi,t|Fi,t−1) =

∫ yi,t
−∞ pi,t(x|Fi,t−1)dx.2

From now on we assume that pi,t(·|Fi,t−1) = pi(·|Fi,t−1; fi,t, ψi) where fi,t is
a set of time–varying Fi,t−1–measurable parameters describing the dynamic
features of Yi,t, and ψi is a set of constant parameters for i = 1, 2. Similarly, we

2Note that we have assumed that pi,t(yi,t|Ft−1) = pi,t(yi,t|Fi,t−1).

91



8. Managing volumetric risk of long-term power purchase agreements

assume that ct(·, ·|Ft−1) = c(·, ·|Ft−1; fc,t, ψc), where fc,t is a set of time–varying
Ft−1–measurable parameters describing the dependence between Y1,t and Y2,t,
given Ft−1 and ψc is a set of constant copula parameters. Note that, in this
paper we might use the following notation to improve readability pi(yi,t|Fi,t−1)

instead of pi(yi,t|Fi,t−1; fi,t, ψi) for i = 1, 2, and similarly c(u1,t, u2,t|Ft−1) instead
of c(u1,t, u2,t|Ft−1; fc,t, ψc).

8.2.1 Time-varying parameters

We now detail how we model the time–varying parameters f1,t, f2,t, and fc,t.
Within the time series literature the ARMA-GARCH framework has been widely
employed to model time variation in the conditional mean and variance. Specif-
ically, in the ARMA(p, q)-GARCH(l, m) model we set fi,t = (µi,t, σ2

i,t), where
µi,t = E[Yi,t|Fi,t−1] and σ2

i,t = Var[Yi,t|Fi,t−1] and specify:

µi,t = ζ +
p

∑
r=1

φryt−r +
q

∑
j=1

θjεt−j

σ2
i,t = ω +

l

∑
i=1

αiε
2
t−i +

m

∑
g=1

βgσ2
t−g,

where ε i,t = yi,t − µi,t and ζ, ω, φr, θj, αi, βg for r = 1, . . . , p, j = 1, . . . , q,
i = 1, . . . , l, and g = 1, . . . , m need to be estimated by numerical maximization of
the likelihood function subject to constraints that ensure the weekly stationarity
of the process and positivity of the conditional variance at each point in time.
The ARMA-GARCH framework is widely used in time series analysis due to its
easy estimation and interpretation. However, we note two important features
that characterize the behaviour of µi,t and σ2

i,t: i) µi,t responds linearly to the
past observations yi,t−s, s > 0, and ii) σ2

i,t responds quadratically to past residuals
ε i,t−s, s > 0. It follows that, whenever |yi,t| is “big” the response of µi,t and σ2

i,t is
“large”. This feature, which is intrinsic in the ARMA–GARCH framework, can
have dramatic impacts in the filtering procedure of µi,t and σ2

i,t as well as in the
estimation of the model parameters, see for example [150], [151], and [152]. We
also note that energy time series, like the spot price of wind, usually exhibits
a large number of observations that can be considered outliers according to a
reference Gaussian distribution (so called “spikes”) as for example reported in
Figure 8.2. It is thus of great importance to model energy time series relying
on a modeling framework which is robust to these events. It is also worth to
be mentioned that the ARMA-GARCH modeling framework does not offer any
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guidance to the modeling of fc,t, i.e. the time–varying copula parameters. In this
paper we model the joint dynamics of the spot price and the wind production
using a different modeling framework recently developed by [153] and [144]
called score-driven framework. The ARMA-GARCH model is then used as a
benchmark.

Score-driven modeling framework

Score-driven models differ from ARMA-GARCH models in the way observations
drive the time variation in the dynamic parameters. Indeed, the goal of this
class of models is to take into account the whole shape of the conditional
distribution of the data in order to update the time–varying parameters of the
model. For instance, if the conditional distribution of the data is fat-tailed, we
expect that an extreme observation (a spike) should not affect the conditional
mean and conditional variance too much, since extreme observations are likely to
be observed from such a distribution. Score-driven models naturally introduce
this mechanism by exploiting the information contained in the score of the
conditional distribution of the data to update a set of time–varying parameters.
Furthermore, this modeling framework is general in the sense that it can be used
to induce time variation in any parameter of the conditional distribution, and
not only in the conditional mean and variance. For instance, in our case we can
model the marginal parameters, f1,t and f2,t, as well as the copula parameter
fc,t, using the same methodology. Indeed, let ft ∈ Ω ⊂ <d be a generic vector
of time–varying parameters, and let f̃t ∈ <d be a reparameterized version of ft,
such that ft = Λ( f̃t) for a Ft−1 measurable mapping function Λ : <d → Ω. For
example, if ft = fi,t and fi,t = (µi,t, σi,t) then Ω = <×<+ and d = 2 such that Λ
can be set to:

Λ( f̃i,t) :

{
µ̃i,t = µi,t

exp(σ̃i,t) = σi,t
,

where f̃i,t = (µ̃i,t, σ̃i,t). The updating equation for fi,t is then defined as:
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fi,t+1 = Λ( f̃i,t+1)

f̃i,t+1 = κi + Aisi,t + Bi f̃i,t

si,t = Si
(

f̃i,t
)
∇i
(
yi,t, f̃i,t

)
(8.2)

∇i
(
yi,t, f̃i,t

)
=

∂ log pi (yi,t | Fi,t)

∂ f̃i,t
,

where κi is a 2–dimensional vector of intercepts, Ai = diag(αi,1, αi,2) and Bi =

diag(βi,1, βi,2) are two 2× 2 diagonal matrices collecting parameters that control
for the evolution of f̃i,t. In equation Equation (8.2) the forcing variable of f̃i,t is
defined as the product of two quantities: ∇i

(
yi,t, f̃i,t

)
and Si

(
f̃i,t
)

representing
the score of the conditional distribution with respect to f̃i,t evaluated in yi,t
and a 2× 2 positive defined scaling matrix, respectively. Following [153] we
set Si

(
f̃i,t
)
= I( f̃i,t)

−c, where I( f̃i,t) = E[∇i
(
yi,t, f̃i,t

)
∇i
(
yi,t, f̃i,t

)′ |Fi,t−1] is the
Fisher information matrix of f̃i,t and c ∈ {0, 1/2, 1} is a parameter chosen by the
econometrician.3 We denote c = 0 as identity scaling, c = 1/2 as inverse square
root scaling and c = 1 as inverse scaling.

The updating equation Equation (8.2) can be modified to include additional
lags of f̃i,t and si,t as well as to introduce other dynamic features such as long
memory for some of the model parameters as detailed in [154] and [143]. We
follow this latter approach and introduce long memory via a set of K auxiliary
processes as follows:

f̃i,t+1 = κi +
K

∑
k=1

f̃ †
i,k,t+1

f̃ †
i,k,t+1 = Ai,ksi,t + Bi,k f̃ †

i,k,t,

where Ai,k and Bi,k are diagonal matrices to be estimated for all k = 1, . . . , K, and
K is selected using information criteria, see [154] and [143] for additional details.

In the case of ft being a copula parameter ft = fc,t, say the correlation parameter
of a Gaussian copula, the updating equation remains the same and the score is
evaluated according to the copula density with respect to the reparametrized
copula parameter f̃c,t:

3The choice of c can be based on BIC. We choose c = 0 even though BIC chooses c = 1/2 since
c = 1/2 resulted in exploding forecasts. Further analysis about the implications of the scaling
mechanism for this class of models are considered for future research.
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∇i
(
u1,t, u2,t, f̃c,t

)
=

∂ log c(u1,t, u2,t|Ft−1)

∂ f̃c,t
.

Score-driven models are also called Dynamic Conditional Score (DCS) in [144]
and Generalized Autoregressive Score (GAS) in [153]. In this paper we follow
the latter nomenclature and define the model reported in equation Equation (8.2)
GAS(1,1), while its extension with multiple component as “multiple component
GAS(1,1)”.

8.2.2 Distributional assumptions

Having specified the updating equation driving the dynamic parameters we close
the model’s specification by defining the parametric formulation of pi(·|Fi,t−1)

for i = 1, 2 and c(·, ·|Ft−1). In our empirical analysis we consider several distri-
butional assumptions for the marginal and copula specifications. Regarding the
marginals specification we consider the Gaussian and Student’s t distributions as
well as their skewed version constructed according to the [155] methodology. We
also consider the asymmetric Student’s t with asymmetric tail decays introduced
by [156] in order to capture the possible different behavior in the left and right tail
of the spot price’s distribution. Regarding the copula specification, we consider
four parametric copulas namely the Gaussian copula, the Student’s t copula, the
Clayton copula and the Gumbel copula. The Gaussian and Student’s t copula are
both symmetric but the latter exhibits tail dependence. The Clayton copula and
the Gumbel copula are asymmetric and exhibit lower and upper tail dependence,
respectively. The characteristics are summarized in Table 8.1. Expressions for the
score and the information matrices of the copulas here considered are reported
in Appendix B.
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8.2. Modeling framework

8.2.3 Model estimation and selection

We estimate model parameters by the two steps maximum-likelihood (ML)
estimation for conditional copulas detailed in [149]. Specifically, let θi =

(ψi, κi, Ai,k, Bi,k, k = 1, . . . , K) for i = 1, 2 and θc = (ψc, κc, Ac, Bc) be vectors
of static marginals and copula parameters. Assuming to observe a sequence of T
observations for the spot price and wind production collected in the vector y1:T,
the joint likelihood can be written as:

L(θ|y1:T) =
T

∑
t=1

log ht (y1,t, y2,t; θ)

=
T

∑
t=1

2

∑
i=1

log pi(yi,t|Fi,t−1; fi,t(θi))+

T

∑
t=1

log c(u1,t, u2,t|Ft−1; fc,t(θc)),

where θ = (θ1, θ2, θc) and we have emphasized that fc,t and fi,t depend from θc

and θi, for i = 1, 2, respectively. In copula estimation it is common to split the
estimation procedure in two steps, the so-called Inference For Margins (IFM)
procedure, see e.g. [158]. In IFM the marginal distributions are estimated and
then the copula is fitted to the PIT. This two steps estimation procedure leads to
an efficiency loss when compared to standard maximum likelihood, however,
it greatly simplifies the estimation procedure, see [149]. Our estimation step is
thus composed of three parts:

θ̂i = arg max
θi

T

∑
t=1

log pi(yi,t|Fi,t−1; fi,t(θi)), i = 1, 2,

θ̂c = arg max
θc

T

∑
t=1

log c(û1,t, û2,t|Ft−1; fc,t(θc)),

where ûi,t = Pi(yi,t|Fi,t−1; fi,t(θ̂i)). It should be noted that copula estimation is
sensitive to the fit of the marginal models [142]. When the IFM approach is used
the standard errors obtained by inverting the Hessian does not account for the
variance from the estimation of the marginal models and therefore the estimated
standard errors are too small relative to the correct ones [157]. The stationary
bootstrap of [159] can be used to obtain more reliable standard errors [157].
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In this study we use an in-sample and out-of-sample (OOS) comparison of the
copula fits. The in-sample comparison based on the method of [160]. This
test allows for both nested and non-nested models and additionally it allows
for both marginal models to be misspecified. The test can also be used to
compare constant and time–varying copulas [130]. The null hypothesis is equal
performance of the competing copula models:

H0 := E (L1t (θ1t)− L2t (θ2t)) = 0, (8.3)

where L1t and L2t are the likelihood of the two competing models. The null is
tested against the alternative of one of the model fits being superior i.e.:

HA := E (L1t (θ1t)− L1t (θ2t)) 6= 0, (8.4)

where the sign of E (L1t (θ1t)− L1t (θ2t)) determines the preferred model. [160]
show that under H0 a simple t-statistic on the difference between the sample
averages of the log-likelihood is asymptotically standard normal [157]:

√
T
(

L̄1 − L̄2)
σ̂

d−→ N (0, 1) (8.5)

where L̄i = 1
T ∑T

t=1 Lit (θit) is the sample average of the log-likelihood and σ̂2 is a
consistent estimator of the variance of

√
T
(

L̄1 − L̄2). We follow [157] and use
the HAC-estimator for σ̂2. We note that when the marginal models are the same
for the competing models, we only need to consider the copula log-likelihoods.

When considering OOS comparison, the data is divided into an in-sample period
of length (R < T) and an OOS period of length T − R. The OOS comparison
test of [161] is based on a comparison of the log-likelihood of the OOS forecasts.
It requires that a rolling window of fixed size is used to reestimate the model
for each forecast. Specifically the estimated joint distribution model is used to
compute the log-likelihood of the OOS data. The null, alternative hypothesis,
and the test-statistic are equivalent to the in-sample comparison of [160] and as
before only the copula likelihood is required when the marginal models are kept
fixed. Additionally, the limiting distribution is also standard normal [130].

A preliminary analysis in this study comparing the performance of the GAS(1,1)
model with the multi components model found the multiple components model
to be superior for the marginal distributions, hence in this paper we limit the
discussion of modeling marginal distributions to the multiple components model
and use the ARMA-GARCH model from [130] as benchmark. The GAS(1,1)
model is used to model time–varying dependence between the marginals.
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Figure 8.1: Daily installed capacity in MW in DK1. Data is publicly available
from the Danish Energy Agency: https://ens.dk/service/statistik-data-noegletal-
og-kort.

8.3 MODELING POWER SPOT PRICE AND WIND POWER PRODUCTION

The high share of wind generation in Denmark of 44.4% of total power generation
[131] together with the rapidly increasing installed capacity (see Figure 8.1)
emphasizes the importance of risk management regarding long-term PPAs for
wind production. Studying the DK1 area can provide future guidance for other
price areas as wind power capacity is expected to grow in all of Europe to reduce
CO2 emission [14, 123].

8.3.1 Data

In this study we consider the Western Denmark pricing zone (DK1). The analysis
is based on historical data for daily averaged wind production and spot price
as well as the daily installed capacity.4 The dataset is from January 1st 2004 to
December 31st 2017. It is split into in-sample (2004-2015) and out-of-sample
(2016-2017).

The daily averaged load factor is shown in the top panel of Figure 8.2 and is

4All data is publicly available at https://www.energidataservice.dk, https://www.
nordpoolgroup.com and https://ens.dk/service/statistik-data-noegletal-og-kort, re-
spectively.
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8. Managing volumetric risk of long-term power purchase agreements

calculated as:
L =

Total daily power production [MWh]
Daily installed capacity [MWh] · 24

. (8.6)

The daily install capacity is shown in Figure 8.1 and shows a steep increase
since 2009. The load factor is a relative measure in the interval [0, 1]. This is
problematic when fitting a marginal model to the data as we need to constrain
the fitted values. We therefore apply a logit transformation to the load factor
such that the transformed load factor takes values on the entire real line, allowing
the marginal model to be unrestricted. The transformed load factor is given by:

L̃ = log
(

1
L−1 − 1

)
(8.7)

The spot price series is shown in the bottom panel of Figure 8.2. The plot
indicates that the average spot price has changed over the sample. If we assume
that prices are realizations of some stochastic process, it would be reasonable
to believe that the location and possibly the scale parameter are time–varying.
This justifies the use of the ARMA-GARCH model in [130] and the score-driven
model used in this study. We note that extreme observations of both positive
and negative signs are observed over the sample, which might harm the fit of a
ARMA-GARCH model, and is the main argument for considering a score-driven
marginal model [151].

It is worth noting that the spot price can be negative. Negative prices are not
usually observed for commodities but since electricity cannot be stored on a
large scale the price setting works different than in other markets. Negative
prices can arise when wind power production is very high, while at the same
time it is difficult to export energy to other price areas [134]. It might be difficult
to understand why producers do not turn of wind power production when they
are paying customers for buying the produced energy. One of the reasons is
that wind power production is subsidized and therefore producers can make a
positive profit when prices are negative.

There is a negative dependence between the wind power production and prices
due to the low marginal cost of wind power production [125–128]. Table 8.2
presents different measures of correlation between the transformed load factor
and the spot price. As expected the two series are negatively dependent i.e.
scenarios of high prices and low wind power production and vice versa are more
likely than the opposite.5

5We note that the logit transformation does not affect this dependence as Kendall’s tau and
Spearman’s rho are invariant to strictly increasing transformations.
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Figure 8.2: Daily averaged load factor and spot price from 2004 to 2017.

To investigate how the dependence has changed over time we compute rolling
Spearman’s rho with a window size of 60 days and confidence intervals obtained
by i.i.d.. bootstrap shown in Figure 8.3. The figure suggests that the dependence
between the two series is time–varying and therefore we expect a time–varying
copula to outperform the constant copulas. Comparing Figure 8.3 with Figure 8.1
it seems that the negative dependence between wind power production and spot
price has grown stronger with the steeply increasing generation capacity since
2009.
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Kendalls τ Spearmans ρ Linear correlation

Correlation -0.25 -0.37 -0.35
Sd 0.03 0.04 0.04

Table 8.2: Measures of dependence. Standard errors are obtained by B = 1000
bootstraps using the stationary block bootstrap of [159].
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Figure 8.3: 60-days rolling Spearman’s rho for the transformed load factor and
spot price with 95% confidence interval. The confidence interval has been
smoothed using an EWMA with λ = 0.95. The vertical dashed line separates the
in-sample and out-of-sample period.

We divide the data into an in-sample period and an out-of-sample period. The
last H = 731 observations covering the period from 1/1/2016 to 12/31/2017 are
considered as out-of-sample and used for evaluation of the OOS forecasts. This
is in line with [130] where two years of OOS data is used.

We use a dataset of forward prices for the DK1 price area6 to evaluate the
performance of the estimated models. Forwards are only available for the overall
system area supplemented by CFDs7 between the system area and each pricing
zone, hence we construct synthetic forward prices for the DK1 by combining
the system forward price and the CFD price for each day, delivery code and

6Available at https://www.nordpoolgroup.com.
7A CFD on Nord Pool is named Electricity Price Area Difference (EPAD).
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Figure 8.4: ACF of the deseasonalized spot price (left) and the deseasonalized
transformed load factor (right).

load profile. The load profile can either be base or peak whether the seller of the
forward agrees to deliver the agreed quantity each hour of the day or only in
the peak hours (8am-8pm). We consider only monthly forwards and base load.
The dataset consists of data from 7/1/2007-12/29/2017 and therefore it does
not cover the whole in-sample data as CFDs were not available for the DK1 area
before the 7/1/2007. However, as the forward data is only used to evaluate the
OOS performance of the models it does not cause any problems.

8.3.2 Marginal model for wind power production

The stylized facts for the transformed load factor and spot price series are
filtered by demeaning followed by deseasonalizing by linear regression. For the
transformed load factor we consider month-in-year as dummy variable and for
the price series we consider both month-in-year and day-in-week.

Having deseasonalized the data we plot the autocorrelation function (ACF) in
Figure 8.4 for visual inspection before deciding on an appropriate marginal
model for each series. The ACF of the transformed load factor decays fast and
therefore the use of an ARMA-GARCH model seems appropriate.

The slowly decaying autocorrelation function for spot prices might be caused
by a unit root or long memory [144]. In order to ensure that the series does not
exhibit a unit root we employ the augmented Dickey-Fuller test [162]. This test
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results in DF = −4.97 with p-value < 0.01 and therefore a rejection of the null
hypothesis of a unit root, hence there is evidence that the price series exhibits
long memory since the ACF decays in a hyperbolic way. Due to long memory of
the spot price time series, the choice of an ARMA-GARCH model is not obvious
as it is probably better described by a long memory type model e.g. a multiple
components model or a fractionally integrated model.

As marginal model for the transformed load factor we follow [130] and consider
an ARMA(p, q)-GARCH(l, m) model. The plot of the transformed load factor
shown in Figure 8.2 and the ACF in Figure 8.4 justify the use of an ARMA-
GARCH model as we observe no extreme observations, a time–varying variance
and an exponential decaying ACF. We consider a range of different specification
of p, q, l and m and a set of different error distributions. Specifically we consider
p, q ∈ {0, 1, . . . , 7}, l, m ∈ {1, 2} and for the error distributions we examine:
Normal, Skew Normal, Student’s t, Skew Student’s t, Generalized Error and
skewed Generalized Error. To choose among the different specifications we
use the Bayesian Information Criterion (BIC). We find the preferred model to
be ARMA(2, 2)-GARCH(1, 1) with a Skew Normal as error distribution. The
estimated parameters are shown in Table 8.3. This differs from [130], where an
ARMA(1,3)-GARCH(1,1) Skew Generalized Error distribution is found to be best.
We find close to zero difference between the two model specifications in terms
of BIC and therefore we do not expect this to influence the conclusions.

Estimate Std. Error t value Pr(> |t|)
φ1 1.2755 0.0145 87.8671 < 0.0001
φ2 -0.2893 0.0143 -20.2614 < 0.0001
θ1 -0.7587 0.0012 -642.1598 < 0.0001
θ2 -0.1926 0.0023 -83.5237 < 0.0001
ω 0.0217 0.0034 6.4514 < 0.0001
α1 0.0093 0.0029 3.2385 0.0012
β1 0.9713 0.0013 763.2778 < 0.0001
Skewness 0.7911 0.0201 39.4182 < 0.0001

Table 8.3: Parameter estimates of ARMA(2, 2)-GARCH(1, 1) model for daily
wind power production series with Skew Normal as conditional distribution.

8.3.3 Marginal model for power spot price

We estimate the multiple components model for various numbers of components
(K = 2, 3, 4) on the in-sample deseasonalized spot price series. We consider
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time–varying location and scale. Specifically: identity, inverse and inverse
square root scaling mixed with different conditional distributions. Specifically
the following conditional distributions have been considered: Normal, Skew
Normal, Student’s t, Skew Student’s t, Asymmetric Student’s t with two tail
decay parameters and Asymmetric Student’s t with one tail decay parameter.
We also investigate whether the additional flexibility of the multiple components
model makes the changing scale unnecessary. Considering only a time–varying
location has the advantage of reducing the number of estimated parameters
and therefore it might give a better penalized likelihood criterion. Therefore we
consider both the multiple components model with only time–varying location
and the multiple components model where we have both time–varying location
and scale. The total number of models considered adds up to 2 · 3 · 18 = 108.
We find that the Normal distribution fails to handle the fat tails of the empirical
distribution properly. The results show that according to BIC the inclusion of
a time–varying scale is valuable for all conditional distributions. We find that
the best model according to the selection process is a two-components model
with Student’s t distribution as conditional distribution and identity scaling. The
estimated parameters for the two-components model are shown in Table 8.4.

Estimate Std. Error t value Pr(> |t|)
κ1 -10.6901 3.1828 -3.3587 0.0004
κ2 3.0836 0.0534 57.7909 < 0.0001
κ3 -2.9607 0.2024 -14.6297 < 0.0001
α11 4.7486 0.4508 10.5335 < 0.0001
α21 0.0888 0.0200 4.4519 < 0.0001
α12 7.9605 0.6098 13.0544 < 0.0001
α22 0.3772 0.0441 8.5623 < 0.0001
β11 0.9988 0.0009 1157.0327 < 0.0001
β21 0.9654 0.0109 88.3452 < 0.0001
β12 0.4843 0.0592 8.1760 < 0.0001
β22 0.2327 0.0952 2.4449 0.0072

Table 8.4: Parameter estimates of two-components model with Student’s t as
conditional distribution and scalingtype identity for daily spot price series.

Additionally, we estimate the ARMA(3, 1)-GARCH(1, 1) model with a Skew
Student’s t distribution from [130] and use it as a benchmark for the multiple
components model. The estimated parameters are seen in Table 8.5. We note
that there are no larger deviations between the estimated parameters in Table 8.5
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and [130]. This is not surprising considering the large sample sizes used in
both estimations. We do also note that the estimated values for the ARMA(3,1)
model indicate that the model is at the borderline between stationarity and
non-stationarity. We find the root of the lag polynomial to be ≈ 1.005 and
hence the model is close to non-stationarity [163]. However, we note that when
considering the ACF of the residuals we see almost no autocorrelation indicating
a good model fit, which is also found in [130].

Estimate Std. Error t value Pr(> |t|)
φ1 1.4377 0.0043 337.3660 < 0.0001
φ2 -0.5074 0.0113 -44.8908 < 0.0001
φ3 0.0665 0.0176 3.7836 0.0002
θ1 -0.8543 0.0075 -114.0857 < 0.0001
ω 2.4342 0.5106 4.7677 < 0.0001
α1 0.1520 0.0213 7.1341 < 0.0001
β1 0.7882 0.0289 27.2284 < 0.0001
Skewness 0.9633 0.0194 49.6600 < 0.0001
Shape 5.1558 0.3689 13.9773 < 0.0001

Table 8.5: Parameter estimates of the ARMA(3, 1)-GARCH(1, 1) model from
[130] with Skew Student’s t as conditional distribution.

8.3.4 Goodness-of-fit test for marginal models

To investigate the fit of the two-components model and the ARMA-GARCH
model we perform the test of the probability integral transform (PIT) used
in [164]. Under correct model specification the PIT should be i.i.d. U (0, 1). The
validity of this is assessed through a graphical test which provides information
on where possible misspecifications occur. [130] assess the model fit through
the Kolmogorov–Smirnov (KS) and the Cramér–von Mises (CvM) goodness-
of-fit tests. The drawback of the KS and CvM tests is that if we reject the
null hypothesis of the PIT being i.i.d. U (0, 1) using these tests, we have no
guidance on which part of the distribution is wrongly specified. Therefore
we prefer the approach of [164] where two graphical tools are used. Namely
one for the test of uit ∼ U (0, 1) i.e. the uniformness of the PIT and one for
the independence assumption. The uniformity is assessed through simple
histograms with the confidence intervals from the U (0, 1) null distribution.
The independence assumption is assessed through correlograms and a more
formal test where the dependence between the PIT is assessed through a simple
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regression [164]. To reveal whether a possible dependence arises from the
conditional first, second, third or forth moments we plot the correlogram of
(ûi,t − ¯̂ui), (ûi,t − ¯̂ui)

2, (ûi,t − ¯̂ui)
3, (ûi,t − ¯̂ui)

4, where ûi,t is the estimated PIT and
¯̂ui is the average PIT.

The density plots of the PIT are seen in Figure 8.5. In general the plots indicate
that the PITs are U (0, 1) of both marginal models for spot prices. We see some
deviations in the 0.75− 0.85 percentile indicating that too many observations
lie in this area compared to the U (0, 1) distribution. But as the models are
qualitatively the same, this does not provide a case to differ between them. The
PIT from the ARMA-GARCH model fitted to the transformed load factor seems
to be U (0, 1) according to Figure 8.5.

In general we find that all moments of the PIT for both marginal models for
the spot price are correlated cf. Figure 8.6 and Figure 8.7. We notice that for
both models the autocorrelation is high at lag 7 and 14 indicating that the
deseasonalization of the data has not been done properly. However, we do not
address this issue further in this study. For the transformed load factor the PIT
seems to be i.i.d.. cf. Figure 8.8.

A more formal test of the i.i.d.. assumption is done by running the regression:

(ûi,t − ¯̂ui)
k
= ζ +

20

∑
n=1

γn (ûi,t−n − ¯̂ui)
k
+ ξt (8.8)

and testing for the joint significance of the coefficients γ1, . . . , γ20. We consider
demeaned PITs up to fourth power i.e. k = 1, . . . , 4. The results indicate that both
marginal models for spot prices fail to capture the dynamics for all four moments
of the PIT as we reject the null of independence for all powers. Considering the
PIT obtained from the marginal model for the transformed load factor we cannot
reject the PIT being i.i.d.. at a 1% level.
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Figure 8.5: From top to bottom the panels show the test of PIT is uniform(0,1)
for the multiple components model, the ARMA-GARCH model from [130], and
the ARMA-GARCH for the transformed load factor. The horizontal lines are the
confidence intervals.
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Figure 8.6: ACF PIT, multiple components model for k = {1, 2, 3, 4}.
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Figure 8.7: ACF PIT, ARMA(3,1)-GARCH(1,1) model from [130].
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Figure 8.8: ACF PIT, ARMA-GARCH model for the transformed load factor.

8.3.5 Estimation of copula models

Following [157] we begin our dependence analysis by applying the ARCH-LM
test of [165] and test for autocorrelation in the product of the PITs. Specifically,
we consider the following regression:

u1tu2t = ω0 +
p

∑
i=1

ωiu1,t−iu2,t−i + εt. (8.9)

Under the null of a constant conditional copula we have ωi = 0 for i = 1, . . . , p.
This is tested using a standard LM-test. Critical values are found by bootstrap as
detailed in [157]. We test for autocorrelation in lag 1, 5, 7 and 10. The results for
both models are seen in Table 8.6. According to the test we clearly reject the null
of constant dependence between the PITs for all models. The results indicate
that we can expect the time–varying copulas to outperform the constant copulas.

We now combine the PIT from the marginal models using a copula which results
in a joint distribution of the transformed load factor and the spot price. For all
copulas we consider both time–varying dependence i.e. a score-driven model for
the dependence parameter and a constant version of the copula to investigate
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8.3. Modeling power spot price and wind power production

AR(1) AR(5) AR(7) AR(10)

Multiple Components <0.001 <0.001 <0.001 <0.001
ARMA(3,1)-GARCH(1,1) <0.001 <0.001 <0.001 <0.001

Table 8.6: p-values for the ARCH-LM test of no serial correlation in the PIT for
both marginal models for spot prices.

how changing dependence affects the results. We estimate all copulas for the
two marginal models considered for spot prices.

For the score-driven copulas we fit all copula models with different types of
scaling for each combination of marginal models as the PITs are different. The
scalingtype minimizing BIC is preferred.

For each marginal model specification the score-driven copulas have been esti-
mated using the scalingtype minimizing BIC.

Before considering the estimated copula models in more details, we address the
goodness-of-fit for all estimated copulas using the AD-test i.e. we test whether
the estimated copulas resemble the true but unknown copula:

H0 : Ci
(
û1,t, û2,t, fc,t(θ̂c)

)
= C0

(
u1,t, u2,t, fc,t(θ

0
c )
)

. (8.10)

According to the test we cannot reject that all of the estimated copulas resemble
the true copula on a 1% significance level except for the Gaussian copula for the
ARMA-GARCH model where we reject. Thus generally we cannot reject that the
true copula has been constant through the sample for any of the two marginal
models.

We note that the dependence parameters in the time–varying copulas are quite
persistent for all models.

8.3.6 Comparison of estimated copulas

We compare the copulas for each marginal model for prices. Comparing the
different copulas using BIC for each marginal specification for spot prices we
see that the time–varying Gaussian copula is preferred for both models.

However, we do also perform a pairwise comparison of the estimated copulas
using the in-sample test by [160] and the OOS test by [161] and test if the
estimated copulas are statistically different. For the OOS test we follow [130]
and estimate the marginal models only on the in-sample data and hence we do
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not use a rolling estimation window of fixed size as the theory requires [161].
However, due to the long in-sample data this is not expected to affect the validity
of the asymptotic distribution. The estimated marginal models and the copula
are used to forecast the OOS values for the model and the likelihood of the
observed data is evaluated according to these parameters.

The results for the two-components model are seen in Table 8.7 and Table 8.8 for
the in-sample and out-of-sample comparison, respectively. The results are not
very different from what is found when comparing BIC. Generally the Gaussian
GAS and Student’s t GAS copulas are preferred to all other copulas in both
the in-sample and out-of-sample test suggesting that the dependence between
the PIT is symmetric and time–varying. The two copulas are not significantly
different for any of the models according to the in-sample and out-of-sample
comparison and hence we cannot differ between them. This is much in line
with the results from [130] where the Gaussian GAS copula performs well in
the OOS8 comparison. Additionally we note that the Clayton GAS and Gumbel
GAS copulas are not always superior to the constant copulas.

Gaussian Clayton Gumbel Student’s t Gaussian* Clayton* Gumbel*

Clayton 1.32
Gumbel −7.1a −7.74a

Student’s t −3.55a −4.33a 10.44a

Gaussian* 3.76a 3.23a 9.03a 5.78a

Clayton* −5.69a −6.21a 2.95a −6.4a −8.02a

Gumbel* -1.72 −2.2a 10.56a 3.51a −4.36a 10.74a

Student’s t* 3.93a 3.85a 9.33a 6.34a 0.58 8.44a 5.03a

Table 8.7: In-sample comparison of the estimated copulas where a multiple
components marginal model for the spot prices is used. A positive value
indicates that the model to the left is better than the model above, a negative value
indicate the opposite. ’*’ indicates GAS copulas. ’a’ indicates that the copulas
are significantly different at a 5% significance level. Comparison of Student’s t
and the Gaussian copula has been done using a t-test with H0 : ν−1 = 0. The
limiting distribution is not N(0, 1) for this test However, the right-tail critical
value of 1.96 is still valid [157]. The Standard error for ν−1 has been obtained
using the stationary bootstrap of [159].

8 [130] do not consider a Student’s t GAS copula but instead they estimate a Joe-Frank GAS
copula which also performs well.
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Gaussian Clayton Gumbel Student’s t Gaussian* Clayton* Gumbel*

Clayton -0.26
Gumbel −5.67a −5.89a

Student’s t −3.67a −3.97a 6.98a

Gaussian* 2.53a 2.88a 6.04a 4.5a

Clayton* −5.37a −5.59a -0.86 −6.16a −5.89a

Gumbel* −3.23a −3.48a 4.93a -0.18 −4.27a 6.12a

Student’s t* 1.53 1.85 5.96a 4.53a -0.74 5.98a 4.52a

Table 8.8: Out-of-sample comparison of the estimated copulas where a multiple
components marginal model for the spot prices is used. A positive value
indicates that the model to the left is better than the model above, a negative
value indicates the opposite. ’*’ indicates GAS copulas. ’a’ indicates that the
copulas are significantly different at a 5% significance level.

8.4 APPLICATION TO RISK MANAGEMENT

We reconstruct the simulation study considered in [130] and use their model as
benchmark for the score-driven model introduced in this study.

8.4.1 Simulated profit distributions

With copulas it is straightforward to simulate from the estimated joint distribu-
tions using the following steps:

1. Using the dependence parameter ρt we simulate (u1t, u2t) from the copula.

2. u1t and u2t are inverted using the quantile function for the given marginal
models. We distinguish between the cases where a marginal score-driven
model and a marginal ARMA-GARCH model is used:

When the marginal model is score-driven we get Ỹ1t = F−1
1 (u1t; ft), where

Ỹ1t is the simulated deseasonalized price.9

When the marginal model is of the ARMA-GARCH type, we have ηit =

F−1
i (uit; θ),10 where i = 1, 2 or i = 2 depending on which model we

consider.11 ηit is the standardized residuals from the ARMA-GARCH
model. Inserting ηit into the ARMA-GARCH filter together with either past

9 ft is the time–varying parameters of the conditional distribution.
10θ denotes the parameters of the error distribution.
11When both marginal models are of the ARMA-GARCH type, i = 1, 2 and when a score-driven

marginal model for the price series is used, i = 2.
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observed or simulated values of Ỹi,t−j and σi,t−k yields the deseasonalized
value Ỹit and the conditional volatility σi,t.

3. When the marginal model is score-driven, the deseasonalized price Ỹ1t is
used to update the parameters of the conditional distribution ft+1.

4. The simulated values (u1t, u2t) are used to update the time–varying depen-
dence parameter ρt+1.

5. The simulated price and transformed load factor are obtained by adding
the seasonal effect at time t . To obtain the load factor we unmap the
transformed load factor by applying the logistic function.

6. Repeat steps 1-5 h times.

We note that when h = 1, a closed-form expression for the one-period ahead
time–varying parameters exists for the score-driven models. At the start of the
simulation we need the initial dependence parameter ρt. This is obtained by
applying the score-driven filter for the copula with the estimated coefficients
κc, Ac and Bc to the PIT from the marginal models. A similar procedure gives the
initial parameters ft of the conditional distribution for the marginal score-driven
model.

The simulation approach allows us to construct an empirical distribution of
prices and the load factor. We consider the simulation horizon h to be one
month.12 We simulate 10,000 paths from all copula models considered in this
study for all 24 OOS months. We keep the model parameters fixed during the
whole simulation exercise. This can be justified by the large in-sample dataset
and therefore reestimation of the model should not change the model parameters
much and is therefore unnecessary. Using the simulated values the empirical
joint distribution for each OOS month is obtained. Figure 8.9 shows the joint
empirical distribution function for August 2016 when the two-components score-
driven model is used as marginal model for the price series and the Gaussian
GAS copula is used for the dependence structure.

As [130] we note that even though the Gaussian copula is used, the resulting em-
pirical distribution is clearly not Gaussian as it exhibits skewness and heavy tails.
The heavy tails and the skewness arise as the marginal models are conditionally
Student’s t and Skew Normal, respectively.

12Therefore the length of the simulation differs between e.g. January and February.
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Figure 8.9: Simulated joint distribution function for daily spot prices and load
factor in August 2016 using a Gaussian copula and a two-components score-
driven model as marginal model for the price series.

We consider an energy trading company entering a PPA of fixed length. We
consider monthly contracts, however, the length of the contract is arbitrary. The
energy trading company pays a fixed price R for each MWh of wind power
produced during the contract. The daily load factor Lt and the wind power
production Qt during the contract are unknown and thus the energy trading
company faces volumetric risk. Moreover, the company faces price risk as the
produced energy is sold on the day-ahead market at the current spot price St.

We assume that the two parties agree on the contract at least one day before
the start of the contract period since bids to the day-ahead market have to be
made one day in advance. We denote the settlement day by t0, the start day
by t1 and the end date by t2 where t0 < t1 ≤ t2. The length of the contract is
T = t2 − t1 + 1 days. The profit of a contract with length T is given by:

π =
t2

∑
t=t1

Qt (St − R) . (8.11)

Following [130] we assume that the quantity Qt bid to day-ahead market is given
by:

Qt = Et−1 (Qt) , (8.12)

where Et−1 (Qt) is the conditional expectation of the one day-ahead production.
Further, we assume no balance risk i.e. we assume that the energy trading
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8. Managing volumetric risk of long-term power purchase agreements

company can predict the following day’s wind power production perfectly.
Under this assumption the energy trading company does not trade on the
intraday market to cover any imbalances between the bid and produced amount
of electricity.

The fixed price contract deviates from a standard forward contract since the
production is unknown [130]. Additionally, the correlation between Qt and
St introduces a correlation risk. We can express Equation (8.11) in terms of a
forward price F and the price of correlation c [130]:

π =
t2

∑
t=t1

Qt (St − (F− c)) , (8.13)

where c = c (t0, T) is the price of correlation risk which captures the risk asso-
ciated with the negative dependence between St and Qt, and F = F (t0, T) is
the forward price. Both quantities depend on the time the contract is settled t0

and the length of the contract T. In the following the dependence is suppressed
and we write only c and F. The fair value of c is obtained by setting the dis-
counted conditional expected value of Equation (8.13) equal to zero. Under the
assumption of a risk-free rate of zero we find c as [130]:

0 = E
Q
t0

(
t2

∑
t=t1

Qt (St − (F− c))

)
(8.14)

m

c = F−
E

Q
t0

(
∑t2

t=t1
QtSt

)
E

Q
t0

(
∑t2

t=t1
Qt

) . (8.15)

An estimate of c can be found by simulating from the proposed copula model
[130]. However, as the model builds upon historical prices and wind power
production this estimate will reflect the price of correlation under the physical
measure P and not under the risk neutral measure Q. The risk neutral measure
reflects the risk premium charged by the energy trading company offering
the PPA to wind farm owners. It is generally difficult to obtain the market
price of risk associated with a PPA cf. the discussion in [130] and therefore
we follow [130] and set P = Q. This means that we assume the market price
of risk is equal to zero. The consequences of this is expected to have only a
minor impact on the price of the PPA and therefore the overall conclusion is still
valid [130].
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The energy trading company can hedge against the risks associated with a PPA.
However, since the market of wind forwards is incomplete a perfect hedge is not
possible [130]. Instead a simple hedge can be done by taking a short position of
H∗ standard forward power contracts. We assume that the hedge is static and
performed at time t0. The hedge payoff is given by:

H∗
(

E
Q
t0

(
1
T

t2

∑
t=t1

St

)
− 1

T

t2

∑
t=t1

St

)
= H∗ (F− S̄) , (8.16)

where F is the forward price from Equation (8.13) and S̄ denotes the average
day-ahead spot price for the delivery period. H∗ is found by minimizing the
variance of the portfolio payoff:

min
H∗

Vt0

[
t2

∑
t=t1

Q̃t (St − (F− c)) + H∗ (F− S̄)

]
, (8.17)

where Q̃t = 24 · Lt ·Λ, Λ denotes the installed capacity under the contract and Lt

denotes the load factor i.e. the daily amount of energy produced relative to the
total installed capacity in DK1. Hence Q̃t denotes the total MWh produced by
the portfolio on a given day. Note that Lt is a relative measure for the whole price
area DK1 and therefore we need to assume that it is representative for the load
factor of the smaller portfolio. This is a realistic assumption if the portfolio is
diversified properly according to turbine type and location. The hedge quantity
minimizing Equation (8.17) is found as [130]:

H∗ =
covt0

(
S̄, ∑t2

t=t1
Q̃tSt

)
− (F− c) covt0

(
S̄, ∑t2

t=t1
Q̃t

)
Vt0 (S̄)

. (8.18)

The simple hedge provides protection on average but does not protect against
worst case scenarios such as extremely high wind and low prices, something
which is a likely outcome in DK1 [130]. The situation can be improved by adding
options to the portfolio but as the market for options is very illiquid in DK1, the
simple hedge is realistic [130]. When a hedge is performed, the profit of a PPA
is given by:

πH =
t2

∑
t=t1

Qt (St − (F− c)) + H∗ (F− S̄) . (8.19)

To find the fair price of a PPA or equivalently the price of the correlation risk we
perform Monte Carlo simulations from the joint model of the day-ahead spot
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price and the wind power production. We then use Equation (8.15) to find c. We
follow [130] and perform the simulations as follows:

Given all information up to and including the settlement day t0 we determine
the price of the PPA R, the price of the correlation risk c and the optimal amount
of hedging H∗ by performing 10, 000 simulations from the joint model where
the forecast horizon h = T i.e. the length of the contract. The simulations
are performed as described in the beginning of this section. This gives 10,000
different paths of length T for prices and the load factor. We calculate c and H∗

using Equation (8.15) and Equation (8.18), respectively. The price of the PPA is
then obtained as:

R = F− c, (8.20)

where the simulated forward price F is obtained as the average across all 10,000
simulations i.e.:

F =
1

10, 000

10,000

∑
s=1

S̄s. (8.21)

To illustrate this we assume that we are on the last day of July 2016 and want
to find the price of a PPA for August 2016 i.e. a 31 days contract. We consider
a portfolio of size 500 MW. For each of the marginal models we simulate the
joint distribution of wind power production and prices using the estimated
Gaussian GAS copula. Using the simulated values we calculate c, F and R and
use these quantities to obtain the corresponding simulated profits. We consider
the cases with and without a price hedge. The simulated profits are calculated
using Equation (8.19) and Equation (8.13), respectively. The 5% quantile of the
simulated distributions is used as an estimate of the 5% Value-at-Risk. The
results are presented in Table 8.9.

Multiple components ARMA-GARCH

R 27.79 EUR/MWh 31.24 EUR/MWh
c 2.88 EUR/MWh 2.12 EUR/MWh
F 30.67 EUR/MWh 33.35 EUR/MWh
VaR(0.05)t with hedge -223,502.5 EUR -248,161.93 EUR
VaR(0.05)t no hedge -609,600.75 EUR -608,485.41 EUR

Table 8.9: Simulation results for a PPA for August 2016. The results are based
on 10,000 simulations and a Gaussian GAS copula for the dependence structure.

The results show that a price hedge performed by selling H∗ amounts of forwards
reduces the 5% Value-at-Risk significantly for both marginal models. This is
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not surprising and it is equal to the findings in [130]. We note that the ARMA-
GARCH model forecasts a higher forward price F and a lower price of correlation
risk c than the score-driven model. This results in a higher price for the PPA cf.
Equation (8.20).

We plot the mean and the 95% confidence interval of the simulated daily prices
together with the actual prices for August 2016 for both models in Figure 8.10.
We see that for both marginal models the variance of the forecast increases only
moderately over the month.

In Figure 8.11 we compare the simulated profit distributions for the multiple
components model and the ARMA-GARCH model for the case with and without
a price hedge. We note that the profit distributions are not very different for both
cases and when a price hedge is performed, the two distributions look almost
equivalent. We clearly see how the price hedge decreases the variance of the
profit distribution.

[130] illustrate the effect of the negative correlation between wind production
and spot price by exchanging the estimated copula with the independence copula
in the simulations. Under the assumption of the independence copula the energy
trading company does not account for the dependence between wind power
production and the price when determining the price of the PPA i.e. R = F. The
distribution of profits under the independence assumption is compared with
the distribution obtained by a Gaussian GAS copula in Figure 8.12. As [130] we
see that ignoring the dependence between wind power production and prices
leads to an underestimation of the 5% Value-at-Risk and the distribution of
profits is more asymmetric when the dependence is modeled. Specifically the
simulated 5% VaR is -562, 514 EUR under the assumption of wind and price being
independent while it is −609, 601 EUR when a Gaussian copula is used to model
the dependence between the variables. The reduction in the 5% VaR amounts to
7.7% which is considerably smaller than the reduction of 15% presented in [130].

While Table 8.9 compared the two marginal models for a single month we show
similar results averaged over all 24 months in the OOS period in Table 8.10. When
comparing over the full OOS period we see that the VaR with and without hedge
is substantially higher (numerically) for the two-components model. The same
is seen for the price of correlation c. We notice that the two-components model
yields a lower contract price R and forward price F on average. Additionally the
variance is substantially lower for all quantities from the two-components model.
These results in turn result in a higher average profit for the two-components
model under the assumption that a customer accepts the calculated contract
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Figure 8.10: Comparison of the simulated and actual price for August 2016 for
both marginal models for the price series when a Gaussian GAS copula is used
for the dependence structure. 95% confidence intervals from the simulations are
reported in gray.
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Figure 8.11: Comparison of the distribution of simulated monthly profits for
August 2016 using a Gaussian GAS copula for the dependence structure. The
upper figure shows the case with price hedging and the lower figure shows the
case without price hedging. The colored areas represent the profits below the
5% VaR for each model.
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Figure 8.12: Comparison of the distribution of simulated monthly profits for
August 2016 under different assumptions for the dependence structure. The
two-components model is used as marginal model for the spot price. This is the
case without a price hedge. The colored areas represent the profits below the 5%
VaR for each model.
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8. Managing volumetric risk of long-term power purchase agreements

8.4.2 VaR model comparison

The accuracy of the forecasted Value-at-Risk is of high importance for risk
managers. To evaluate the downside risk prediction of the models we consider
the Quantile Loss function (QL), which is a frequent choice for comparing the
VaR prediction of two models [166]. Consider the prediction of Value-at-Risk
at time t VaRt (α) for a given risk level α.13 The associated quantile loss, QLt, is
defined as follows [166]:

QLt (α) ≡ (α− dt) (rt −VaRt (α)) , (8.22)

where dt ≡ 1 {rt < VaRt (α)} is an indicator function for the event of a return
below the predicted VaRt (α), usually called the hitting sequence [166], and rt

corresponds to the profit π described above in this section. A return below
the VaRt (α) is weighted with (1− α) while a return above is weighted with α.
Hence a VaR exceedance is penalized more and therefore the loss function is
asymmetric.

Assume that we consider a dataset of length T which is divided into an in-sample
period of length t∗ = T−H and an out-of-sample period of length H. The model
is estimated on the in-sample data and h-days ahead predictions of the return
are performed using the estimated model. From these predictions the VaRt (α)
t ∈ {t∗ + 1, . . . , t∗ + H} is extracted. For each VaRt (α) we calculate QLt (α) and
then for a given model A the quantile losses are averaged over the forecasting
period:

QLA =
1
H

t∗+H

∑
t=t∗

QLAt (α) . (8.23)

The model with the lowest loss function is preferred and thus model A outper-
forms B when QLA < QLB .

In the following we compare the joint distributions obtained by applying each of
the marginal models for spot prices and the different copulas considered. This is
done by simulating h-days ahead predictions for wind power production and
spot prices for each day in the OOS for all models. Specifically we consider
h = 31 corresponding to a one month ahead prediction and perform 10, 000
simulations from each model.

Based on the simulated prices and wind power production we calculate the
estimated forward prices as the average of the simulated prices, the fair con-

13The Value-at-Risk is defined as: VaRt (α) ≡ F−1 (α, θt) where θt is the (time–varying) param-
eters of the conditional distribution [167] and thus it is the α-quantile of the profit distribution at
time t.
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8.4. Application to risk management

tract price using Equation (8.20) and the minimum variance hedge quantity by
Equation (8.18) for each day in the OOS. In total we perform H = 700 rolling
31-days ahead predictions and assume that on each day the energy company
agrees on a PPA with a wind farm owner with a portfolio size of 500 MW and
sells a quantity H∗ of forwards.14 Note that we keep the model parameters
fixed during the whole forecasting exercise. This can be justified by the large
in-sample dataset and therefore re-estimation of the model is not expected to
change the estimated parameters much.

Using the estimated price of the PPA we calculate the profit on such a contract for
each of the 10,000 simulated 31-days ahead predictions. This gives a simulated
distribution of profits and the VaRt (α) can be found as the α-quantile of the sim-
ulated distribution. For each of the contract prices the actual profit is calculated
using the OOS data. The profit is then compared with the VaRt (α) for each
t ∈ {t∗ + 1, . . . , t∗ + H} using the loss function in Equation (8.22). The average
loss QL for each model is then calculated and the two models are compared
in Table 8.11. Here A refers to the two-components model and B refers to the
ARMA-GARCH model from [130].

t GAS Gaussian GAS Clayton GAS Gumbel GAS t Gaussian Clayton Gumbel

QLA/QLB 0.79 0.70 0.86 0.85 0.87 0.87 0.87 0.88

Table 8.11: Comparison of QL for both marginal models.

It is clear from Table 8.11 that the two-components model outperforms the
ARMA-GARCH model from [130] for all the different copula models considered.
This might be caused by the fact that the estimated ARMA-GARCH model is
close to non-stationary because of the extreme observations of prices. This can
lead to inaccurate filtration of the data which affects the forecasts and therefore
also the estimate of VaRt (α) [152]. The two-components score-driven model is
robust to extreme observations and therefore the filtration of the data is better.

Comparison of the loss functions does not provide any information on whether
the difference in forecast ability differ significantly across the models. Therefore
the comparison of the loss functions is accompanied by the Diebold-Mariano
(DM)-test [164]. The test is intended for comparison of forecasts [168]. Generally
the DM-test compares the loss differential i.e. the loss associated with a given
forecast error et. The loss differential depends upon a loss function L (et) e.g. in

14The OOS size is 731 and thus to evaluate the actual loss of the contract we consider 731− 31 =
700 forecasts.
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8. Managing volumetric risk of long-term power purchase agreements

our case L (et) = QLt. The time t loss differential between a forecast from model
A and model B is given by:

dABt = L (eAt)− L (eBt) . (8.24)

The test requires that the loss differential is covariance stationary. The null
hypothesis is equal predictive performance i.e. H0 : E (dABt) = 0. When the loss
differential is stationary, we have:

DMAB =
d̄AB
σ̂AB

d→ N (0, 1) , (8.25)

where d̄AB = 1
T ∑T

t=1 dABt is the sample average loss differential and σ̂AB is a
consistent and robust estimator of the standard deviation for d̄AB . We use the
HAC-estimator.

As already indicated we use QL·t as loss function for each model {A,B} and
compute dABt from Equation (8.24). The DM-assumption of d̄ being stationary
is tested using the ADF-test. The test rejects the null of a unit root for all loss
differentials. The results of the DM-test are seen in Table 8.12 and they show
that the two-components model is significantly better than the ARMA-GARCH
model from [130] at predicting the 5% Value-at-Risk for all copulas.

According to the DM-test a two-components score-driven model for spot prices
improves the risk management of PPAs significantly compared to the ARMA-
GARCH model used in [130].

t GAS Gaussian GAS Clayton GAS Gumbel GAS t Gaussian Clayton Gumbel

DMAB −9.99a −11.25a −7.49a −7.44a −8.74a −8.7a −8.57a −7.98a

Table 8.12: The table reports the DM-test statistic for testing of equal forecast
ability of VaR(0.05) for both marginal models. ’a’ indicates that the forecasts of
VaR(0.05) are significantly different at a 5% significance level. A negative value
means that the forecasts of model 1 are preferred to the forecasts of model 2 and
vice versa for a positive value.

It is also of interest to study whether the time–varying copulas are significantly
better at predicting the 5% VaR compared to the constant copulas. This is done
using the DM-test and the results are presented in Table 8.13. We see that all
time–varying copulas are significantly better than their constant counterparts at
predicting the 5% Value-at-Risk hence time–varying copulas should be used in
risk management of PPAs.
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8.5. Conclusion

t Gaussian Clayton Gumbel

Multiple components −10.98a −9.71a −11.87a −11.1a

ARMA-GARCH −11.2a −10.89a −10.68a −10.04a

Table 8.13: The table reports the DM-test statistic for testing of equal forecast
ability of VaR(0.05) between the time–varying and constant copulas. ’a’ indicates
that the forecasts of VaR(0.05) are significantly different at a 5% significance
level. A negative value means that the forecasts of the time–varying copula are
preferred to the forecasts of the constant copula and vice versa for a positive
value.

For both marginal models we investigate whether the Gaussian GAS copula is
significantly better at predicting the 5% VaR compared to the other copulas using
the DM-test. The results are presented in Table 8.14. A test of the DM-assumption
using the ADF-test rejects the null of a unit root. We see that the Gaussian copula
provides better VaR predictions for the multiple components model while it
is outperformed by the other time–varying copulas when a ARMA-GARCH
model is used to model the price series. For the ARMA-GARCH model the VaR
forecasts of the Gaussian copula are preferred to the forecasts from the constant
copulas.

t GAS Clayton GAS Gumbel GAS t Gaussian Clayton Gumbel

Multiple Components −8.74a −8.94a −8.81a −9.69a −9.71a −9.51a −9.68a

ARMA-GARCH 10.82a 5.12a 10.81a −11.14a −10.89a −10.85a −10.95a

Table 8.14: The table reports the DM-test statistic for testing of equal forecast
ability of VaR(0.05) between the Gaussian GAS copula and the other copulas for
each of the models. ’a’ indicates that the forecasts of VaR(0.05) are significantly
different at a 5% significance level. A negative value means that the forecasts of
the Gaussian GAS copula are preferred and vice versa for a positive value.

8.5 CONCLUSION

In this study we investigate the negative dependence between wind power
production and electricity spot price by constructing a joint model using different
copulas. We propose using a new generation of score-driven models as marginal
model for the spot price of electricity as these are more robust to extreme events
compared to ARMA-GARCH models. We apply the new model to pricing
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8. Managing volumetric risk of long-term power purchase agreements

and risk management of long-term power purchase agreements (PPAs) and
benchmark against a previously published model of the ARMA-GARCH type.

In our simulation study we find that using the new score-driven model re-
sults in higher profit and lower VaR compared with the previous published
ARMA-GARCH model. According to the DM-test this improvement of the
risk management of PPAs is statistically significant compared to the previously
published ARMA-GARCH model.

Ignoring the dependence between wind power production and electricity spot
price leads to an underestimation of the VaR by 7.7%, which indicates the
importance of using copulas to model the dependence structure. Comparing
constant and time–varying copulas we find that all time–varying copulas are
significantly better than their constant counterparts at predicting the 5% Value-
at-Risk hence time–varying copulas should be used in risk management of
PPAs.

Our simulation study is limited to consecutive monthly contracts. The forecast
horizon is arbitrary, so the same approach can be used for risk management of
quarterly or annual contracts. In case of a long forecast horizon for a long-term
PPA the limiting factor in practice is the liquidity of the forward market for
properly hedging the contract.

In this study we focus on a single market area, namely western Denmark. As a
natural extension this new model could be used to quantify the risk associated
with an international portfolio of PPAs spread across several market areas. A
geographical dispersion of PPAs could potentially lead to a reduction of the
overall portfolio risk due to the limited size of weather patterns. Such an
investigation can be done by estimating a joint distribution for each price area
of interest using the marginal models and the copulas considered in this study.
The bivariate distributions for each price area can then be combined into a joint
distribution for the whole portfolio using a copula. The overall portfolio risk can
then be quantified by simulations similar to the ones carried out in this study.

We limit this study to wind power production. It could be extended to allow
for different generation technologies like solar power to model the combined
risk of a portfolio consisting of several generation technologies. Power purchase
agreements for consumption could be included as well, in which case some
amount of the produced electricity would be used to serve these contracts and
thereby potentially limiting the price risk of selling directly in the spot market.
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9

Concluding remarks

The frame of this dissertation is the rapidly increasing share of variable renewable
electricity generation in the European electricity system. The purpose has been
twofold: 1) investigate the optimal layout of generation capacities assuming
cooperation between the European countries and allocate costs based on usage,
and 2) improving risk management of long-term power purchase agreements
(PPAs) for wind power.

ELECTRICITY SYSTEM MODELS

In an electricity system with a high share of variable renewable power generation,
neighboring countries rely on imports and exports to balance the variability
caused by the weather. Different flow tracing methods were introduced in
Chapter 3 to investigate the allocation of transmission usage in a system with
high share of renewable power generation. The different flow tracing methods
produced different results for individual hours, but when averaged over a five-
year time series with hourly resolution the results were similar. This is important
for the subsequent applications of flow tracing, which are all based on averages
of imports and exports.

Exploring optimal heterogeneous placement of renewable generation capacities,
flow tracing was utilized to calculate levelized cost of electricity (LCOE) for
each country, which served as a benchmark between the different layouts. In
Chapter 4 it was found that an optimal placement of renewable capacities
according to the best weather resources leads to a reduction of the overall system
LCOE. Surprisingly, it also gave a reduction in the individual LCOE for all 30
countries considered in the model. In addition, the effect of different approaches
to transmission allocation on the individual LCOEs was studied. The result of
varying the transmission allocation between importers and exporters showed
that for the variation of nodal LCOEs to be minimal, the transmission usage
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would have to be allocated fully to the countries exporting excess generation.
However, such an allocation is not likely to be accepted as fair.

Using a techno-economic model to jointly optimize generation capacity invest-
ments, their location, and their dispatch, it was found in Chapter 5 that solar
PVs should predominantly be installed in Southern Europe, whereas onshore
and offshore wind turbines should predominantly be installed in the western
and northern parts. From the capacity layout it was clear that battery storage
tended to follow solar PVs whereas hydrogen storage followed wind turbines.
Flow tracing enabled me to confirm this intuition showing that battery storage
is almost exclusively utilized by solar power to balance its diurnal pattern. Hy-
drogen storage is almost exclusively utilized by onshore and offshore wind to
balance the synoptic patterns caused by large weather systems. Additionally,
flow tracing was utilized to explore the distances traveled in the system when
exporting power from the different generation and storage technologies. It was
found that most of the power from all technologies except offshore wind is
consumed locally. However, when power is exported it is usually transmitted
several hundreds of kilometers and often exceeding 1000km in a system with
a diameter of approximately 3500km. This is further evidence supporting the
importance of cooperation between the European countries in balancing the
variability of renewable electricity generation.

Moving away from model outputs and studying real system data, flow tracing
was used in Chapter 6 to construct a new real-time carbon accounting method
based on actual consumption. This study was a collaboration with Tomorrow
to showcase the carbon accounting methodology of the electricityMap1. This
method represents the underlying physics of the electricity system in contrast
to the traditional input-output models used for carbon accounting. The new
consumption-based accounting resulted in substantial differences when com-
pared to a production-based accounting method, which is calculated as the
carbon intensity from local generation within each country. This is the result of
importing and exporting power from different technologies with very different
carbon footprints, which emphasizes the importance of including cross-border
flows for increased transparency regarding carbon emission accounting of elec-
tricity.

1www.electricitymap.org
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RISK MANAGEMENT

Having modeled the entire European electricity system, the perspective was
changed to that of an energy trading company within a single price area (West
Denmark) in Chapter 8. Here, the negative correlation between wind power
production and electricity spot price was investigated using a joint model based
on copulas. The purpose was to improve risk management of long-term PPAs
for wind power by finding the fair contract price, optimal hedge quantities and
accurately predict the Value-at-Risk (VaR). It was found that when the negative
dependence between wind power production and power spot price is ignored,
the VaR is underestimated by 7.7%, which indicates the importance of using
copulas to model the dependence structure. Additionally, when compared to
constant copulas, the time-varying copulas outperform these in risk manage-
ment applications. The new score-driven model shows a statistically significant
improvement of risk management of long-term PPAs when benchmarked against
a previously published model with a similar application to risk management of
long-term PPAs in West Denmark. This result will help energy trading compa-
nies minimize the risk associated with long-term PPAs, which, in turn, benefits
the investors in wind turbines. This encourages further investments in wind tur-
bines leading to a higher share of renewable power generation in the European
electricity system.

FINAL REMARKS

In this dissertation, I have applied physical and financial models to different
aspects of the European electricity system. In the first part of the dissertation, I
modeled the European electricity system from the perspective of a central planner
assuming full cooperation in a selfless manner between the European countries.
This enabled me to investigate optimal, pragmatic solutions to the layout of
renewable generation capacities. In the second part, I took the perspective of
an individual energy trading company seeking to minimize the risk associated
with long-term PPAs for wind power, which has an immediate effect on the
individual investors in wind turbines.

These are two very different perspectives. The central planning perspective is
useful when exploring pragmatic solutions to the overall design of the European
electricity system of the future but provides no guidance for the individual actors
in the system. In contrast, the perspective of a trading company or an investor in
a renewable power generating asset focuses on a set of individual business cases
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with little regard to the impact of the asset in question on the overall electricity
system.

The link between the two perspectives is the policy makers, who regulate the
electricity system. The results from system models using the central planning
perspective can be used by the policy makers as guidelines to provide the right
incentives for investors, and other actors in the system, such that the current
European electricity system develops towards the optimal and sustainable system
of the future.
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A

A simplified model of a highly renewable
European electricity network

We aggregate the European system to one node per country, with links between
the nodes representing transmission capacity between the respective countries.
This leads to a network with 30 nodes and 52 links; see Fig. 3.1. The depicted
network topology was used, among others, in [35, 43, 69], and is based on
the layout reported by ENTSO-E (European Network of Transmission System
Operators for Electricity) [169]. The links between Sweden and Lithuania, and
between Poland and Lithuania have been commissioned at the end of 2015 and
were added in this network compared to the topology used in [35, 43, 69].

We demand that for every node n at any time t the following balancing condition
is fulfilled:

GR
n (t)− Ln(t) = Pn(t) + Bn(t) . (A.1)

In this expression GR
n (t) denotes the renewable generation and Ln(t) the load.

The term Bn(t) refers to the nodal balancing, and Pn(t) to the import or exports
injected into or withdrawn from the network. The left side of this equation
is data-driven: The aggregated load per country Ln(t) at hour t is given by
historical data provided by the European Transmission System Operators [170],
whereas the renewable generation GR

n (t) is based on data from a Renewable
Energy Atlas [66, 171]. Both data sets comprise the years from 2010 to 2014
with hourly resolution, leading to 43822 different time steps. The renewable
generation data is obtained by converting spatio-temporal wind velocity and
solar radiation fields into wind and solar power generation time series, which
are scaled in such a way that on average the load in each country is completely
covered:

〈Ln〉 = 〈GR
n 〉 = 〈GW

n 〉+ 〈GS
n〉 . (A.2)

Here GW
n denotes the wind power generation, whereas GS

n gives the solar power
generation from photovoltaics. For the modeling underlying the results in the
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A. A simplified model of a highly renewable European electricity network

present article a fixed wind fraction of 〈GW
n 〉/〈GR

n 〉 = 0.7 has been used. Other
fluctuating forms of renewable generation are neglected, or assumed to be
included into the backup generation capacity. Despite the relation in Eq. (A.2), at
a specific hour t in general there will be a mismatch ∆n(t) between the renewable
generation GR

n (t) and the load Ln(t):

∆n(t) = GR
n (t)− Ln(t) . (A.3)

This mismatch has to be balanced by a combination of nodal power import or
export Pn(t), and nodal balancing Bn(t). The latter describes dispatchable backup
power generation GB

n (t) = −min(Bn(t), 0) when Bn(t) < 0, or curtailment
Cn(t) = max(Bn(t), 0) of excess power when Bn(t) > 0. The net power injection
Pn(t) refers to exports P+

n (t) for Pn(t) > 0, or to imports P−n (t) = −Pn(t) for
Pn(t) < 0.

Given a time series of renewable generation and load, different combinations
of nodal balancing power and imports and exports will fulfill the balancing
equation Eq. (A.1). For simplicity and to allow a comparison with previous
studies we follow the approach of synchronised balancing [28], where the global
mismatch is distributed to the individual nodes proportional to their average
load:

Bn(t) =

[
∑
m

∆m(t)

]
〈Ln〉

∑k〈Lk〉
. (A.4)

This choice of a balancing scheme fixes the power in- and outflows Pn(t) at the
individual nodes as

Pn = ∆n(t)− αn∆(t) , (A.5)

where we have used the following abbreviations:

∆(t) = ∑
n

∆n(t) , (A.6)

αn =
〈Ln〉

∑k〈Lk〉
. (A.7)

Note that this set-up with Eq. (A.2) and Eq. (A.4) leads to 〈Pn〉 = 0 or equivalently
〈P+

n 〉 = 〈P−n 〉, that is the average power imports and exports of every node
coincide [6].
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B

Copulas

B.1 INFORMATION MATRICES

Information matrices for the copulas used in this study:

IGa (ρ) =
1 + ρ2

(1− ρ2)
2 (B.1)

It (ρ, ν) =
ν + 2 + νρ2

(ν + 4) (1− ρ2)
2 (B.2)

IGu (θ) = θ2
(

π2

9
− 2

3

)
− θ +

2K0
θ

(B.3)

+

(
θ3 + θ2 + (K0 − 1) θ − 2K0 +

K0
θ

)
E1 (θ − 1) eθ−1 (B.4)

ICl (θ) =
1
θ2 +

2
θ (θ − 1) (2θ − 1)

+
4θ

3θ − 2
− 2 (2θ − 1)

θ − 1
ρ (θ) (B.5)

where Ga refers to the Gaussian copula, t refers to the Student’s t copula, Gu
refers to the Gumbel copula and Cl refers to the Clayton copula.

For the Gumbel copula K0 =
(
5/6− θ2/18

)
and E1 (θ − 1) =

∫ ∞
1−θ u−1e−udu.

For the Clayton copula ρ (θ) is given by:

ρ (θ) =
1

(3θ − 2) (2θ − 1)

+
θ

2 (3θ − 2) (2θ − 1) (θ − 1)

[
Ψ
{

1
2 (θ − 1)

}
−Ψ

{
θ

2 (θ − 1)

}]
+

1
2 (3θ − 2) (2θ − 1) (θ − 1)

[
Ψ
{

θ

2 (θ − 1)

}
−Ψ

{
2θ − 1

2 (θ − 1)

}]
. (B.6)

Equation (B.1) and Equation (B.2) are found in [172, Supplementary material].
Equation (B.4) is from [173] and Equation (B.5) is from [174].
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B. Copulas

B.2 DERIVATIONS OF COPULA SCORES

The Gaussian copula has density [172]:

cGa (u1, u2) =
exp

(
2ρx2x1−x2

1−x2
2

2(1−ρ2)
+ 1

2
(

x2
1 + x2

2
))√

1− ρ2
(B.7)

where xi = Φ−1 (ui) and Φ (·) is the univariate standard Gaussian cdf. The log-
likelihood for the Gaussian copula is achieved by taking the log of Equation (B.7):

log cGa (u1, u2) = −
1
2

log
(

1− ρ2
)
+

(
2ρx2x1 − x2

1 − x2
2

2 (1− ρ2)
+

1
2

(
x2

1 + x2
2

))

= −1
2

log
(

1− ρ2
)
+

(
2ρx2x1 − x2

1 − x2
2 +

(
1− ρ2) (x2

1 + x2
2
)

2 (1− ρ2)

)

= −1
2

log
(

1− ρ2
)
+
(

2ρx2x1 − x2
1 − x2

2 +
(

1− ρ2
) (

x2
1 + x2

2

)) (
2
(

1− ρ2
))−1

.

The score function is the partial derivative of the log-likelihood function w.r.t. ρ

and it is given by:

∇Ga =
∂ log cGa

∂ρ
=− 1

2 (1− ρ2)
(−2ρ) +

(
2x2x1 − 2ρ

(
x2

1 + x2
2

)) (
2
(

1− ρ2
))−1

+
(

2ρx2x1 − x2
1 − x2

2 +
(

1− ρ2
) (

x2
1 + x2

2

))
(−1)

(
2
(

1− ρ2
))−2

(−4ρ)

=
ρ

(1− ρ2)
+

(
x2x1 − ρ

(
x2

1 + x2
2
)) (

1− ρ2)
(1− ρ2)

2

+
ρ
(
2ρx2x1 − x2

1 − x2
2 +

(
1− ρ2) (x2

1 + x2
2
))

(1− ρ2)
2

=
ρ

(1− ρ2)
+

(
x2x1 − ρ

(
x2

1 + x2
2
)) (

1− ρ2)+ ρ
(
2ρx2x1 − ρ2 (x2

1 + x2
2
))

(1− ρ2)
2

=
ρ

(1− ρ2)
+

x2x1
(
1− ρ2)− ρ

(
x2

1 + x2
2
)
+ ρ3 (x2

1 + x2
2
)
+ 2ρ2x2x1 − ρ3 (x2

1 + x2
2
)

(1− ρ2)
2

=
ρ

(1− ρ2)
+

ρ
(
2ρx2x1 − x2

1 − x2
2
)
+ x2x1

(
1− ρ2)

(1− ρ2)
2

=
ρ

(1− ρ2)
+

ρ (2ρy− x) + y
(
1− ρ2)

(1− ρ2)
2 ,

where y = x1x2 and x = x2
1 + x2

2.
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B.2. Derivations of copula scores

Now considering the Student’s t copula. The Student’s t copula has density [172]:

ct (u1, u2) =
Γ
(

ν
2
)

Γ
(

ν+2
2

)
√

1− ρ2Γ
(

ν+1
2

)2

×
(

1 +
x2

1
ν

) ν+1
2
(

1 +
x2

2
ν

) ν+1
2
(

1 +
x2

1 + x2
2 − 2ρx2x1

ν (1− ρ2)

)− 1
2 (ν+2)

(B.8)

where xi = T −1
ν (ui) for i = 1, 2 and Tν (·) denotes the univariate Student’s t cdf.

And therefore the log-likelihood is:

log ct (u1, u2) = log
(

Γ
( ν

2

))
+ log

(
Γ
(

ν + 2
2

))
− 1

2
log
(

1− ρ2
)
− 2 log

(
Γ
(

ν + 1
2

))
+

ν + 1
2

[
log

(
1 +

x2
1

ν

)
+ log

(
1 +

x2
2

ν

)]
− 1

2
(ν + 2) log

(
1 +

x2
1 + x2

2 − 2ρx2x1

ν (1− ρ2)

)

= log
(

Γ
( ν

2

))
+ log

(
Γ
(

ν + 2
2

))
− 1

2
log
(

1− ρ2
)
− 2 log

(
Γ
(

ν + 1
2

))
+

ν + 1
2

[
log

(
ν + x2

1
ν

)
+ log

(
ν + x2

2
ν

)]

− 1
2
(ν + 2) log

(
ν
(
1− ρ2)+ x2

1 + x2
2 − 2ρx2x1

ν (1− ρ2)

)

= log
(

Γ
( ν

2

))
+ log

(
Γ
(

ν + 2
2

))
− 1

2
log
(

1− ρ2
)
− 2 log

(
Γ
(

ν + 1
2

))
+

ν + 1
2

[
log
(

ν + x2
1

)
+ log

(
ν + x2

2

)
− 2 log (ν)

]
− 1

2
(ν + 2)

(
log
(

ν
(

1− ρ2
)
+ x2

1 + x2
2 − 2ρx2x1

)
− log

(
ν
(

1− ρ2
)))

.
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The score of the log-likelihood is therefore given as:

∇t =
∂ log ct

∂ρ
=− 1

2
1

1− ρ2 (−2ρ)

− 1
2
(ν + 2)

[
1

ν (1− ρ2) + x2
1 + x2

2 − 2ρx2x1
(−2νρ− 2x2x1)−

1
ν (1− ρ2)

(−2ρν)

]

=
ρ

1− ρ2 +
1
2
(ν + 2)

[
(2νρ + 2x2x1)

ν (1− ρ2) + x2
1 + x2

2 − 2ρx2x1
− 2ρ

1− ρ2

]

=
ρ

1− ρ2 − (ν + 2)
ρ

1− ρ2 +
(ν + 2) (νρ + x2x1)

ν (1− ρ2) + x2
1 + x2

2 − 2ρx2x1

=
− (1 + ν) ρ

1− ρ2 +
(ν + 2) (νρ + x2x1)

ν (1− ρ2) + x2
1 + x2

2 − 2ρx2x1

=
− (1 + ν) ρ

(
ν
(
1− ρ2)+ x2

1 + x2
2 − 2ρx2x1

)
+
(
1− ρ2) (ν + 2) (νρ + x2x1)

(1− ρ2)
(
ν (1− ρ2) + x2

1 + x2
2 − 2ρx2x1

)
=
− (1 + ν) ρν

(
1− ρ2)− ρ (1 + ν)

(
x2

1 + x2
2
)
+ 2 (1 + ν) ρ2x2x1

(1− ρ2)
(
ν (1− ρ2) + x2

1 + x2
2 − 2ρx2x1

)
+

(
1− ρ2) ν (νρ + x2x1) + 2

(
1− ρ2) (νρ + x2x1)

(1− ρ2)
(
ν (1− ρ2) + x2

1 + x2
2 − 2ρx2x1

)
=

[
2νρ + ρν2 −

(
ρν + ρν2)] (1− ρ2)− (1 + ν) ρ

(
x2

1 + x2
2
)

(1− ρ2)
(
ν (1− ρ2) + x2

1 + x2
2 − 2ρx2x1

)
+

x2x1
[
2ρ2 + 2νρ2 + ν− νρ2 + 2− 2ρ2]

(1− ρ2)
(
ν (1− ρ2) + x2

1 + x2
2 − 2ρx2x1

)
=

(
νρ2 + ν + 2

)
x2x1 − (1 + ν) ρ

(
x2

1 + x2
2
)
+
(
1− ρ2) ρν

(1− ρ2)
(
ν (1− ρ2) + x2

1 + x2
2 − 2ρx2x1

)
=

(
νρ2 + ν + 2

)
y− (1 + ν) ρx +

(
1− ρ2) ρν

(1− ρ2) (ν (1− ρ2) + x− 2ρy)
,

where y = x1x2 and x = x2
1 + x2

2.

The Clayton copula has density [172]:

cCl (u1, u2) = (θ + 1) (u1u2)
−(θ+1)

(
u−θ

1 + u−θ
2 − 1

)−( 1
θ +2)

, (B.9)

where u1 and u2 are the PIT.
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B.2. Derivations of copula scores

So the log-likelihood is:

log cCl (u1, u2) = log (θ + 1)− (θ + 1) log (u1u2)−
(

1
θ
+ 2
)

log
(

u−θ
1 + u−θ

2 − 1
)

= log (θ + 1)− (θ + 1) log (u1u2)−
1
θ

log
(

u−θ
1 + u−θ

2 − 1
)
− 2 log

(
u−θ

1 + u−θ
2 − 1

)
= log (θ + 1)− (θ + 1) log (u1u2)−

1
θ

log

(
uθ

2 + uθ
1 − uθ

1uθ
2

uθ
1uθ

2

)
− 2 log

(
uθ

2 + uθ
1 − uθ

1uθ
2

uθ
1uθ

2

)

= log (θ + 1)− (θ + 1) log (u1u2)−
1
θ

[
log
(

uθ
2 + uθ

1 − uθ
1uθ

2

)
− θ log (u1u2)

]
− 2

[
log
(

uθ
2 + uθ

1 − uθ
1uθ

2

)
− θ log (u1u2)

]
= log (θ + 1) + (1− θ − 1 + 2θ) log (u1u2)−

1
θ

log
(

uθ
2 + uθ

1 − uθ
1uθ

2

)
− 2 log

(
uθ

2 + uθ
1 − uθ

1uθ
2

)
= log (θ + 1) + θ log (u1u2)−

1
θ

log
(

uθ
2 + uθ

1 − uθ
1uθ

2

)
− 2 log

(
uθ

2 + uθ
1 − uθ

1uθ
2

)
.

The score of the log-likelihood is given by [172, Supplementary material]:

∇Cl =
cN

Cl

cD
Cl

, (B.10)

where

cN
Cl =− θ

(
2θ2 + 3θ + 1

) (
uθ

1 log (u2) + uθ
2 log (u1)

)
−
(

uθ
1

(
uθ

2 − 1
)
− (u2)

θ
)
·
(
−θ2 + (θ + 1) θ2 log (u1u2)− (θ + 1) log

(
u−θ

1 u−θ
2 − 1

))
cD

CL =θ2 (θ + 1)
(

uθ
1

(
uθ

2 − 1
)
− uθ

2

)
.

The Gumbel copula has density:

cGu (u1, u2) =
1

u1u2
exp

{
−
(
(− log u1)

θ + (− log u2)
θ
) 1

θ

} [
(− log u1)

θ + (− log u2)
θ
] 2

θ−2

×
[

1 + (θ − 1)
(
(− log u1)

θ + (− log u2)
θ
)− 1

θ

]
× (log u1 log u2)

θ−1 .

So the log-likelihood is:

log cGu (u1, u2) =− log (u1u2)−
(
(− log u1)

θ + (− log u2)
θ
) 1

θ
+

(
2
θ
− 2
)(

(− log u1)
θ + (− log u2)

θ
)

+ log
(

1 + (θ − 1)
(
(− log u1)

θ + (− log u2)
θ
)− 1

θ

)
+ (θ − 1) log (log u1 log u2) .

The Gumbel score is quite complicated and therefore the expression is omitted.
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B. Copulas

B.3 MAPPING FUNCTIONS COPULAS

The mapping function for the Clayton copula is given by (θt ∈ (0, ∞)):

θt = exp
(

f̃t
)
⇐⇒ f̃t = log (θt) , (B.11)

The Jacobian is given by:

∂θt

∂ f̃t
=

∂ exp
(

f̃t
)

∂ f̃t
= exp

(
f̃t
)

. (B.12)

The mapping function for the Gumbel copula is given by (θt ∈ (1, ∞)):

θt = 1 + exp
(

f̃t
)
⇐⇒ f̃t = log (θt − 1) . (B.13)

The Jacobian is given by:

∂θt

∂ f̃t
=

∂
(
1 + exp

(
f̃t
))

∂ f̃t
= exp

(
f̃t
)

. (B.14)

For the correlation parameter for the Gaussian and Student’s t copulas we use
the same mapping function as [153] namely:

ρt =
1− exp{− f̃t}
1 + exp{− f̃t}

⇐⇒ f̃t = log (1 + ρt)− log (1− ρt) . (B.15)

The Jacobian is given by:

∂ρt

∂ f̃t
= exp{− f̃t}

(
1 + exp{− f̃t}

)−1
+
(
1− exp{− f̃t}

) (
1 + exp{− f̃t}

)−2 exp{− f̃t} (B.16)

= exp{− f̃t}
[

1 + 1− exp{− f̃t}(
1 + exp{− f̃t}

)2

]
(B.17)

= exp{− f̃t}
[

2− exp{− f̃t}(
1 + exp{− f̃t}

)2

]
. (B.18)

For the degrees of freedom parameter ν for the Student’s t copula we use the
modified logistic transformation [167] to ensure ν ∈ (a, b):

νt = a +
b− a

1 + exp
(
− f̃t

) ⇐⇒ f̃t = log
(

νt − a
b− νt

)
. (B.19)

We follow [167] and set a = 4 and b = 50.

Since we do not consider time–varying degrees of freedom we do not need the
Jacobian and therefore we do not report it. It can be found by differentiation.
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C

Supplementary material

C.1 CARBON INTENSITIES

Carbon emission intensities are derived from the ecoinvent 3.4 database [120].
For each of the EU28 we calculate technology-specific factors extracted from the
high-voltage level (for most technologies) and low-voltage level (for photovoltaic
technologies), to generate their lifecycle carbon intensities in grams of CO2

equivalents per kilowatthour. Furthermore, we also differentiate infrastructure-
related impacts from operational impacts. This is done by grouping life cycle
inventory inputs by unit, where the set {’meter’, ’meter-year’, ’unit’, ’kilometer’}
are assumed to denote infrastructure processes, whereas the rest, that is, ’kilo-
watthour’, ’tonne-kilometer’, etc., are accounted as operation and maintenance
processes.

The values under "high-voltage mix" denote the global warming potential (GWP)
score of the electricity mix directly from high-voltage technologies, while "low-
voltage mix" values denote the GWP score of electricity at the consumer level, i.e.
after transformation and distribution from high and medium-voltage (including
losses), and integration of photovoltaic electricity into the grid. The high- and
low-voltage GWP scores are extracted directly from ecoinvent 3.4, here only
shown for information, and never used in the calculations.

Not all technology-area pairs are available in the database, in case of missing
information, values have been proxied by the EU28 average intensity for the given
technology, calculated from the areas for which the data exists, and weighted by
their respective contribution to the EU28 mix. When the production source is
unknown we assume an intensity averaged over the particular country’s intensity
for gas, oil and coal.

Table C.1–C.3 show the country-specific lifecycle, infrastructure, and operation
intensities per technology in units of g CO2 eq./kWh. EU28 averages are also
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C. Supplementary material

shown, in bold. The relation between the three tables is such that lifecycle =
infrastructure + operation. The operation intensities in Table C.3 are the basis
for the production as well as consumption-based carbon allocation in this study.
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C.1. Carbon intensities
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C.1. Carbon intensities
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C. Supplementary material

C.2 FLOW TRACING

C.2.1 Formulation

Nomenclature

α set of all generation/storage technologies.

Ln nodal load.

Fn→k nodal outflow to direct neighbors.

Fm→n nodal inflow from direct neighbors.

Gn,α nodal generation for all technologies.

S+
n,α storage discharge for each storage technology α at node n.

S−n sum of storage charging at node n.

qn,α nodal colormix.

The nodal color mix refers to the mixing of electricity at each node from different
technologies and countries of origin, where each technology for each country has
been assigned a unique color [43]. Note that this is an assumption, analogous to
the mixing of water flows in pipes, used to approximate the mixing of power
flows at nodes in the transmission system.

Figure C.1 shows a sketch of the flow tracing implementation. For every hour
all imports, generation, and storage discharge are mixed equally in the node,
which then determines the color mix of the exports and the power serving the
local load. We do not keep track of the color mix flowing into storage, but track
which storage type the power originated from when the storages are discharging.
This mixing approach is called average participation or proportional sharing in the
literature which was also proposed initially in [40]. For a discussion of different
allocation methods, see [44]. For comprehensive reviews, see [50, 51].

The sketch in Figure C.1 describes the nodal power balance

Ln + S−n + ∑
k

Fn→k = ∑
α

(
Gn,α + S+

n,α
)
+ ∑

m
Fm→n, (C.1)

where the left-hand side and the right-hand side account for the flows out of and
into a node, respectively. In this, and following equations, there is an implicit
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C.2. Flow tracing

Figure C.1: Sketch of flow tracing methodology.

time index as the flow tracing is performed for every hour. We include nodal
color mixes in the nodal power balance

qn,α

(
Ln + S−n + ∑

k
Fn→k

)
= Gn,α + S+

n,α + ∑
m

qm,αFm→n, (C.2)

which is now an equation per country n per technology type α. Rearranging
Equation (C.2) we can write a matrix formula describing a unique solution for
the nodal power mix qn,α according to [46]:

∑
m

[
δn,m

(
Lm + S−m + ∑

k
Fm→k

)
− Fm→n

]
qm,α = Gn,α + S+

n,α. (C.3)

Here qm,α is the hourly nodal color mix for node m split into components for
every technology for every country. The α set allows us to track originating
technology as well as originating country e.g. we can trace who is consuming
Danish wind power. Multiplying the nodal color mix with the nodal load and
the carbon intensity of the originating generation/storage technologies allows
us to calculate consumption-based carbon intensity allocation.

C.2.2 Handling of missing data

As we are using raw data directly from the power system there will be occur-
rences of missing values. In case of missing data for production or imports/-
exports for a country the particular country is excluded from the flow tracing
calculation for that specific hour.
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C. Supplementary material

Imports from countries not included in the topology are included (e.g. Switzer-
land), but do not have an effect on the nodal mix of the importer (they simply
scale the color mix, but do not change the ratios). Exports to countries outside
the considered topology are subtracted.

Figure C.2 shows ∑α qn,α for every country for every hour. If Equation (C.3)
is perfectly balanced it should be the case that ∑α qn,α = 1. Cases of partially
missing data leads to ∑α qn,α 6= 1. This is usually caused by one country being
excluded due to missing data (which explains the occurrence of 0’s in Figure C.2),
which affects the nodal balance of neighboring countries. See e.g. the effect of
missing data for Ireland on Great Britain. We observe no cases of ∑α qn,α > 1.
The missing data mostly occurs for small, satellite countries e.g. Ireland and
Montenegro, which only have a small effect on the closest neighbors.

The total number of entries in Figure C.2:

hours · nodes = 8760 · 28 = 245280 (C.4)

Of these there are 6367 occurrences of qn,α = 0 (due to missing data), which is
only 2.6%. When the occurrences of 0 are subtracted there are 3742 occurrences
where qn,α < .9999 which is only 1.5%. The cases where 0 < qn,α < .9999 are all
rather close to 1 (all except 3 are above .8 and most are above .9). The occurrences
of 0 are predominantly for Ireland, Montenegro and Estonia, which are both
small countries at the edge of the network.

C.3 ADDITIONAL RESULTS

Figure C.3 shows a comparison of hourly production intensity with hourly load
for the full year of 2017 for every country. The production intensity is calculated
based on the production within each country. The figure is split in two parts
with large countries in the top panel and smaller countries in the bottom panel.
In the top panel we see that Norway, Sweden and France have low intensities
regardless of the level of consumption, which is due to a high share of hydro
power in the Nordic countries and nuclear power in France. On the other hand,
Poland has very high intensity due to a high share of coal power generation.

Figure C.4 shows the stacked average consumption intensity per kWh per hour
in Austria for all of 2017. This figure does not tell anything about the amount of
power being consumed by each technology.

Figure C.5 shows the total annual consumption intensity for Austria for 2017
based on flow tracing. From this figure we see that hydro is the technology
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Figure C.2: Flow tracing consistency check. Dark blue means generation or
import/export data is entirely missing for a country, lighter colors mean it is
partially complete, and white means fully complete data.

providing most of the consumed power, but that the intensity from this con-
sumption is among the lowest of the technologies. On the other hand coal power
is one of the smaller contributors to the consumed power, but has the largest
intensity.

Figure C.6 shows average hourly production/consumption carbon intensity
plotted as duration curves for Austria and Denmark e.g. if a country runs on
100% coal the entire year the duration curve would be flat at that country’s
operational intensity for coal as seen in Table C.3. This figure shows that AT has
a low production intensity, but a higher consumption intensity due to imports.
DK is relying on imports for a low consumption intensity since it has a high
production intensity for approximately half of the year.

Figure C.7 shows a comparison of average production (blue) and consumption
(orange) intensity for each country. White dots mark the mean. The colored
bars indicate 25%–75% quantiles and the gray bars 5%–95% quantiles. This is a
summary of the duration curves for individual countries as shown in Figure C.6.

Figure C.8 shows the difference between production and consumption intensity
as function of the share of non-fossil production of total production. Size of
circles are proportional to average production. A value above zero corresponds to
the country having a higher consumption intensity than production intensity. The
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Figure C.3: Comparison of hourly production intensity with hourly load for
every country.
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Figure C.5: Total annual consumption intensity for Austria for 2017.
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figure shows a general trend that the higher the share of non-fossil production
the higher the consumption intensity is compared to the production intensity.
This can be explained by countries with high share of non-fossil production
tend to import from countries with lower share of non-fossil production which
results in the importing country’s consumption intensity being higher than its
production intensity.

Table C.4 shows average production and consumption intensity per country.
These values are plotted in Figure 3 in the article, they are also shown as the
white markers in Figure C.7, and the difference for each country is shown in
Figure C.8.

Figure C.9 shows average intensity per imported/exported unit of energy. When
calculating the average imported/exported intensity between two countries only
hours with actual transfers have been used. A white entry means no data and
only occurs for ME and RS. The figure should be read as NO exporting mostly
low intensity hydro to all countries whereas EE and PL are exporting oil and coal
to all countries. This figure doesn’t say anything about the amount of energy
being transferred e.g. most of the column for ME is based on data for very few
hours as ME is a small, poorly connected country. The values in Figure C.9 are
also shown in Table C.5.
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