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Volumes of critical bubbles from the nucleation theorem
Gerald Wilemskia�

Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409-0640

�Received 25 July 2006; accepted 22 August 2006; published online 20 September 2006�

A corollary of the nucleation theorem due to Kashchiev �Nucleation: Basic Theory with
Applications �Butterworth-Heinemann, Oxford, 2000�� allows the volume V* of a critical bubble to
be determined from nucleation rate measurements. The original derivation was limited to
one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid.
Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density
inequality holds, this result reduces to Kashchiev’s simple form which thus has a much broader
range of applicability than originally expected. Limited applications to droplets are also mentioned,
and the utility of the pT,x form of the nucleation theorem as a sum rule is noted. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2354493�

I. INTRODUCTION

Bubble nucleation occurs in processes involving boiling
or cavitation.1 In many cases, e.g., polymeric foam
processing,2 vulcanism,3 and cosmological phase transitions
in the early universe,4 the size of the critical bubbles pro-
duced by nucleation is an important boundary condition in-
fluencing the subsequent evolution of the process. While it is
generally a routine matter to determine the critical bubble
size from theory,1–15 experimental values are difficult to ob-
tain because of the scarcity of measured bubble nucleation
rates.8,16

Using a version of the nucleation theorem5,17–29 �NT� to
analyze measured nucleation rates, experimental values for
the molecular content of critical droplets have been obtained
for many years.19,20 For multicomponent systems, this exact
version of the NT �Refs. 19–21 and 27� provides the excess
number of molecules �ni of species i for the critical cluster
as a derivative of the reversible work of critical nucleus for-
mation W,

�ni = − � �W

���,i
�

T,�j

. �1�

Here, ��,i is the chemical potential of component i in the
bulk, metastable mother ��� phase, and the chemical poten-
tials of the other components, j� i, are also held fixed �sub-
script � j� in taking this partial derivative. For droplet nucle-
ation this result correlates nicely with intuitive notions of
cluster size since the number of dilute vapor phase molecules
displaced by the droplet is very small, and we have as an
excellent approximation �ni=ni

*, where ni
* is simply the

number of molecules of type i in the critical cluster. For pure
bubble nuclei, this simple interpretation fails because the
value of �ni is dominated by the number of dense liquid
phase molecules displaced by the bubble phase and will be a
negative number;21 for a mixture, �ni will be negative for at
least one species. This difficulty of interpretation was over-

come by Kashchiev,5 who found a corollary to the NT that
allows one to determine critical bubble volumes, as in Ref.
16, from measured nucleation rates.

This corollary, Eq. �14.13� of Ref. 5, was derived for low
density, ideal gas bubbles in a pure metastable liquid. It reads

V* = � �W

�P�
�

T
= − kT� � ln J

�P�
�

T
, �2�

where V* is the volume of the critical bubble nucleus with
respect to the equimolecular dividing surface �EDS�, P� is
the pressure of the metastable liquid phase, and J is the
nucleation rate, given as usual by

J = A exp�− W/kT� , �3�

with the good assumption that A is independent of P�.
Here, I generalize this result for multicomponent non-

ideal systems and show that Kashchiev’s result is an excel-
lent approximation under much less restrictive conditions
than he assumed. Applications to critical droplet properties
are also noted. Lastly, another recent result of Kashchiev,29

termed the pT,x form of the NT and used here in generalizing
Eq. �2�, is shown to serve as a sum rule constraining results
found independently by applying the NT to experimental
data using different sets of independent variables.

II. THERMODYNAMIC DERIVATION

The thermodynamic formalism used is similar to that of
Oxtoby and Kashchiev.21 The total system is at constant tem-
perature T and its volume is split into two parts,

V = V� + V�, �4�

where � and � denote the original phase and the new �nucle-
ated� phase, respectively. Following Gibbs,30 the interface
volume equals zero, and the actual values of V� and V� are
determined by the location of a thermodynamic dividing sur-
face. The same dividing surface also determines the number
of molecules, n�,i, of each species i in each phase � under
the assumption that each phase is a uniform system with
constant species densities ��,i,
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n�,i = ��,iV�. �5�

These densities are evaluated in the interior of each phase far
from the interfacial zone. To conserve the total numbers of
molecules of each species it is customary to introduce the
so-called surface excess numbers of molecules ns,i that ac-
count for the deviations in the interfacial region of the actual
density profiles from the idealized uniform densities of the
two phases. The total number of molecules of species i can
then be written as

ni = n�,i + n�,i + ns,i. �6�

The specific values of the ns,i also depend on the choice of
the dividing surface. Finally, the volume of each phase is
defined as

V� = �
i

n�,iv�,i, �7�

where v�,i is the partial molecular volume of phase � far
from the interface. Note that, in general, the v�,i are func-
tions of composition that depend on the density, pressure,
and temperature of the phase in question.

To derive an exact version of Eq. �2�, start with an ex-
plicit definition for �ni,

21

�ni = ns,i + n�,i − V�n�,i/V�, �8�

multiply both sides by v�,i, sum over i, and solve for V� to
find

V� = �
i

v�i��ni − ns,i�� ��
j

v�j���j − ��j�� , �9�

for the critical volume of the freshly nucleated phase. This
formal result involves the quantities ��i �and v�i when �
=�� that cannot, at present, be determined experimentally.
With known values of ��i and v�i, the ns,i can be determined
for a specific Gibbs dividing surface,31 but this is feasible
only for theoretical models of critical nuclei, including the
virtual nucleus based on Gibbs idea of a reference phase.30

Nevertheless, the sum involving the ns,i can be eliminated by
making an appropriate choice for a Gibbs dividing surface.
An obvious choice is to locate the dividing surface where

�
i

ns,iv�,i = 0. �10�

With �=�, this corresponds to the Koenig31 and Buff32

dividing surface �KBDS� used in several recent papers33–35

for droplets. As noted by Buff,32 the KBDS is conjugate to
the Gibbs surface of tension since the distance between these
two dividing surfaces, known now as the Tolman length,36

affects the curvature dependence of the surface tension.31

The KBDS is, thus, the multicomponent analog of the EDS
in one-component systems. With Eq. �10� and the identity
�i��,iv�,i=1, Eq. �9� simplifies to

V�� = �
i

v�i�ni��1 − �
j

v�j��j� , �11�

where the prime designates the use of the KBDS. While
simpler, Eq. �11� still contains the experimental unknowns
v�i. A second dividing surface, here termed the complemen-

tary KBDS �CKBDS�, comes from putting �=� in Eq. �10�.
In this case Eq. �9� reduces to

V�� = �
i

v�i�ni���
j

v�j��j − 1� , �12�

where the double prime indicates the use of the CKBDS.
This simpler form still contains the experimental unknowns
��j. The CKBDS seems not to have been used previously,
but it is essential to this paper’s main result.

III. ONE-COMPONENT LIMIT

When the system contains only one component �i=1�,
v�=1/��, the two dividing surfaces are degenerate and equal
to the EDS for which ns=0, and Eqs. �11� and �12� reduce to

V� = − �n/��� − ��� . �13�

Using the Gibbs-Duhem equation for the bulk mother phase
at constant T, V�dP�=n�d��, Eq. �1� can be recast as �n=
−����W /�P��T, as shown before22,26 in other ways. With this
result, Eq. �13� then becomes

V� =
��

�� − ��
� �W

�P�
�

T
, �14�

which differs from Kashchiev’s approximate form by the ra-
tio �� / ���−���. From this exact form, we see that Kash-
chiev’s result for bubbles is accurate to 10% �which gener-
ally exceeds experimental accuracy� when ��	�� /10 and
that it is not necessary to assume that the � phase is an ideal
gas. A vapor whose density was 10% of a liquid would typi-
cally be highly nonideal. Using density functional theory
�DFT�, Shen and Debenedetti9 have found critical bubbles
with a high density bubble phase. Even for a bubble phase
density equal to one-half the liquid density, ��	�� /2, Kash-
chiev’s approximate formula would only underestimate the
critical bubble volume by a factor of 2, which corresponds to
a modest 26% underestimate for the critical radius, assuming
a spherical bubble. Thus, by comparison with the exact result
�Eq. �14��, we conclude that Eq. �2� is capable of giving
fairly accurate estimates for the EDS value of V� even under
extreme conditions �high density and nonideal bubble phase�
not considered in its original domain of applicability.

When the � phase is a droplet in a low density vapor,
��� ���, Eq. �13� yields the well-known result19,21 that the
molecular content of the nucleus, defined as n�, is essentially
equal to the excess number of molecules, V���=n�	�n.
This result reaffirms the long-known importance of the EDS
for one-component droplet nucleation.32,37–39 Since �� is un-
known, the value of V� cannot be determined.

IV. MULTICOMPONENT FORM

A. Generalized Kashchiev formula and sum rule

In an isothermal N component system W may be re-
garded either as a function of the N chemical potentials ��,i

or as a function of P� and N−1 appropriate composition
variables, say, the mole fractions xi in the � phase. We then
obtain directly from the chain rule,
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� �W

�P�
�

T,x
= �

i
� �W

���,i
�

T,�j

� ���,i

�P�
�

T,x
, �15�

where the subscript x indicates a partial derivative taken at
fixed composition. This simplifies to

��W/�P��T,x = − �
i

v�,i�ni, �16�

with the aid of Eq. �1� and the familiar thermodynamic rela-
tion, ����,i /�P��T,x=v�,i. Equation�16� was recently derived
by Kashchiev,29 who termed it the pT,x form of the NT. With
this equality, Eq. �12� becomes the multicomponent analog
of Eq. �14�,

V�� = �� �W

�P�
�

T,x
= − kT�� � ln J

�P�
�

T,x
, �17�

where

�−1 = 1 − �
i

v�,i��,i. �18�

This generalized Kashchiev formula differs essentially from
Eq. �2� only by the multiplicative factor �, and it reduces to
Eq. �14� in the one-component limit. Since the composition
and pressure of the mother phase are usually well-controlled
experimental parameters, the main formal obstacle to apply-
ing this corollary of the nucleation theorem to the analysis of
data is the experimentally unknown value of �. While Eq.
�16� is essential in deriving Eq. �17�, it also has potential
value as a sum rule if the two sides of Eq. �16� are evaluated
independently. This can be done, in a sense, by finding the
�ni, as usual, from a nucleation rate surface20 that is a func-
tion of the N independent ��,i and by determining
��W /�P��T,x using a nucleation rate surface that is a function
of P� and N−1 mole fractions. Of course, the two surfaces
are not fully independent because they rely on the same rate
data. Thus, Eq. �16� actually serves to check the internal
consistency of the data and data conversion procedures em-
ployed in the mathematical construction of the surfaces, but
this should still be worthwhile.

B. Bubble nuclei

The simple form of Eq. �2� is rigorously recovered only
when �→1. For example, because of the identity, �i��,iv�,i

=1, and the strong inequality, ��,i� ���,i, expected on
physical grounds if the bubble phase were a highly dilute gas
mixture, we then would have �i��,iv�,i� �1. In this case,
Eq. �17� simplifies to

V�� = � �W

�P�
�

T,x
= − kT� � ln J

�P�
�

T,x
, �19�

which can be evaluated solely from experimental data. On
the other hand, it is only necessary that the bubble phase
densities satisfy the weaker inequality, �i��,iv�,i�0.1, for
Eq. �19� to have an accuracy generally exceeding what is
experimentally attainable. For some binary systems, DFT
calculations by Talanquer and Oxtoby7 and Talanquer et al.10

have shown that the bubble phase density of the mother
phase “solute” may be quite “liquid like,” so that even this

weaker inequality may not be obeyed. Then the factor � in
Eq. �17� exceeds unity by more than 10%, and the bubble
volume estimated using Eq. �19� is only a lower bound to the
correct result. Nevertheless, based on the order of magnitude
arguments made for the one-component case, these lower
bounds should be reasonably close to the correct values.

C. Droplet nuclei

Droplet nucleation is most often studied in nearly ideal
vapor mixtures for which the relations v�,i=kT / P�=1/�� are
quite accurate ��� is the total density of the � phase�. Then
Eq. �17� immediately simplifies to

V�� = ��W/�P��T,x/�1 − ��/��� . �20�

Although the total density of the new droplet phase �� is
experimentally unknown, we expect, generally, �� /��	 	1.
When this inequality holds, it yields an excellent approxima-
tion for the total molecular content n�� =V����, within the CK-
BDS,

n�� 	 − ����W/�P��T,x 	 �
i

�ni. �21�

Note that the exact form of the right-hand equality, rear-
ranged slightly, is given by Eq. �16�. If we apply the dilute
vapor approximation to Eq. �11�, � jv�j��j � �1, we obtain
the result

V�� 	 �
i

v�i�ni, �22�

which is mainly of formal interest due to the presence of the
experimentally unknown quantities v�i. By comparison with
Eq. �7� with �=�, it should be reasonable, although not rig-
orous, to make the identifications n�,i� 	�ni for the molecular
content of species i in the droplet. As for unary droplets, the
values of V�� and V�� cannot be determined.

V. CONCLUSIONS

The main result of this paper �Eq. �17�� is an exact ex-
pression for V�� , the volume of a critical nucleus as defined
by the CKBDS. Unlike the original NT �Eq. �1��, which is
invariant to the choice of dividing surface,21 the critical vol-
ume depends in an essential way on such a choice. In accor-
dance with the Gibbsian formulation of interfacial thermody-
namics, the volume of the nucleus is determined by the
location of the chosen dividing surface. The present choice,
the CKBDS, is advantageous in that it leads to the simple
pressure derivative term in Eq. �17�, but it also produces the
factor � �Eq. �18��, whose experimental evaluation is not
possible at present. Nevertheless, for bubble nucleation, ar-
guments given above imply that in many circumstances �
	1, so that this corollary of the NT yields a well-defined
value for V�� that can be found solely from experimental
variables. In several instances it has been shown theoretically
that the bubble phase is not dilute in all components.7,9,10 In
these cases, the approximation �	1 will not be satisfied, and
an accurate value for V�� requires a more precise estimate for
� from molecular theory. In any case, the corollary with �
=1 always results in a lower bound for V�� . One could invoke
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Gibbs’ idea of a reference phase to determine the values of
��i and v�i needed to fully evaluate V�� and V�� , but for
bubbles this approach seems destined to yield low density
phases and, thus, the value �	1. A final point to note is that
the corollary neither assumes nor yields information about
the shape of the critical bubble; only its volume is deter-
mined.
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