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Abstract

In this dissertation, we present a new characterization of Moessner’s sieve

that brings a range of new results with it. As such, we present a dual to

Moessner’s sieve that generates a sequence of so-called Moessner triangles,

instead of a traditional sequence of successive powers, where each triangle is

generated column by column, instead of row by row. Furthermore, we present

a new characteristic function of Moessner’s sieve that calculates the entries

of the Moessner triangles generated by Moessner’s sieve, without having to

calculate the prefix of the sequence.

We prove Moessner’s theorem adapted to our new dual sieve, called

Moessner’s idealized theorem, where we generalize the initial configuration

from a sequence of natural numbers to a seed tuple containing just one non-

zero entry. We discover a new property of Moessner’s sieve that connects

Moessner triangles of different rank, thus acting as a dual to the existing re-

lation between Moessner triangles of different index, thereby suggesting the

presence of a 2-dimensional grid of triangles, rather than the traditional 1-

dimensional sequence of values.

We adapt Long’s theorem to the dual sieve and obtain a simplified initial

configuration of Long’s theorem, consisting of a seed tuple of two non-zero

entries. We conjecture a new generalization of Long’s theorem that has a seed

tuple of arbitrary entries for its initial configuration and connects Moessner’s

sieve with polynomial evaluation. Lastly, we approach the connection be-

tween Moessner’s sieve and polynomial evaluation from an alternative per-

spective and prove an equivalence relation between the triangle creation pro-

cedures of Moessner’s sieve and the repeated application of Horner’s method

for polynomial division.

All results presented in this dissertation have been formalized in the Coq

proof assistant and proved using a minimal subset of the constructs and tac-

tics available in the Coq language. As such, we demonstrate the potential of

proof assistants to inspire new results while lowering the gap between pro-

grams (in computer science) and proofs (in mathematics).
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Prerequisites and notation

There are different rules for reading,
for thinking, and for talking.

Writing blends all three of them.

Mason Cooley

This dissertation abides with the traditional use of “we” in scientific writing.

Prerequisites

Since all our proof statements have been proved using Coq, we expect the

reader to have a basic understanding of interactive theorem proving and, in

particular, of writing proofs using the Coq proof assistant. In our proofs,

we deliberately stay at an elementary level that restricts us to a limited set

of proof tactics for equational reasoning, such as induction, coinduction, and

case analysis.

Furthermore, we do not claim to be experts in the theories behind these

proof techniques. Instead, we use the techniques as tools for proving non-

trivial statements in the area of our discourse, specifically Moessner’s theorem

and Moessner’s sieve.

Lastly, since equational reasoning lies at the core of this thesis, we expect

the reader to be familiar with equational reasoning at a high-school level.

Notation

Throughout this dissertation, we liberally use the terms “algebra” and “cal-

culus” to mean “a module of arithmetic-like operators on a type”. As such,

the reader can understand “algebraic” as “having to do with lists” and “coal-

gebraic” as “having to do with streams”.

Furthermore, for the sake of keeping each chapter as self-contained as

possible, we occasionally repeat points made in previous chapters, e.g., the

relation between Moessner’s sieve and Pascal’s triangle, or we repeat existing

definitions, e.g., the definition of Moessner’s sieve.

Lastly, the source code of this dissertation can be found under the author’s

Github profile, https://github.com/dragonwasrobot.
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Chapter 1

Introduction

I always write a good first line,
but I have trouble in writing the others.

Molière

The goal of this chapter is to introduce the content of this dissertation by

defining its foundation along with its contributions.

In this chapter, we first define Moessner’s theorem and Moessner’s sieve

in Section 1.1, followed by stating our goals and contributions in Section 1.2.

Lastly, we give an overview of the rest of the dissertation in Section 1.3.

1.1 Moessner’s theorem and sieve

At the core of this thesis lies Moessner’s theorem, conjectured by Alfred

Moessner in 1951 [27], which describes how to generate the sequence of suc-

cessive powers,

1k, 2k, 3k, . . . , (1.1)

where k ∈ N and k ≥ 2, from the sequence of positive natural numbers,

1, 2, 3, . . . .

The procedure described by Moessner for generating the result sequence of

successive powers, works by dropping every kth element of an initial se-

quence, where 2 ≤ k ∈ N, and partially summing the remaining elements

into a new sequence. This step of dropping and summing is iteratively re-

peated, where k is decreased by 1 for each iteration; the procedure stops

when the value of k reaches 1. The simplest case, where k = 2, yields the

procedure,

1 2 3 4 5 6 . . .

1 3 5 . . .

1 4 9 . . .

1



where the values (2, 4, 6, . . . ) are dropped in the initial sequence, and the

remaining values (1, 3, 5, . . . ) are partially summed to yield the sequence

(1, 4, 9, . . . ). The rank k is decreased from 2 to 1 and the procedure stops.

Here, we note that the resulting sequence is the sequence of squares,

12, 22, 32, . . . ,

which is exactly the sequence of Formula 1.1,

1k, 2k, 3k, . . . ,

where k = 2. We refer to the above procedure of repeatedly dropping and

partially summing element as ‘Moessner’s sieve’, and refer to k as the rank of

the sieve.

In the course of this dissertation, we cover the related work of Moessner’s

theorem and we build on it to uncover formalizations that shed new light on

Moessner’s sieve and Moessner’s theorem – we even state a new conjecture

related to an existing generalization of Moessner’s theorem.

1.2 Goals and contributions

Since Moessner’s sieve and Moessner’s theorem are the subjects of this study,

our goal is to give a characterization of Moessner’s sieve while proving

Moessner’s theorem and some of its generalizations. As a result, we present

the following contributions, which enabled several new results:

∗ A formalization of the dual of Moessner’s sieve (abbreviated the ‘dual

sieve’), which generates a sequence of triangles, called ‘Moessner tri-

angles’, instead of a result sequence of successive powers, where each

triangle is created column by column, instead of row by row.

∗ The definition of a characteristic function of Moessner’s sieve that cal-

culates any given entry of a generated Moessner triangle, without cal-

culating the prefix of the sieve, and which we also prove to be correct.

∗ A proof of Moessner’s theorem adapted to the dual sieve, called Moess-

ner’s idealized theorem, and generalized to an initial configuration con-

sisting of a seed tuple with a single nonzero entry of 1, rather than a

sequence of positive natural numbers or an arithmetic progression.

∗ The introduction of a new property of Moessner’s sieve that establishes

a connection between Moessner triangles of different rank, thereby sug-

gesting the presence of a grid of triangles, rather than simply a se-

quence.

∗ A proof of Long’s theorem adapted to the dual sieve, called Long’s

idealized theorem, together with the statement of a conjecture that gen-

eralizes Long’s idealized theorem from a seed tuple with two nonzero

2



entries to a seed tuple with an arbitrary number of nonzero entries and

connects the dual sieve to polynomial evaluation.

∗ An equivalence proof between the repeated application of Horner’s

method for polynomial division and the triangle creation procedure of

the dual sieve, which further strengthens the relation between polyno-

mial evaluation and Moessner’s sieve.

1.3 Overview

The dissertation is structured as follows. In Chapter 2, we establish our foun-

dation by going through the related work leading up to this thesis. Following

this, we give an overview of the Coq proof assistant in Chapter 3, which we

use as our tool of choice to reach our goals, and we elaborate on the set of

features we use and the approach we take throughout the dissertation.

Having established the foundation on which we stand and the tools we

use, we construct a list calculus and a stream calculus in Chapter 4 that serve

as the framework with which we do our proofs. Furthermore, we also define

a traditional version of Moessner’s sieve working on streams that we use

to introduce our dual in Chapter 5, which works on tuples and generates a

sequence of Moessner triangles instead of a stream of successive powers.

Taking a step back, we discuss Pascal’s triangle and the binomial coeffi-

cient function in Chapter 6 and we formalize the rotated Pascal’s triangle and

the rotated binomial coefficient function. In Chapter 7, we extend the defi-

nition of the rotated binomial coefficient function to a characteristic function

of Moessner’s sieve, by observing a relation between the Moessner triangles

generated by Moessner’s sieve and the binomial expansion.

Having defined the dual sieve and formalized its characteristic function,

we state and prove Moessner’s idealized theorem in Chapter 8 using these

new constructs. As a consequence of our formalizations, we discover a new

property that connects Moessner triangles of different rank, suggesting a grid

of triangles, which we explore and formalize in Chapter 9.

In order to both test and explore the potential of the dual sieve as a generic

formalization going beyond Moessner’s theorem, we state and prove Long’s

theorem in Chapter 10 in an idealized form adapted to the dual sieve, while

maintaining the spirit of Long’s original theorem. Furthermore, we conjecture

a generalization of Long’s idealized theorem that connects Moessner’s sieve

to polynomial evaluation and extends the initial configuration of Moessner’s

sieve from a seed tuple of two nonzero entries to a seed tuple with an arbitrary

number of nonzero entries.

In Chapter 11, we approach the connection between Moessner’s sieve and

polynomial evaluation from a different perspective, by proving an equiva-

lence relation between the repeated application of Horner’s method for poly-

nomial division and the triangle creation procedure of the dual sieve.

3



Lastly, we conclude our findings in Chapter 12 and reflect on the process

and future work.

This dissertation is supplemented with a glossary.
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Chapter 2

Related Work

All good things come in pairs.

Old Chinese Proverb

Fortune favors the prepared mind.

Louis Pasteur

How would Lubitsch do it?

Billy Wilder

The goal of this chapter is to put this dissertation, and Moessner’s sieve, into

a historical context by reviewing the work which has gone before it.

In this chapter, we repeat the definition of Moessner’s sieve and Moess-

ner’s theorem, as described in Chapter 1, in order to keep the chapter self-

contained.

The chapter is structured as follows. In Section 2.1, we review the

algebraic approaches to Moessner’s sieve starting with Moessner’s original

work, and touch upon some of the generalizations made, using inductive

proof techniques. Furthermore, we also review articles that examine Moess-

ner’s sieve from alternative perspectives such as graph theory and circuit

theory. As a dual to the algebraic approaches, we review the coalgebraic

approaches to Moessner’s sieve in Section 2.2, where we revisit many of the

algebraic proofs, using coinductive proof techniques, while adding further

generalizations to Moessner’s theorem.

5



2.1 Algebraic approaches

This section examines the algebraic approaches to Moessner’s sieve covered in

the literature. When discussing algebraic approaches, we use the term ‘finite

sequence’ to denote an ordered finite collection in a mathematical context, and

the term ‘list’ to denote the computational representation of a finite sequence.

Because of the prevalence of inductive proof techniques in the covered articles,

we dedicate the first section to inductive contributions and the second section

to non-inductive contributions.

2.1.1 Inductive contributions

In 1951, Alfred Moessner conjectured his now famous theorem [27], demon-

strating how to generate the sequence of successive powers,

1k, 2k, 3k, . . . , (2.1)

where k ∈ N and k ≥ 2, from the sequence of positive natural numbers,

1, 2, 3, . . . .

The procedure described by Moessner for generating the result sequence of

successive powers, works by dropping every kth element of an initial se-

quence, where 2 ≤ k ∈ N, and partially summing the remaining elements

into a new sequence. This step of dropping and summing is repeated it-

eratively where k is decreased by 1 for each iteration; the procedure stops

when the value of k reaches 1. The simplest case, where k = 2, yields the

procedure,1

1 2 3 4 5 6 . . .

1 3 5 . . .

1 4 9 . . .

where the values (2, 4, 6, . . . ) are dropped in the initial sequence, and the re-

maining values (1, 3, 5, . . . ) are partially summed to yield the result sequence

(1, 4, 9, . . . ). The rank k is decreased from 2 to 1 and the procedure stops.

Here, we note that the resulting sequence is the sequence of squares,

12, 22, 32, . . . ,

which is exactly the sequence of Formula 2.1,

1k, 2k, 3k, . . . , (2.2)

when k = 2. We refer to the above procedure of repeatedly dropping and

partially summing element as ‘Moessner’s sieve’, and refer to k as the rank of

the sieve.

1In all future examples we contract the dropping and partial summing into one step and

mark the dropped elements by making them boldface.

6



Moessner’s conjecture was quickly proved by Oskar Perron [34], less than

a year after its initial publication. Following Perron’s proof of Moessner’s the-

orem, further generalizations were soon made by Ivan Paasche [32] and Hans

Salié [40]. Paasche showed how incrementally increasing the gap between the

elements dropped in Moessner’s sieve,

1 2 3 4 5 6 7 8 9 10 . . .

2 6 11 18 26 35 . . .

6 24 50 . . .

24 . . .

allowed him to obtain the sequence of factorials,

1!, 2!, 3!, . . . ,

and super factorials,

1!!, 2!!, 3!!, . . . .

Salié proved another generalization of Moessner’s theorem by applying

Moessner’s sieve on an arbitrary initial sequence,

a1, a2, a3, . . . ,

instead of applying it on the sequence of positive natural numbers.

In 1966, Moessner’s sieve was picked up by Calvin T. Long [22], who

observed that the triangles generated by Moessner’s sieve,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 3 6 11 17 24 33 43 54 . . .

1 4 15 32 65 108 . . .

1 16 81 . . .

(2.3)

which we refer to as Moessner triangles, are constructed in a similar way to

Pascal’s triangle,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

(2.4)

The similarity lies in the observation that each entry in Pascal’s triangle is the

sum of the two values immediately above it,

1 2

ց ւ

3

7



while each entry in a Moessner triangle is the sum of the value immediately

above it (northern neighbor) and left of it (western neighbor),

2

↓

1 → 3

suggesting an equivalence relation between the two functions generating the

triangles. This connection is also emphasized by the first Moessner triangle,

in Formula 2.3, having the same entries as Pascal’s triangle, in Formula 2.4.

Long used this observation to prove a new generalization of Moessner’s

theorem involving the introduction of a generalized version of Pascal’s trian-

gle,

d0

a1 d1

a2 a1 + d1 d2

a3 a2 + a1 + d1 a1 + d1 + d2 d3

a4 a3 + a2 + a1 + d1 a2 + 2a1 + 2d1 + d2 a1 + d1 + d2 + d3 d4

starting from two arbitrary sequences, (a1, a2, . . . ) and (d0, d1, . . . ), instead of

two sequences of 1s. Long then showed how applying Moessner’s sieve to

the arithmetic progression

a, a + d, a + 2d, a + 3d, . . . , (2.5)

yields the result sequence

a · 1k−1, (a + d) · 2k−1, (a + 2d) · 3k−1, . . . , (2.6)

where k − 1 is the number of iterations in Moessner’s sieve. When letting

a = 1 and d = 1, the initial sequence in Formula 2.5 corresponds to the

positive natural numbers,

1, 1 + 1, 1 + 2 · 1, 1 + 3 · 1, . . .

1, 2, 3, 4, . . .

and the result sequence, in Formula 2.6, becomes the sequence of successive

powers,

1 · 1k−1, (1 + 1) + 2k−1, (1 + 2 · 1) · 3k−1, (1 + 3 · 1) · 4k−1, . . .

1 · 1k−1, 2 + 2k−1, 3 · 3k−1, 4 · 4k−1, . . .

1k, 2k, 3k, 4k, . . .

yielding Moessner’s theorem.

Besides the above generalization, Long also pointed out several other

properties of Moessner’s sieve [24, 25, 42], among these is a relation between

the index values of the dropped elements in an initial sequence, and the val-

ues of the result sequence – we refer to the sequence of the dropped elements
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as the dropped sequence. Specifically, Long observed that dropping the ele-

ments whose index values correspond to the sequence,

k1, 2k1 + k2, 3k1 + 2k2 + k3, 4k1 + 3k2 + 2k3 + k4, . . . , (2.7)

yields the sequence,

1k1 , 2k11k2 , 3k12k21k3 , 4k13k22k31k4 , . . . , (2.8)

where all ki are natural numbers. Here, the sums in the dropped sequence of

Formula 2.7 are mapped to products in the result sequence of Formula 2.8,

and the products are mapped to exponents, i.e., the dropped element of the

initial sequence having index value 2k1 + k2 is mapped to the element 2k11k2

in the result sequence.

Finally, Long discussed the potential of Moessner’s sieve to entice high

school students to become interested in mathematics, by its simplicity and

wonder [23].

2.1.2 Non-inductive contributions

In 1959, Jan van Yzeren [44] showed how to derive Moessner’s theorem by

dividing a polynomial with a binomial, using Horner’s method [6, 16], and

repeating the process for the resulting quotient part of the division, until

reaching a polynomial of degree 0, i.e., a constant. Performing the repeated

application of Horner’s method on the polynomial,

f (x) = 1x4 + 0x3 + 0x2 + 0x1 + 0x0,

yields the following Horner blocks,

1 0 0 0 0

1 1 1 1

1 1 1 1 1

1 2 3

1 2 3 4

1 3

1 3 6

1

1 4

1 4 6 4 1

1 5 11 15

1 5 11 15 16

1 6 17

1 6 17 32

1 7

1 7 24

1

1 8

1 8 24 32 16

1 9 33 65

1 9 33 65 81

1 10 43

1 10 43 108

1 11

1 11 54

1

1 12

which have the same hypotenuse, highlighted in boldface, as the triangles

generated in Formula 2.3, however in reversed order. Furthermore, if we

remove every second row in the blocks above, along with the first row, we

obtain a mirror image of the triangles in Formula 2.3,

1 1 1 1 1 1 5 11 15 16 1 9 33 65 81 . . .

1 2 3 4 1 6 17 32 1 10 43 108 . . .

1 3 6 1 7 24 1 11 54 . . .

1 4 1 8 1 12 . . .

1 1 1 . . .
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suggesting an equivalence relation between the two functions generating

Moessner triangles and Horner blocks.

A different approach was taken by Karel A. Post [35], who used graph the-

ory to model each entry in the sieve as a node and every addition as a directed

edge. This structure allowed him to establish simple graph-theoretical proofs

of Moessner’s original theorem and the generalizations made by Paasche,

Salié and Long.

Looking at Moessner’s theorem from a circuit-theoretical perspective,

Samadi et al. [41] contributed a more technical result describing how to

compute the sequence of successive powers, by means of recursive and non-

recursive multiplier-free circuit structures mimicking Moessner’s sieve. This

result shows that the ability of Moessner’s sieve to calculate the powers of nat-

ural numbers without multiplication, expands its application beyond mathe-

matical curiosity and into the more practical realm of circuits.

Lastly, Graham et al. [12] proved Moessner’s theorem using power series,

while more recent publications by Dexter Kozen and Alexandra Silva [18]

used formal power series to prove Moessner’s-, Paasche’s- and Long’s theo-

rems. By using the theory of formal power series, Kozen and Silva proved

a new generalization of Moessner’s theorem which turned the mentioned

proofs into simple corollaries. Besides pen and paper, these proofs have also

been formalized, in cooperation with Mark Bickford, in the Nuprl proof de-

velopment system [4, 5, 20].

2.2 Coalgebraic approaches

As a dual to the algebraic approach above, this section examines the coal-

gebraic approaches to Moessner’s sieve. Here, we use the term ‘infinite se-

quence’ to denote an ordered infinite collection in a mathematical context,

and the term ‘stream’ to denote the computational representation of an infi-

nite sequence. Analogously to the previous section, we dedicate the first sec-

tion to coinductive contributions and the second section to non-coinductive

contributions.

2.2.1 Coinductive contributions

Extending on the theory of coalgebra [37], Jan Rutten developed a coinduc-

tive calculus of streams [38], founded on a small set of useful concepts to

reason about streams: initial values, stream derivatives, stream differential

equations, along with the coinduction definition and -proof principles. Using

these concepts, Rutten demonstrated several applications of stream calculus

in areas of discrete mathematics, analysis and combinatorics. Further work

with the framework of stream calculus was done in collaboration with Milad

Niqui [28, 31], where they studied various operations for partitioning, pro-

jecting and merging streams, and later used them to develop precise proofs

10



for Moessner’s theorem using coinductive proof techniques [29, 30]. Subse-

quently, the proofs by Niqui and Rutten of Moessner’s theorem have been

formalized in the Coq proof assistant [1] by Krebbers et al. [19]. Besides

proving Moessner’s theorem, their formalization made them able to create a

foundation of proved properties that abstracted away the often brittle reason-

ing associated with Coq’s guardedness condition for corecursive definitions.

Furthermore, their formalization resulted in new proofs of the generalizations

made by Long and Salié, which required only a minimal effort beyond their

existing proof framework.

Other work in the Coq proof assistant has been done by Yves Bertot [2, 3]

and Danvy et al. [7], where Bertot has formalized Eratosthenes’ sieve and

Danvy et al. have formalized Moessner’s sieve. The article by Danvy et al.

introduces the much needed name ‘Moessner’s sieve’, in reference to Eratos-

thenes’ sieve, to refer to the procedure of repeatedly dropping and partially

summing sequences, that lies at the core of Moessner’s theorem and its gen-

eralizations.

Besides coining the term ‘Moessner’s sieve’, Danvy et al. also general-

ize the initial sequence of Moessner’s theorem, by starting with a sequence

consisting of a 1 followed by 0s,

1 0 0 0 0 0 0 0 0 0 . . . ,

as opposed to the sequence of positive natural numbers,

1 2 3 4 5 6 7 8 9 10 . . . .

This generalization provides a simpler basis, since the sequence of positive

natural numbers can be obtained by applying Moessner’s sieve on the se-

quence of 1 followed by 0s with rank k = 3,

1 0 0 0 0 0 0 0 0 0 0 0 . . .

1 1 1 1 1 1 1 1 . . .

1 2 3 4 . . .

(2.9)

Furthermore, they note that the values dropped by Moessner’s sieve when

applied on the sequence of positive natural numbers at rank k, k being a nat-

ural number, enumerate the successive monomials in the binomial expansion

of (1 + t)k,

(1 + t)k =

(

k

0

)

t0 +

(

k

1

)

t1 +

(

k

2

)

t2 + · · ·+

(

k

k − 1

)

tk−1 +

(

k

k

)

tk,

t being the index of the triangle in Moessner’s sieve, indexed from 1. As

such, if we examine the three triangles in Formula 2.3, we note that the result

sequence, (1, 16, 81, . . . ), enumerate the values t4, (14, 24, 34, . . . ), which means

that the first two hypotenuses of dropped elements should have the values:

(1 + 1)4 = 1 · 10 + 4 · 11 + 6 · 12 + 4 · 13 + 14

= 1 + 4 + 6 + 4 + 1,

11



and,

(1 + 2)4 = 1 · 20 + 4 · 21 + 6 · 22 + 4 · 23 + 24

= 1 + 8 + 24 + 32 + 16.

Comparing the terms of the two binomial expansions with the hypotenuses

of the two triangles, we see that the dropped values are indeed enumerating

the values of the monomials in the binomial expansions.

Danvy et al. also introduced a left inverse of Moessner’s sieve, which

given a result sequence and a rank returns the initial sequence, thus reversing

the effect of applying Moessner’s sieve:

1 16 . . .

1 4 15 32 . . .

1 3 6 11 17 24 . . .

1 2 3 4 5 6 7 8 . . .

1 1 1 1 1 1 1 1 1 1 . . .

1 0 0 0 0 0 0 0 0 0 0 0 . . .

Lastly, Danvy et al. propose a generalization of Long’s theorem [22] starting

from a sequence consisting of an a followed by ds,

a d d d d d d d d d d d d d d d . . . ,

instead of the arithmetic progression in Formula 2.5,

a a + d a + 2d a + 3d a + 4d a + 5d a + 6d . . . ,

since the arithmetic progression can be obtained by applying Moessner’s sieve

on the sequence of an a followed by ds with k = 2 – analogously to the way the

sequence of positive natural numbers could be obtained from the sequence of

a 1 followed by 0s.

2.2.2 Non-coinductive contributions

Besides their coinductive contribution, Niqui and Rutten also explore stream

circuits [39], they prove Moessner’s theorem using equational reasoning [29]

and generating functions [30], still within the context of stream calculus.

Other alternatives to coinduction have been suggested by Ralf Hinze, who

conducts an extended study of stream calculus [14] wherein he introduces

the concept of unique solutions, which he uses to redevelop the theory of rec-

currences, finite calculus and generating functions in a way that allows equa-

tional reasoning of coinductive data types, i.e., streams. Hinze further devel-

ops stream-generating functions by introducing scans and convolutions [15],

which he then uses to prove Paasche’s generalization of Moessner’s theorem.

12



2.3 Summary

In this chapter, we have put this dissertation, and Moessner’s sieve, into a

historical context by reviewing the work which has gone before it.

To summarize the related work covered in this chapter, we first reviewed

the algebraic approaches to Moessner’s sieve, starting with Moessner’s orig-

inal conjecture followed by a selection of its generalizations – most notably

those by Long. These generalizations demonstrated a range of significant

properties of Moessner’s sieve and Moessner’s theorem, which were proved

using inductive proof techniques. Besides the inductive contributions, we also

reviewed a series of non-inductive contributions, among which were an ar-

ticle by van Yzeren that created a connection between Horner’s method and

Moessner’s sieve.

As a dual to the first part of the chapter, we reviewed coalgebraic ap-

proaches to Moessner’s sieve in the second part of the chapter. Here, coin-

ductive contributions, made primarily by Rutten and Niqui, introduced and

utilized stream calculus to give precise coinductive proofs of Moessner’s the-

orem and several of the inductive generalizations. Besides the framework of

stream calculus, the section also reviewed several contributions which used

interactive theorem provers, most notably the Coq proof assistant, to reason

about streams and Moessner’s theorem in a computational setting. Of note

is the article by Danvy et al., which coined the term ‘Moessner’s sieve’ while

showing several new properties of it. Hence, we use this article as the starting

point of this dissertation. Lastly, we reviewed non-coinductive contributions

which mainly focused on using generating functions and formal power series

to reason about streams.

Reflecting on the literature covered in this chapter, we observe that Moess-

ner’s sieve is like the elephant being examined by a group of blind scientists;

each group perceives the elephant from their technical perspective, yet it is

the same elephant. Being blind scientists ourselves, but with the benefit of

hindsight, we try not to cover the whole elephant but instead try to charac-

terize the elephant. As such, we conclude that the articles by van Yzeren [44],

Long [22, 23], Niqui and Rutten [29], Danvy et al. [7], and Krebbers et al. [19]

are the pieces of related work most relevant to our goals, since they span sev-

eral generalizations of – and connections to – Moessner’s sieve with a focus on

machine-assisted theorem proving. In particular, we share the same perspec-

tive as Long of wanting to explore the intrinsic beauty of simple mathematical

concepts, which we do on top of the foundation laid by Danvy et al.
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Chapter 3

The Coq proof assistant

A stone cannot fly
Mother cannot fly

Ergo, Mother is a stone!

Ludvig Holberg, Erasmus Montanus

Ah, I see you have the machine that goes ping,
this is my favorite.

Monty Python, The Meaning of Life

We need heuristic reasoning
when we construct a strict proof,

as we need scaffolding
when we erect a building.

George Polya

The goal of this chapter is to give an overview of the Coq proof assistant and

elaborate on the features we use and the approach we take.

The chapter is structured as follows. In Section 3.1, we give an overview

of the Coq proof assistant by emphasizing its main features followed by a

description of some of the most notable contributions made using the Coq

proof assistant, in Section 3.2. Following this, we discuss the set of features

of the Coq language that make up the core of the toolbox we use throughout

the dissertation, in Section 3.3. Lastly, we discuss the specific approach we

take when developing theorems in the Coq proof assistant, in Section 3.4.

15



3.1 An overview of the Coq proof assistant

The Coq proof assistant implements a dependently typed program specifica-

tion and mathematical higher-level language called Gallina that is based on

the calculus of inductive constructions [1, 3], which itself is derived from the

calculus of constructions, invented by Thierry Coquand and Gérard Huet [8].

As such, Coq is founded on the Curry-Howard correspondence [9], which

captures the direct relation between mathematical proofs and computer pro-

grams (proofs-as-programs), and propositions and types (propositions-as-types).

As a result, Coq verifies its proofs using a type-checking algorithm, which

checks that a program (proof) has the correct type (proves the proposition).

Furthermore, Coq provides a tactic language, ltac, that allows semi-automatic

interactive theorem proving by constructing – potentially quite elaborate –

tactics, which can be applied across different proofs.

3.2 The contributions of the Coq proof assistant

As mentioned in the previous section, Coq provides a tactic language which

facilitates the automation of proofs. A notable example, which took great

advantage of this feature, is the formalization and proof of the four-color

theorem by Georges Gonthier’s [11] in 2008. Gonthier’s contribution is par-

ticularly significant because the four-color theorem is notorious for having a

large number of cases that needs to be proved (approximately 10,000), which

could only be done within a system that allows the automation of large parts

of the proof.

However, automation is not Coq’s only strength as shown by Xavier Leroy,

who headed the development of the CompCert C compiler [21], which is

written and verified in Coq and intended for compilation of mission-critical

software written in the C language. While Coq does not itself provide I/O-

capabilities, it can export its definitions to a set of general purpose ML-like

languages, thus providing the ability to create verified software using Coq.

Recently, the emergence of homotopy type theory, a marriage between

homotopy theory of mathematical descendent and type theory of theoretical

computer science descendent, has sparked an increased interest in proof as-

sistants like Coq and Agda, which has resulted in the implementation of the

homotopy type theory in Coq and an accompanying book [43].

Lastly, with this dissertation, we show how the use of a proof assistant

can help us shed new light on an existing subject in mathematics, specifically

Moessner’s sieve, by taking the approach of a computer scientist and explore

the sieve using the computational features of the Coq proof assistant com-

bined with an elementary approach to theorem proving relying on induction

and equational reasoning.

16



3.3 The Coq language

In this section, we cover the main set of features of the Coq language that we

use throughout the dissertation to prove our goals. As such, we discuss the

notation mechanism, inductive types, coinductive types, equality, induction,

and coinduction.

Notation

Coq provides an extendable notation mechanism that allows us to define our

own notation for types and functions. Specifically, we use it to define familiar

notation for constructing lists and streams, along with various infix notations

for list and stream operators, and traditional notation for functions such as

the power function and the binomial coefficient function. We show examples

of this notation in the next sections.

Inductive types

Coq offers a command, Inductive, that allows us to define inductive types

and propostions, such as the built-in inductive type over natural numbers,

Inductive nat : Type :=

| O : nat

| S : nat → nat.

which has a nice accompanying notation that allows us to write natural num-

bers, such as (S (S (S 0))), using conventional Arabic numerals, such as 3.

Furthermore, we can define functions, called Fixpoints, which perform com-

putations on these inductive types by pattern matching on their constructors,

e.g., O and S in case of nat, as can be seen by the following example imple-

mentation of the power function,

Fixpoint power (e b : nat) : nat :=

match e with

| O ⇒ 1
| S e’ ⇒ b ∗ (b ^ e’)
end

where "b ^ e" := (power e b).

where we return 1 if the exponent e was constructed by the base case, O, or

we perform a recursive call if it was constructed by the inductive case, S e’.

Note also the declaration of a new infix notation, where "b ^ e" := (power

e b), inside the definition of the function. Besides the nat type, we also use

the list type extensively,

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A → list A → list A.

for which we extend the current notation,
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Notation " [ ] " := nil : list_scope.

Notation " [ x ] " := (cons x nil) : list_scope.

Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.

Infix "::" := cons (at level 60, right associativity) : list_scope.

such that we can construct lists as [...] and use "::" as infix notation for

the list constructor cons.

Coinductive types

Just as we can define inductive types, so can we define coinductive types that

allows us to define infinite data structures such as streams,

CoInductive Stream (A : Type) : Type :=

Cons : A → Stream A → Stream A.

Notation "s ::: σ " := (Cons s σ ) (at level 60, right associativity).

which do not need to have a base case, and where we can define corecursive

functions, called CoFixpoints, to perform computations on these infinite data

structures. For example, we can define a function for making Streams like so,

CoFixpoint make_stream (f : nat → nat) (n : nat) : Stream nat :=

n ::: make_stream f (f n).

starting from an initial value n and a function f which is repeatedly applied

on the value n as the stream is constructed.

Equality

For all types, there exists a built-in equivalence relation, Leibniz equality (=),

which captures the minimal reflexive relation,

Inductive eq (A : Type) (x : A) : A → Prop :=

| eq_refl : x = x.

While this relation is sufficient for all inductively defined types, it falls short

for coinductive types as it is too restrictive to be used for proving equivalence

of two infinite data structures. In fact, if we want to capture equality between

two streams constructed by two different procedures, we have to establish a

weaker form of equality called bisimilarity, which is a coinductively defined

predicate,

CoInductive bisimilarity (σ τ : Stream nat) : Prop :=

bisimilar : σ (0) = τ (0) →
σ ′ ∼ τ ′→
σ ∼ τ

where "σ ∼ τ " := (bisimilarity σ τ ).

that relates two streams that are element-wise equal.1 Furthermore, we can

use the Equivalence predicate of the Setoid library to prove that bisimilarity

is an equivalence,

1We use the notation σ(0) to refer to the head of a stream, called the initial value, and we

use σ′ to refer to the tail of a stream, called the stream derivative.
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Global Instance bisimilar_equivalence :

Equivalence bisimilarity.

which allows us to perform basic substitution for equivalence proofs specified

in terms of bisimilarity. However, in most cases we also need to show that all

procedures that operate on streams respect bisimilarity, which is captured by

the Proper proposition of the Morphisms library and looks like this,

Global Instance Cons_proper :

Proper (eq =⇒ bisimilarity =⇒ bisimilarity) (@Cons nat).

Global Instance hd_proper :

Proper (bisimilarity =⇒ eq) (@hd nat).

Global Instance tl_proper :

Proper (bisimilarity =⇒ bisimilarity) (@tl nat).

for the basic selectors, Cons, hd, and tl, of the Stream type. The concepts of

bisimilarity, Equivalence, and Proper are discussed further in Chapter 4,

where we introduce our stream calculus.

Induction

Another important property of inductively defined types in Coq is the auto-

matic definition of an induction principle for the defined type. For example,

when defining the nat type we automatically define the type,

nat_rect : ∀ P : nat → Type,

P O →
(∀ (n : nat), P n → P (S n)) →
(∀ (n : nat), P n).

which captures the induction principle of natural numbers, consisting of

a base case P O, and an inductive case (∀ (n : nat), P n → P (S n)),

which needs to be proved in order to obtain the goal (∀ (n : nat), P

n). Furthermore, Coq provides a high-level convenience tactic, induction,

as syntactic sugar on top of the fix tactic, which makes induction proofs

pleasant to work with.

Coinduction

Just as in the case of equality, we do not get the same features for free as we

do in the inductive case. As such, we do not get any automatic coinduction

principle or convenience tactic when defining a coinductive type. Instead, we

have to use the low-level cofix tactic which does not report any violation

of the guardedness principle when constructing the proof of the bisimilarity

proposition – it postpones the verification check until the Qed keyword. This

can easily lead to a frustrating experience for any non-trivial proof, thus we

adopt the newly developed third party library paco by Hur et al. [17] that

provides an alternative coinduction tactic, pcofix, which adds safeguards to
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coinduction proofs such that any violations of the guardedness principle is

reported immediately and disallowed. However, using this package requires

us to first define a generating function for bisimilarity,

Inductive bisimilarity_gen bisimilarity :

Stream nat → Stream nat → Prop :=

| _bisimilarity_gen :

∀ (σ τ : Stream nat)

(R_initial_values : σ (0) = τ (0))

(R_stream_derivatives : (bisimilarity (σ ′) (τ ′) : Prop)),

bisimilarity_gen bisimilarity σ τ .

which exhibit a similar structure to the coinductive bisimilarity relation we

defined above. If we then apply our generating function bisimilarity_gen

to the library function paco2,

Definition bisimilarity (σ τ : Stream nat) : Prop :=

paco2 bisimilarity_gen bot2 σ τ .

Infix "∼ " := bisimilarity (at level 70, no associativity).

we obtain an alternative version of the bisimilarity relation. With this relation

defined, we can use the new pcofix tactic as a safe version of the traditional

cofix tactic, without further issues.

Since, the paco library is solving a mainly technical issue in the context of

our thesis, we will not go into further details with the theory behind it. Hence,

when we define bisimilarity again in Chapter 4, we introduce the traditional

version of bisimilarity defined as a CoInductive relation.

Having covered the set of features that define the subset of Coq we use in

this dissertation, we move on to discuss our approach to constructing proofs

in the Coq proof assistant.

3.4 An elementary approach

to interactive theorem proving

In this dissertation, we take an elementary approach to interactive theorem

proving in Coq, by using a minimal set of tactics and proofs. Specifically,

we rely almost exclusively on equational reasoning combined with induction

and coinduction, which makes our proofs accessible to people with a basic

understanding of mathematics and Coq, while still managing to prove new

mathematical results.

Furthermore, we do not rely on heavy automation or composite tactics

like simpl and auto, but instead take an atomic approach where every step

is clearly specified, thus providing a thorough documentation of how every

proof is carried out. This has the added advantage that the Coq scripts end up

spelling out every immediate dependency between proofs, which allows us to

write a Python script that constructs dependency graphs for every Coq script,

by parsing them. As a result, we present a dependency graph at the end of
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each chapter that reflects the scripts associated with the specific chapter. As

such, we model every proof as a round node having a directed edge to every

proof that depends on it, and fill every node representing a Theorem with

purple to emphasize the most significant proofs of every chapter.

Lastly, for every Definition, Fixpoint, and CoFixpoint in our proof

scripts, we define so-called unfolding lemmas that describe each possible case

of the body of a function. For example, in the case of the power function de-

fined previously, we have the following two unfolding lemmas,

Lemma unfold_power_base_case :

∀ b : nat,
b ^ 0 = 1.

and

Lemma unfold_power_induction_case :

∀ b e’ : nat,
b ^ (S e’) = b ∗ (b ^ e’).

corresponding to the cases e = O and e = S e’. As a result, we actively avoid

the use of the unfold tactic outside of our unfolding lemmas, which turns our

unfolding lemmas into an interface that allows us to redefine power as long

as it satisfies the two unfolding lemmas.

Thus, we have now given an overview of the Coq proof assistant, emp-

hazied some of the major contributions made with it, put our work into a

Coq context, and described the features and tools we use to obtain our results

along with the approach we use for obtaining these.

3.5 Summary

In this chapter we have given an overview of the Coq proof assistant and

elaborated on the features we use and the approach we take for interactive

theorem proving.

Specifically, we have described the underlying logic of the Coq proof as-

sistant and some of the major contributions made using it. Furthermore, we

have discussed the notation, the types (inductive and coinductive), and a few

advanced features of the Coq ecosystem we use to establish the foundation

on which we build our proofs. Lastly, we have described the elementary ap-

proach we take when working with Coq, which emphasizes the potential of

Coq to facilitate the structural approach of computer scientists to prove new

theorems in areas traditionally reserved for mathematicians.

21



22



Chapter 4

Lists and streams

A programmer must be able
to express himself extremely well,

both in a natural language
and in the formal systems.

Edsger W. Dijkstra, 1973 (EWD361)

In this chapter, we establish a list calculus and a stream calculus that we

use throughout the dissertation as a solid foundation on which to construct

many of our proofs. Furthermore, we introduce procedures for generating

the traditional version of Moessner’s sieve working on streams.

The chapter is structured as follows. In Section 4.1 we define our list

calculus consisting of a list type including a set of selectors, constructors and

operators. Dually, we define our stream calculus in Section 4.2 along with a

version of Moessner’s sieve working on streams in Section 4.3.

4.1 List calculus

In this section, we define a list calculus composed of a list type together with

a set of list selectors, constructors and operators that acts as the foundation

for much of our inductive reasoning on Moessner’s sieve. First, we define the

basics of our calculus, i.e., the list type and its selectors and constructors,

followed by a range of list operators such as list_map and list_zip.

4.1.1 List basics

In order to construct our list calculus, we start by defining exactly what we

mean by a list. As such, we define a list to either be the empty list or an

element followed by a list. Formalizing this description, we get the inductive

type list,
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Inductive list (A : Type) : Type :=

| nil : list A

| cons : A → list A → list A.

whose base case is the empty list, denoted nil, and whose inductive case is an

element followed by a list, captured by the constructor cons. Furthermore,

we adopt the notation of writing a list as a set of brackets [...],

Notation " [ ] " := nil : list_scope.

Notation " [ x ] " := (cons x nil) : list_scope.

Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.

Infix "::" := cons (at level 60, right associativity) : list_scope.

along with the infix notation for cons, ’::’, which provides a more readable

notation for specifying lists.

Now that we can construct lists, we proceed by defining selectors which

destruct elements of the list type by pattern matching on their structure. As

a dual to cons, which takes an element and a list and constructs a new list,

we define the selector hd,

Definition hd {A : Type} (d : A) (xs : list A) : A :=

match xs with

| [] ⇒ d
| x :: _ ⇒ x
end.

which takes a list, xs, and returns its head, if it exists, and the selector tl,

Definition tl {A : Type} (xs : list A) : list A :=

match xs with

| [] ⇒ []
| _ :: xs’ ⇒ xs’
end.

which takes a list, xs, and returns its tail. We are now able to get the

nth element of a list by applying tl n times on that list followed by an

application of hd. However, such a definition is a bit inconvenient in a Coq

context, so instead we have to merge the logic of the two functions, hd and

tl, into the following selector,

Fixpoint nth {A : Type} (n : nat) (xs: list A) (d : A) : A :=

match n, xs with

| O, x :: xs’ ⇒ x
| O, [] ⇒ d
| S n’, [] ⇒ d
| S n’, x :: xs ⇒ nth n’ xs’ d
end.

which takes an element index, n, a default value, d, and a list, xs, and

returns the nth element of xs, if it exists.

Just as we can take the nth element, we can also define a method which

returns the last element of a given list,
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Fixpoint last {A : Type} (xs: list A) (d : A) : A :=

match xs with

| [] ⇒ d
| [x] ⇒ x
| x :: xs ⇒ last xs d
end.

and similarly we can remove the last element of a list, xs,

Fixpoint removelast {A : Type} (xs : list A) : list A :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: xs ⇒ x :: removelast xs
end.

by creating a new list containing all but the last element. Furthermore, we

can also count the length of a list, xs,

Fixpoint length {A : Type} (xs : list A) : nat :=

match xs with

| [] ⇒ O
| _ :: xs’ ⇒ S (length xs’)
end.

and append one list, ys, to another list, xs,

Fixpoint app {A : Type} (xs ys : list A) : list A :=

match xs with

| [] ⇒ ys
| x :: xs’ ⇒ x :: app xs’ ys
end.

Infix "++ " := app (right associativity, at level 60) : list_scope.

where we use ’++’ to denote infix appending of lists. Using app, we can also

reverse a list, xs,

Fixpoint rev {A : Type} (xs : list A) : list A :=

match xs with

| [] ⇒ []
| x :: xs’ ⇒ rev xs’ ++ [x]
end.

and prove that the first element of a reversed list is equal to the last element,

Lemma nth_rev_eq_last :

∀ (xs : list nat) (d : nat),
nth 0 (rev xs) d =

last xs d.

which we do by induction on the structure of the list, xs, i.e., by proving

that the property holds for the base case of the empty list, [], and for the

inductive case of an element followed by a list, x :: xs’.
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Lastly, we can define a procedure for constructing a list given a set of ar-

guments, rather than having to construct the list by hand using cons. Specifi-

cally, we define a procedure, make_list, which takes a length, n, a seed value,

i, and a progress function, f, for which it then constructs the list by repeat-

edly applying f on i, for each recursive call made to the procedure. We can

translate this description into the following Fixpoint,

Fixpoint make_list (n i : nat) (f : nat → nat) : list nat :=

match n with

| 0 ⇒ []
| S n’ ⇒ i :: (make_list n’ (f i) f)
end.

which we use to define procedures for constructing a list of constants,

Definition list_constant (n c : nat) : list nat :=

make_list n c (λ x : nat ⇒ x).

and a list of successive values,

Definition list_successor (n i : nat) : list nat :=

make_list n i S.

allowing us to prove properties about make_list that we then get for free for

all procedures defined in terms of make_list.

Having covered the list type and its selectors and constructors, we pro-

ceed by introducing a series of list procedures, which we call list operators,

that manipulate all elements of a list, such as the familiar map and zip

procedures.

4.1.2 List operators

The first list operator we define is list_map,

Fixpoint list_map (f : nat → nat) (xs : list nat) : list nat :=

match xs with

| [] ⇒ xs
| x :: xs’ ⇒ (f x) :: (list_map f xs’)
end.

which applies a function, f, on all elements of a list, xs, thus providing

a generic base on which to define a range of procedures, as in the case of

make_list. As a result, we can define scalar multiplication for lists in terms

of list_map,

Definition list_scalar_multiplication (k : nat)

(xs : list nat) : list nat :=

list_map (mult k) xs.

Notation "k ⊗ xs" := (list_scalar_multiplication k xs)
(at level 40, left associativity).

such that f is the partial application (mult k), and k is the natural number

we multiply with every element of the list, xs.
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Going from applying a function on one list, using list_map, we move on

to define a procedure which merges two lists using a function, list_zip,

Fixpoint list_zip (f : nat → nat → nat)

(xs ys : list nat) : list nat :=

match xs, ys with

| xs, [] ⇒ xs
| [], ys ⇒ ys
| x :: xs’, y :: ys’ ⇒ (f x y) :: (list_zip f xs’ ys’)
end.

allowing us to define common procedures such as element-wise addition,

Definition list_sum (xs ys : list nat) : list nat :=

list_zip plus xs ys.

Infix "⊕ " := list_sum (at level 50, left associativity).

and element-wise multiplication,

Definition list_product (xs ys : list nat) : list nat :=

list_zip mult xs ys.

Infix "⊙ " := list_product (at level 40, left associativity).

for a pair of lists, xs and ys.

Lastly, we define two operators for partially summing a list; one with an

accumulator, a,

Fixpoint list_partial_sums_acc (a : nat) (xs : list nat) : list nat :=

match xs with

| [] ⇒ []
| x :: xs’ ⇒ (x + a) :: (list_partial_sums_acc (x + a) xs’)
end.

and one initialized to 0,

Definition list_partial_sums (xs : list nat) : list nat :=

list_partial_sums_acc 0 xs.

defined in terms of the first.

This concludes the introduction of our list calculus, which is the first piece

of the foundation we need in order to do proper reasoning about Moessner’s

sieve and its dual in the later chapters. As a dual to the list calculus, our next

step is to define an equivalent stream calculus, which becomes the second

large piece of the foundation on which we build our reasoning.

4.2 Stream calculus

Analogously to the previous section, we now define a stream calculus com-

posed of a stream type together with a set of stream selectors, constructors

and operators that constitute the second part of our proof foundation of a list

and stream calculus.
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In the first section, we define the basics of streams consisting of the Stream

type, its selectors and constructors. However, before we define our stream op-

erators, we first have to define stream equality, called bisimilarity, as streams

are a coinductive data type that requires us to define our own measure of

equality to reason about them. Furthermore, we also introduce the coinduc-

tion principle which allows us to prove properties over streams by induction

on their element indices. Lastly, we introduce analogous stream operators to

the operators we have already introduced for lists.

4.2.1 Stream basics

Just as we started the introduction of our list calculus by defining the list

type, so do we start our stream calculus by defining the Stream type. We

define a stream to be a coinductive type which has no base case, but only a

coinductive case where a stream is constructed by adding an element onto an

existing stream. This description yields the following formalization,

CoInductive Stream (A : Type) : Type :=

Cons : A → Stream A → Stream A.

Notation "s ::: σ " := (Cons s σ ) (at level 60, right associativity).

where Cons is the single constructor of a Stream. Analogously to the list

case, we define an infix notation for Cons, ’:::’, which provides a more

convenient notation for writing Streams.

In the same way as we defined selectors for getting the head and tail of a

list, we now define selectors for destructing Streams. As such, we introduce

the selectors hd and tl,

Definition hd {A : Type} (σ : Stream A) :=

match σ with

| s ::: _ ⇒ s
end.

Definition tl {A : Type} (σ : Stream A) :=

match σ with

| _ ::: σ ’ ⇒ σ ’

end.

which return the head and tail of a Stream. Being influenced by the stream

calculus defined by Rutten [38], we adopt its notation and vocabulary by

referring to the head of a Stream as its initial value, written σ(0), and the tail

as its stream derivative, written σ′,

Notation "σ (0)" := (hd σ ) (at level 8, left associativity).

Notation "σ ′" := (tl σ ) (at level 8, left associativity).

Using this notation, we can write the decomposition of a Stream as,

Lemma decompose_Stream :

∀ (σ : Stream nat),

σ = σ (0) ::: σ ′.
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which provides a clear syntax for unfolding a Stream into its initial value and

stream derivative.

Similar to the list type, we also want to be able to get the nth element

of a Stream. However, this time we first define a procedure, Str_nth_tl, that

returns the nth tail, or stream derivative, of a Stream,

Fixpoint Str_nth_tl {A : Type} (n : nat) (σ : Stream A) : Stream A :=

match n with

| O ⇒ σ

| S n’ ⇒ Str_nth_tl n’ σ ′

end.

with which we define Str_nth as the initial value of Str_nth_tl,

Definition Str_nth {A : Type} (n : nat) (σ : Stream A) : A :=

(Str_nth_tl n σ )(0).

Lastly, we want to define the Str_prefix procedure, which establishes a

connection between our list calculus and stream calculus, by returning the

prefix of a Stream as a list,

Fixpoint Str_prefix (n : nat) (σ : Stream nat) : list nat :=

match n with

| 0 ⇒ []
| S n’ ⇒ σ (0) :: (Str_prefix n’ σ ′)

end.

The three selectors defined above, Str_nth_tl, Str_nth, and Str_prefix,

form a powerful trio as they provide three different ways of reasoning about

Streams – a point we make again in Section 4.2.3, when covering the coinduc-

tion principle.

Completely analogous to the list constructors of the previous section, we

define a corecursive function for creating a Stream based on a seed value, n,

and a progress function, f,

CoFixpoint make_stream (f : nat → nat) (n : nat) : Stream nat :=

n ::: make_stream f (f n).

With this, we define a constant stream,

Definition stream_constant (c : nat) : Stream nat :=

make_stream (λ x : nat ⇒ x) c.
Notation "# c" := (stream_constant c) (at level 4, left associativity).

where we use ’#’ as an abbreviation for stream_constant, and a successor

procedure,

Definition stream_successor (i : nat) : Stream nat :=

make_stream S i.

that is dual to list_successor.

Having defined the basics of the Stream type, we take a slight detour to

discuss stream equality and the coinduction principle before introducing our

set of stream operators.
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4.2.2 Stream equality

While we are able to prove lemmas such as decompose_Stream, which states

that a Stream is equal to the composition of its initial value and stream deriva-

tive, we are not immediately able to prove that two streams that are created by

two different procedures, yet behave in the same way, are equal. The reason

for this is that Leibniz equality (=) captures a structural equivalence, e.g., we

can observe that two inductively defined lists are structurally equivalent by

traversing them and checking that each of their members are equal, which we

cannot do for coinductively defined streams as they are infinite. Instead, we

can observe that two streams produce the same elements whenever we ask

for the next one. Thus, we can define a slightly weaker measure of equiva-

lence, named bisimilarity (∼), which captures the behavioral equivalence of

two streams. As such we define two streams, σ and τ, to be bisimilar if their

initial values, σ(0) and τ(0), are Leibniz equivalent, as we expect these to be

nats, and their stream derivatives, σ′ and τ′, are bisimilar,

CoInductive bisimilarity (σ τ : Stream nat) : Prop :=

bisimilar : σ (0) = τ (0) →
σ ′ ∼ τ ′→
σ ∼ τ

where "σ ∼ τ " := (bisimilarity σ τ ).

Just as we can use induction to prove that two lists are equal, by showing that

their base cases and their inductive cases are Leibniz equivalent, so can we

use coinduction to prove that two streams are bisimilar, by showing that their

initial values are Leibniz equivalent and their stream derivatives are bisimilar.

Taking a step back, we can even define what we mean by a bisimulation,

Definition bisimulation (R : relation (Stream nat)) : Prop :=

∀ (σ τ : Stream nat),

R σ τ → σ (0) = τ (0) ∧ R σ ′τ ′.

which is a relation, R, over two streams, σ and τ, for which their initial val-

ues are Leibniz equivalent, σ(0) = τ(0), and their stream derivatives are

inhabitants of the relation, R σ′ τ′. Consequently, we can now prove that our

bisimilarity relation is indeed a bisimulation,

Lemma bisimilarity_is_a_bisimulation :

bisimulation bisimilarity.

by destructing the definition of bisimilarity from which the bisimulation

implication,

∀ σ τ : Stream nat,

σ ∼ τ → σ (0) = τ (0) ∧ σ ′∼ τ ′

follows trivially. Lastly, we can prove that for any relation R, which is itself

a bisimulation, it follows that two streams which inhabit the relation R are

also bisimilar,
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Lemma bisimulation_implies_bisimilarity :

∀ (R : relation (Stream nat)),
bisimulation R → ∀ (σ τ : Stream nat), R σ τ → σ ∼ τ .

The implication can be proved using coinduction, and by destructing the hy-

pothesis (bisimulation R). Lastly, we can combine the two lemmas above

and prove the bisimulation principle,

Theorem bisimulation_principle :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ ∃ (R : relation (Stream nat)), bisimulation R ∧ R σ τ .

which states that two streams, σ and τ, are bisimilar if and only if there exists

a relation R, such that R is a bisimulation in which σ and τ are inhabitants.

While Leibniz equality allows us to substitute y for x if we have proved

x = y, we are not so fortunate when it comes to our newly defined

bisimilarity relation. In order to use it as we would with Leibniz equal-

ity, we have to prove that the bisimilarity relation is indeed an Equivalence,

Global Instance bisimilar_equivalence :

Equivalence bisimilarity.

which is done by proving that bisimilarity is reflexive, symmetric, and

transitive,

Theorem bisimilarity_is_reflexive :

∀ (σ : Stream nat),

σ ∼ σ .

Theorem bisimilarity_is_symmetric :

∀ (σ τ : Stream nat),

σ ∼ τ → τ ∼ σ .

Theorem bisimilarity_is_transitive :

∀ (σ τ ρ : Stream nat),

σ ∼ τ → τ ∼ ρ → σ ∼ ρ .

Each of the three theorems is proved by coinduction and destructing the

bisimilarity hypothesis into equivalence proofs of the initial values and stream

derivatives.

Besides proving that our bisimilarity relation is indeed an equivalence,

we also have to prove that all procedures which operate on streams, respect

bisimilarity. A stream operator respects bisimilarity if two streams that

are bisimilar before an application of the stream operator, are also bisimilar

afterwards. For example, we state that Cons, hd, and tl all respect bisimilar-

ity,

Global Instance Cons_proper :

Proper (eq =⇒ bisimilarity =⇒ bisimilarity) (@Cons nat).

Global Instance hd_proper :

Proper (bisimilarity =⇒ eq) (@hd nat).
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Global Instance tl_proper :

Proper (bisimilarity =⇒ bisimilarity) (@tl nat).

using the Proper predicate, and prove it using coinduction. Going into further

details about respectfulness proofs are outside the scope of this dissertation,

and hence we do not mention them beyond this paragraph.

Having introduced a Stream equality measure, bisimilarity, and proved

that it is a bisimulation and an Equivalence, which allows us to rewrite with

the proofs of bisimilarity between two streams, we prove the coinduction

principle as our next step, which states a relation between bisimilarity and

element-wise equality.

4.2.3 The coinduction principle

We now prove the coinduction principle which states that if two streams are

bisimilar then they are also element-wise equal,

Theorem bisimilarity_iff_Str_nth :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ (∀ (n : nat), Str_nth n σ = Str_nth n τ ).

where element-wise equality is represented by Str_nth. Proving the implica-

tion from left to right,

Lemma bisimilarity_implies_Str_nth :

∀ (n : nat) (σ τ : Stream nat),

σ ∼ τ → Str_nth n σ = Str_nth n τ .

is done by induction on the element index, n, and destructing the hypothesis,

while the implication from right to left,

Lemma Str_nth_implies_bisimilarity :

∀ (σ τ : Stream nat),

(∀ (n : nat), Str_nth n σ = Str_nth n τ ) → σ ∼ τ .

is done by coinduction and applying the hypothesis of element-wise equality.

Besides proving that two streams are bisimilar if and only if every element

of the two streams are equal, we can also prove that two streams are bisimilar

if and only if all their tails, or stream derivatives, are bisimilar,

Theorem bisimilarity_iff_Str_nth_tl :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ (∀ (n : nat), Str_nth_tl n σ ∼ Str_nth_tl n τ ).

Since both sides of the

proposition consists of bisimilarities,

Lemma bisimilarity_implies_Str_nth_tl :

∀ (n : nat) (σ τ : Stream nat),

σ ∼ τ → Str_nth_tl n σ ∼ Str_nth_tl n τ .

Lemma Str_nth_tl_implies_bisimilarity :

∀ (σ τ : Stream nat),

(∀ (n : nat), Str_nth_tl n σ ∼ Str_nth_tl n τ ) → σ ∼ τ .
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we can prove them both using coinduction. However, for the first case we

also rely on bisimilarity_implies_Str_nth to prove the equality of the two

initial values and likewise rely on tl_nth_tl,

Lemma tl_nth_tl :

∀ (n : nat) (σ : Stream nat),

(Str_nth_tl n σ )′ = Str_nth_tl n σ ′.

when proving that the two stream derivatives are bisimilar.

Lastly, we can prove a relation which connects list equality, represented

by Str_prefix, and Stream equality,

Theorem bisimilarity_iff_Str_prefix :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ (∀ (n : nat), Str_prefix n σ = Str_prefix n τ ).

thus providing a powerful tool for which we can move between an induc-

tive and coinductive world. Again, the implication from Streams to lists

is proved using induction on the prefix length, n, and the implication from

lists to Streams is proved by coinduction.

Having established the above set of equivalence proofs between the differ-

ent approaches to proving stream equality, Str_nth_tl, Str_nth and Str_-

prefix, we are now able to choose the setting that suits our method of attack

the best, e.g., proving a statement with element-wise equality and then use

the coinduction principle, bisimilarity_iff_Str_nth, to obtain the equiv-

alent bisimilarity proof. Furthermore, by being able to go from coinduction

to induction we get all the nice properties of the induction tactic and Leib-

niz equality, which we can otherwise only dream of when using cofix and

bisimilarity.

Now that we have covered stream equality and the coinduction principle,

we are ready to introduce our set of stream operators.

4.2.4 Stream operators

As a dual to the list operators introduced in Section 4.1.2, we now define

similar operators for streams.

Just as we have defined list_map to apply a function, f, on every element

of a list, xs, so can we define stream_map to apply a function, f, on every

element of a Stream, σ,

CoFixpoint stream_map (f : nat → nat)

(σ : Stream nat) : Stream nat :=

f σ (0) ::: stream_map f σ ′.

Similarly, if we let f be the partial application (mult k), where k is a natural

number, we obtain scalar multiplication for streams,

Definition stream_scalar_multiplication (k : nat)

(σ : Stream nat) : Stream nat :=

stream_map (mult k) σ .
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Notation "k ⊗ σ " := (stream_scalar_multiplication k σ )

(at level 40, left associativity).

Furthermore, we also define a zip procedure for streams,

CoFixpoint stream_zip (f : nat → nat → nat)

(σ τ : Stream nat) : Stream nat :=

f σ (0) τ (0) ::: stream_zip f σ ′τ ′.

which merges two streams, σ and τ, using a function, f, that takes two natural

numbers. Letting f be the function plus we get the stream_sum procedure,

Definition stream_sum (σ τ : Stream nat) : Stream nat :=

stream_zip plus σ τ .

Infix "⊕ " := stream_sum (at level 50, left associativity).

and if we let f be mult we get the stream_product procedure,

Definition stream_product (σ τ : Stream nat) : Stream nat :=

stream_zip mult σ τ .

Infix "⊙ " := stream_product (at level 40, left associativity).

resulting in a familiar set of stream operators analogous to those for lists and

natural numbers.

As before, we also define two partial summation functions for streams,

CoFixpoint stream_partial_sums_acc (a : nat)

(σ : Stream nat) : Stream nat :=

σ (0) + a ::: stream_partial_sums_acc (σ (0) + a) σ ′.

and

Definition stream_partial_sums (σ : Stream nat) : Stream nat :=

stream_partial_sums_acc 0 σ .

which are dual to the existing list versions.

While we use a lot of properties of the different list and stream operators

throughout the proofs of this dissertation, we first introduce these properties

when they become relevant.

Now that we have introduced a stream calculus, which act as the dual of

our list calculus, we finish the chapter by defining Moessner’s sieve working

on streams.

4.3 Moessner’s sieve working on streams

In order to define Moessner’s sieve working on streams, we take a step back

and go over the description of the traditional Moessner’s sieve working on

a sequence of values. Moessner’s sieve is a procedure which takes an initial

sequence of values and a natural number, n, and generates a corresponding

result sequence of successive powers, by dropping every nth element of the

initial sequence and partially summing the remaining elements into a new

sequence. This step of dropping and partially summing is repeated n − 1
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times on the intermediate result sequences, where n is decreased by 1 for

each iteration; the sieve stops when n reaches 1. We refer to n as the rank of

the sieve. For example, the application of Moessner’s sieve of rank 5 on the

sequence of 1s yields a result sequence of powers of 4,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 3 6 11 17 24 33 43 54 . . .

1 4 15 32 65 108 . . .

1 16 81 . . .

(4.1)

where we have marked the elements which are dropped in the sieve with

boldface, and arranged the intermediate sequences to be aligned with the

initial sequence.

If we are to translate the above description into Coq, we start by repre-

senting the sequence of values as a Stream of nats, and use the procedure

stream_partial_sums for partially summing the elements not dropped in a

step of the sieve. This still leaves the dropping part of the sieve step to be

formalized, as such we define the stream operator drop,

CoFixpoint drop (i k : nat) (σ : Stream nat) : Stream nat :=

match i with

| 0 ⇒ (σ ′)(0) ::: drop (k - 2) k σ ′ ′

| S i’ ⇒ σ (0) ::: drop i’ k σ ′

end.

which partitions a Stream into blocks of size k and drops the ith element,

indexed from 0, of every block. By combining drop and stream_partial_-

sums, we can define the sieve_step procedure,

Definition sieve_step (i k : nat) (σ : Stream nat) :=

stream_partial_sums (drop i k σ ).

which performs one step of dropping and partially summing as described

above. Now, by repeating the application of sieve_step n times, we can

define the sieve procedure,

Fixpoint sieve (i k n : nat) (σ : Stream nat) : Stream nat :=

match n with

| 0 ⇒ sieve_step i k σ

| S n’ ⇒ sieve_step i k (sieve (S i) (S k) n’ σ )

end.

which performs Moessner’s sieve when given a pair of initial values for the

drop indices, i and k, along with the rank, n, and a seed stream, σ. We note

that in the definition of sieve the initial values of i and k denotes the size

and drop index of the last application of sieve_step, as we increment these

for every recursive call. To illustrate this, we can translate the above example

of applying Moessner’s sieve of rank 5 on a sequence of 1s into,

Str_prefix 3 (sieve 1 2 3 #1) = [1; 16; 81].
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where i = 1 and k = 2, meaning that we partition the second-to-last stream,

returned from the recursive call to sieve, into blocks of size 2 where we drop

the second element. This corresponds to the last two sequences of Figure 4.1,

1 4 15 32 65 108 . . .

1 16 81 . . .

Lastly, we note that the rank, n, passed to sieve is 3 instead of 5, which is the

cause of two things,

1. We apply sieve_step even in the base case of sieve where n = 0, and

2. we do not drop the values of the final result stream,

hence the difference of 2 between the rank value passed to sieve and the one

applied in Figure 4.1.

Having defined the traditional version of Moessner’s sieve working on

streams, we are now ready to explore its dual in the next chapter, where we

further analyze the operational description of Moessner’s sieve.

4.4 Summary

In this chapter, we have established a list calculus and a stream calculus that

constitute the foundation on which we build many of our later proofs, as

the underlying mechanics of Moessner’s sieve and its dual reduces to opera-

tions on lists and streams. Furthermore, we have introduced a procedure for

generating the traditional version of Moessner’s sieve working on streams.

The constructed list calculus consists of a list type along with a range of

selectors, constructors, and operators, which allows us to examine individual

elements of a list, create new lists from scratch or create new lists out of

existing ones. Dually, the constructed stream calculus consists of a Stream

type having the same types of selectors, constructors, and operators, but also

its own notion of equality, called bisimilarity, as traditional Leibniz equality

is too strict for proving equality between (most) coinductive types. Lastly,

the version of Moessner’s sieve working on streams is defined as a recursive

procedure which repeatedly applies a composite stream operator consisting

of a drop and partial summation operation.
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Dependency graph of the proofs introduced in Chapter 4. Note the small clus-

ter of theorems at the top of the graph defining the bisimilarity equivalence,

and the density at the center of the graph reflecting the interdependence of

our basic set of selectors, constructors and operators.
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Chapter 5

A dual to Moessner’s sieve

The poet doesn’t invent.
He listens.

Jean Cocteau

The goal of this chapter is to introduce a dual to Moessner’s sieve that sim-

plifies the initial configuration of Moessner’s sieve, by starting from two seed

tuples instead of a stream, and creates a sequence of Moessner triangles, each

constructed column by column, instead of a stream of successive powers, con-

structed row by row.

The chapter is structured as follows. In Section 5.1, we motivate the re-

definition of Moessner’s sieve as a procedure for generating a sequence of

so-called Moessner triangles, instead of a stream of successive powers. As a

result, we introduce two triangle creation procedures, which construct indi-

vidual Moessner triangles either row by row or column by column, and prove

equivalence between the two procedures. In Section 5.2, we first show how

our triangle creation procedures give rise to a new and simpler initial con-

figuration of Moessner’s sieve, which we then use as inspiration for the final

formalization of the dual of Moessner’s sieve.

5.1 From streams to triangles

In this section, we first motivate the idea of looking at Moessner’s sieve as

a procedure for generating a sequence of Moessner triangles, as opposed to

a stream of successive powers, and then formalize the core operation of the

sieve that creates the individual Moessner triangles.

5.1.1 Generating a sequence of triangles with Moessner’s sieve

In order to motivate the idea of redefining Moessner’s sieve as a procedure

for generating a sequence of Moessner triangles, we start by looking at an

example application of Moessner’s sieve working on streams.

39



Given a stream of 1s, let us apply Moessner’s sieve of rank 5 on it,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 3 6 11 17 24 33 43 54 . . .

1 4 15 32 65 108 . . .

1 16 81 . . .

(5.1)

which yields the stream of successive powers of 4 (the rank minus one). As

seen from this description, we traditionally view Moessner’s sieve as a pro-

cedure which takes a seed stream consisting of an arithmetic progression, as

first shown by Long [22], and returns a result stream of successive powers, by

repeatedly dropping and partially summing the elements of the seed stream.

Now, instead of focusing solely on the elements of the result stream, we want

to view Moessner’s sieve as generating a sequence of triangles, each of which

we call a ‘Moessner triangle’. The Moessner triangles appear as a result of

preserving the alignment of the entries of the intermediate result streams in

Moessner’s sieve, while performing the repeated dropping of elements, as

seen in Figure 5.1. Hence, we can pick the first triangle created in the above

example,

[1 1 1 1 1]

[1 2 3 4]

[1 3 6]

[1 4]

[1]

(5.2)

and describe it as a set of tuples, marked by [. . . ], which translates to the

following notation in Coq,

Notation tuple := (list nat).

Notation triangle := (list tuple).

that we use throughout the dissertation when referring to Moessner triangles

in the context of Moessner’s sieve. Lastly, we say that a Moessner triangle’s

rank is equal to its depth minus one - or one less than the drop index of

Moessner’s sieve - and therefore the Moessner triangles of Formula 5.1 all

have rank 4.

Thus, we have now defined what we mean by a Moessner triangle in

the context of Moessner’s sieve and defined a notation for the triangle and

tuple types. In the next sections, we define procedures for creating individual

tuples and combining them into triangles.

5.1.2 Make tuple

Before defining our make_tuple procedure, we first return to the triangles in

Figure 5.1 and observe that we can view each of them as being constructed

from two seed tuples: a horizontal seed tuple corresponding to a slice of the

seed stream, and a vertical seed tuple corresponding to the dropped elements,
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marked with boldface, of the previous triangle. For example, the triangle

shown in Figure 5.2 can be seen as the result of adding a horizontal seed tuple

of 1s and a vertical seed tuple of 0s, since no elements have been dropped

before the first triangle,

[1 1 1 1 1]

↓ ↓ ↓ ↓

0 → [1 → 2 → 3 → 4]

↓ ↓ ↓

0 → [1 → 3 → 6]

↓ ↓

0 → [1 → 4]

↓

0 → [1]

0

(5.3)

From Figure 5.3, we notice that the rows and columns of the triangle are

created in the exact same fashion – as the partial sums of the previous row/-

column together with an accumulator. Specifically, the rth horizontal tuple

(row) of the result triangle is created by partially summing all but the last en-

try of the (r − 1)th horizontal tuple, while using the rth value of the vertical

seed tuple as the accumulator value. For example, we can obtain the second

horizontal tuple, [1, 3, 6], of the result triangle, by partially summing the first

horizontal tuple, [1, 2, 3, 4],

1 2 3 4

↓ ↓ ↓

0 → 1 → 3 → 6

where we ignore the last element, 4, and use the second entry in the vertical

tuple, 0, as the accumulator for the partial summation. The same approach

can be used for obtaining the cth vertical tuple (column) by partially summing

the (c− 1)th vertical tuple. This is also the reason why we have added an extra

0 in the initial vertical seed tuple - to ensure symmetry with respect to this

procedure. By reducing Moessner’s sieve to this core operation, which works

for both rows and columns, we can translate our description above into the

following Coq Fixpoint,

Fixpoint make_tuple (xs : tuple) (a : nat) : tuple :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: (_ :: _) as xs’ ⇒
let a’ := x + a

in a’ :: make_tuple xs’ a’

end.
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which takes a tuple, xs, and a natural number, a, as the accumulator, and

returns a new tuple as already described.

As discussed above, the main operation of make_tuple is partial summa-

tion which leads us to state equivalence relations between make_tuple and

our existing partial summation functions, stream_partial_sums_acc and

list_partial_sums_acc,

Theorem equivalence_of_make_tuple_and_stream_partial_sums_acc :

∀ (l’ a : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l’) σ ) a =

Str_prefix l’ (stream_partial_sums_acc a σ ).

and

Theorem equivalence_of_make_tuple_and_list_partial_sums_acc :

∀ (xs : tuple) (a : nat),
make_tuple xs a =

removelast (list_partial_sums_acc a xs).

The proof of equivalence_of_make_tuple_and_stream_partial_sums_acc

is done by induction on l’, which is the length of the prefix of the stream be-

ing partially summed. Likewise, the proof of equivalence_of_make_tuple_-

and_list_partial_sums_acc is done by structural induction on the tuple xs.

Having defined a procedure for creating tuples, corresponding to individ-

ual rows or columns in a Moessner triangle, we move on to define procedures

for creating a whole triangle as a list of tuples.

5.1.3 Create triangle

As already mentioned in the previous section, we can construct individual

rows or columns of a Moessner triangle using the same procedure, make_-

tuple, which means that we can create a triangle by either repeatedly ap-

plying make_tuple on the horizontal seed tuple while using the vertical seed

tuple as the list of accumulator values, or vice versa,

[1 1 1 1 1]

↓ ↓ ↓ ↓

0 → [1 → 2 → 3 → 4]

↓ ↓ ↓

0 → [1 → 3 → 6]

↓ ↓

0 → [1 → 4]

↓

0 → [1]

0

[1 1 1 1 1]

↓ ↓ ↓ ↓

0 → 1 → 2 → 3 → 4

↓ ↓ ↓

0 → 1 → 3 → 6

↓ ↓

0 → 1 → 4

↓

0 → 1

0

(5.4)

As a result of this observation, we define two triangle creation procedures that

each take two tuples, xs and ys, corresponding to the horizontal seed tuple

42



and vertical seed tuple, respectively, and repeatedly applies make_tuple on

these. For the first procedure, create_triangle_horizontally, we repeat-

edly create a new tuple, based on the elements of xs, while using the values

of ys as accumulators, and cons the result onto the result tuple. In this way,

xs holds the intermediate result of each recursive call, while the head of ys

is removed for each recursive call. The algorithm terminates when there is

one element or less left in ys and the result of the procedure is a list of

horizontal tuples representing a triangle. Translating the above description

into Coq, we obtain the following Fixpoint,

Fixpoint create_triangle_horizontally (xs ys : tuple) : triangle :=

match ys with

| [] ⇒ []
| [y] ⇒ []
| y :: (_ :: _) as ys’ ⇒
let xs’ := make_tuple xs y

in xs’ :: (create_triangle_horizontally xs’ ys’)

end.

which creates a Moessner triangle in a row by row fashion. For the second

procedure, create_triangle_vertically, we simply switch the roles of the

xs and ys described above, and obtain the dual procedure,

Fixpoint create_triangle_vertically (xs ys : tuple) : triangle :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: (_ :: _) as xs’ ⇒
let ys’ := make_tuple ys x

in ys’ :: (create_triangle_vertically xs’ ys’)

end.

creating the same triangle represented as a list of vertical tuples. The du-

ality of create_triangle_horizontally and create_triangle_vertically

is now evident as the definitions of the two procedures are completely iden-

tical except that the xs and ys have switched roles.

Thus, we have now defined the inner working of the dual of Moessner’s

sieve, specifically the procedure create_triangle_vertically which works

column by column, when creating a Moessner triangle, while the traditional

version of Moessner’s sieve works row by row and is based on streams. Since

we have only observed that the two procedures create the same triangles, we

now move on to prove that this is indeed true.

5.1.4 Equivalence of the two triangle creation procedures

While we have argued that the two triangle creation procedures create the

same Moessner triangles, when given the same input, we have not yet proved

this proposition to be true.
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Before stating our equivalence proof, we first have to make a clear distinc-

tion between the visual representation of the triangles in this chapter and the

representation used in our Coq scripts. As seen in Figure 5.4, we write the

result tuples of the second triangle in a vertical fashion implying a matrix-like

indexing of the triangles. However, for the representation in Coq, we simply

return a list of tuples for both triangle creation procedures, which results in

the procedure create_triangle_vertically actually creating the transposed

triangle of create_triangle_horizontally with respect to indexing,

1 1 1 1 1

↓ ↓ ↓ ↓

0 → [1 → 2 → 3 → 4]

↓ ↓ ↓

0 → [1 → 3 → 6]

↓ ↓

0 → [1 → 4]

↓

0 → [1]

0

0 0 0 0 0

↓ ↓ ↓ ↓

1 → [1 → 1 → 1 → 1]

↓ ↓ ↓

1 → [2 → 3 → 4]

↓ ↓

1 → [3 → 6]

↓

1 → [4]

1

(5.5)

This distinction leads to the following equivalence relation between create_-

triangle_horizontally and create_triangle_vertically,

Theorem equivalence_of_vertical_and_horizontal_triangle_swap :

∀ (xs ys : tuple),
(create_triangle_horizontally xs ys) =

(create_triangle_vertically ys xs).

expressing the symmetric property that swapping the input of one procedure

yields the result of the other, which can be seen in Figure 5.5. The proof of

this theorem is done by structural induction on the second input tuple, ys,

and case analysis on both tuples, xs and ys.

Alternatively, we can also define an equivalence relation in terms of the

indices of the entries of the two triangles,

Theorem equivalence_of_vertical_and_horizontal_triangle_indices :

∀ (i j : nat) (xs ys : tuple),
(length xs) = (length ys) →
(nth i (nth j (create_triangle_horizontally xs ys) []) 0) =

(nth j (nth i (create_triangle_vertically xs ys) []) 0).

where the entry (j,i) of the triangle created by create_triangle_-

horizontally is equal to the entry (i,j) of the triangle created by create_-

triangle_vertically, when given the same input, xs and ys. As a result,

the theorem captures the fact that the created Moessner triangles are each

others transposed. The proof of the theorem is done by induction on the row

and column indices, i and j, along with case analysis on the structure of

the two tuples, xs and ys. Thus, we have now proved that the two triangle
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creation procedures do indeed create the same Moessner triangle when given

the same input, which proves the correctness of the first part of our dual of

Moessner’s sieve.

With the above equivalence proofs in hand, our next step is to formal-

ize the dual of Moessner’s sieve using the dual triangle creation procedure,

create_triangle_vertically, introduced in this chapter.

5.2 The dual of Moessner’s sieve

In this section, we formalize the dual of Moessner’s sieve as a procedure

for creating a list of Moessner triangles, using create_triangle_vertically,

which starts from a minimal initial configuration. Hence, we first make the

case for simplifying the initial configuration of Moessner’s sieve and then

define the procedures which combined yields the dual of Moessner’s sieve.

5.2.1 Simplifying the initial configuration

Before proceeding to state the final dual of Moessner’s sieve, we first inves-

tigate whether our new approach affords a simpler initial configuration of

Moessner’s sieve. Hence, we again turn our attention to the Moessner tri-

angles in Figure 5.5, and notice that the seed tuple containing 1s, in both

triangles, is only a part of the input and not a part of the output, which

we ideally would like in order to properly mimic the traditional version of

Moessner’s sieve. Fortunately, we can solve this issue by adopting an idea

posed by Danvy et al. [7], where we observe that the stream of 1s can be

created by partially summing a stream of a 1 followed by 0s. Furthermore,

this generalization of Moessner’s sieve has the effect of making Moessner’s

sieve capable of computing streams of the 0th power, as opposed to streams

of squares, which was the base case of Moessner’s original theorem.

Now, we can apply this generalization to the case of the procedure

create_triangle_horizontally,

1 0 0 0 0 0

↓ ↓ ↓ ↓ ↓

0 → [1 → 1 → 1 → 1 → 1]

↓ ↓ ↓ ↓

0 → [1 → 2 → 3 → 4]

↓ ↓ ↓

0 → [1 → 3 → 6]

↓ ↓

0 → [1 → 4]

↓

0 → [1]

0
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where we divide the stream of a 1 followed by 0s into equally sized horizontal

seed tuples, one for each triangle, and add an extra 0 to the vertical seed

tuples.

If we use this simplified configuration for the two initial Moessner trian-

gles of Figure 5.1,

1 0 0 0 0 0

0 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6 7 8

6 11 17 24

4 15 32

1 16

0

(5.6)

we discover a consistent property where the seed tuples are always located

outside of the result triangles, while the result triangles contain exactly the

values we want to capture with the sieve. As such, we define the rank of a

seed tuple to be equal to its length minus two - or the rank of the generated

Moessner triangle - meaning that the seed tuples in Formula 5.6 all have rank

4.

However, we do notice a small inconsistency in the two triangles in Fig-

ure 5.6, since the initial horizontal seed tuple consists of a 1 followed by 0s

while all subsequent horizontal seed tuples consist of plain 0s. Fortunately,

we know from Long [22] and Hinze [14] that the first triangle created by

Moessner’s sieve is always Pascal’s triangle, which allows us to swap the two

seed tuples for the initial triangle, as Pascal’s triangle is symmetric:

0 0 0 0 0 0

1 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6 7 8

6 11 17 24

4 15 32

1 16

0

(5.7)

Thus, we obtain an initial configuration where the horizontal seed tuples are

always 0s, for all created Moessner triangles, and the whole sieve is created

from a single seed value located at the top of the first vertical seed tuple.

Having reduced the initial configuration of Moessner’s sieve to this ex-

tremely simple set of seed tuples, we are ready to define the last procedures

needed to define our dual of Moessner’s sieve.
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5.2.2 Hypotenuse of triangles

As seen in Figure 5.7, the values of the hypotenuse of the first Moessner

triangle, [1, 4, 6, 4, 1], are used as the vertical seed tuple for the next Moessner

triangle. Thus, we need a procedure which takes a triangle and returns

its hypotenuse as a list. This is implemented in a straightforward fashion

by going through each tuple, t, of a triangle, ts, and aggregating the last

values of each tuple into a new tuple, which is then returned,

Fixpoint hypotenuse (ts : triangle) : tuple :=

match ts with

| [] ⇒ []
| t :: ts’ ⇒ (last t 0) :: (hypotenuse ts’)
end.

For example, if we feed the triangle,

1 1 1 1 1

5 6 7 8

11 17 24

15 32

16

to hypotenuse, we get the tuple, [16, 32, 24, 8, 1], when reading it column by

column.

Since we are mainly interested in defining the dual of Moessner’s sieve,

which creates a list of Moessner triangles, each constructed column by col-

umn, all we have left to do is compose create_triangle_vertically and

hypotenuse into a procedure which creates a list of triangles.

5.2.3 Create triangles

By combining create_triangle_vertically and hypotenuse we can define

a final procedure, create_triangles_vertically, which given two seed tu-

ples, xs and ys, and a length argument, n, returns a list of n Moessner tri-

angles. The procedure works by applying create_triangle_vertically on

the two input tuples, xs and ys, which creates the initial Moessner triangle

whose hypotenuse is then used as the ys seed tuple of the next triangle while

the xs remain unchanged. For each triangle created, we decrement the value

of n and terminate the procedure when n = 0. This description brings us to

the following definition,
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Fixpoint create_triangles_vertically (n : nat) (xs ys : tuple)

: list triangle :=

match n with

| 0 ⇒ [create_triangle_vertically xs ys]
| S n’ ⇒
let ts := create_triangle_vertically xs ys

in ts :: (create_triangles_vertically n’ xs

(rev (cons 0 (hypotenuse ts))))

end.

which is exactly the dual of Moessner’s sieve we wanted, since it creates a

list of Moessner triangles by constructing one triangle at a time in a column

by column fashion. Visualizing the sieve of Figure 5.1 using our new dual,

yields the following three Moessner triangles,

0 0 0 0 0 0

1 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6 7 8

6 11 17 24

4 15 32

1 16

0

0 0 0 0 0 0

1 1 1 1 1 1

8 9 10 11 12

24 33 43 54

32 65 108

16 81

0

where we have explicitly added the seed tuples of each triangle.

Thus, we have now defined a dual to Moessner’s sieve that creates a list

of Moessner triangles, instead of a stream of successive powers, where each

triangle is created column by column, instead of row by row, and which has

an initial configuration consisting of two seed tuples having just one non-

zero value, 1, located at the top of the vertical seed tuple, from which the

whole sieve is subsequently constructed. In the remaining chapters of this

dissertation, we abbreviate “the dual of Moessner’s sieve” as simply “the

dual sieve” on occasion.

5.3 Summary

In this chapter, we have introduced a dual to Moessner’s sieve, which sim-

plifies the initial configuration of Moessner’s sieve, by starting from two seed

tuples, and creates a sequence of Moessner triangles, each constructed col-

umn by column, instead of a stream of successive powers, constructed row by

row.

The dual of Moessner’s sieve was obtained by first observing that the

traditional Moessner’s sieve implicitly constructs triangles, called Moessner

triangles, when we preserve the alignment of the elements of the intermediate

result streams while repeatedly dropping elements in the streams. Combin-

ing this observation with the fact that each row and column in a Moessner
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triangle can be created using the same procedure, make_tuple, led to the def-

inition of two symmetric triangle creation procedures, create_triangle_-

horizontally and create_triangle_vertically, each taking two tuples,

one corresponding to a slice of a seed stream and one corresponding to the

hypotenuse of the previous triangle, if any. By further combining the tuple-

based approach with the observation that Moessner’s sieve can be initialized

from a stream of 1 followed by 0s, and the observation that the first triangle

created by Moessner’s sieve is always Pascal’s triangle, resulted in a minimal

initial configuration of Moessner’s sieve starting from a single seed value,

1, while all other values of the respective seed tuples are 0. Lastly, by using

the new initial configuration together with the procedure create_triangle_-

vertically paved the way for defining the dual procedure of Moessner’s

sieve, create_triangles_vertically, which creates a list of Moessner trian-

gles instead of a stream of successive powers.
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Dependency graph of the proofs introduced in Chapter 5. Note how the

graph becomes more sparse as it progresses to the right, reflecting the concise

flow of the proofs once the scaffolding is in place.
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Chapter 6

Pascal’s triangle

and the binomial coefficient

Film is one of the three universal languages,
the other two: mathematics and music.

Frank Capra

The beautiful has its place in mathematics
for here are triumphs of the creative imagination,

beautiful theorems, proofs, and processes
whose perfection of form has made them classic.

He must be a ’practical’ man
who can see no poetry in mathematics.

William F. White

The goal of this chapter is to introduce and formalize Pascal’s triangle and the

binomial coefficient function along with their rotated counterparts, as these

describe the set of initial triangles generated by Moessner’s sieve.

The chapter is structured as follows. In Section 6.1, we introduce and

formalize Pascal’s triangle and the binomial coefficient function, while we in

the process also define the binomial theorem. Furthermore, we also prove

an equivalence relation between Pascal’s triangle and the binomial coefficient

function. In Section 6.2, we motivate the introduction of the rotated Pas-

cal’s triangle and the rotated binomial coefficient function, both of which we

formalize and prove an equivalence relation between. Furthermore, we also

prove equivalence relations to the existing canonical versions of Pascal’s tri-

angle and the binomial coefficient function.
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6.1 An introduction to Pascal’s triangle

and the binomial coefficient

In this section, we first give a basic description of Pascal’s triangle followed

by a definition of the binomial theorem, which we then use to motivate the

introduction of the binomial coefficient function.

6.1.1 Pascal’s triangle

Pascal’s triangle is a triangular array named after the French mathematician

Blaise Pascal, despite the fact that mathematicians in India, Greece, and China

had studied the triangle several centuries prior to Pascal [10].

Traditionally, Pascal’s triangle is indexed over its rows and their individual

entries. The row index is denoted n and indexed from 0, referring to the

top most row, while the entry index is denoted k and also indexed from 0,

referring to the leftmost entry of a given row. We define (n
k) to be the kth

entry of the nth row of Pascal’s triangle. Using a simple inductive approach

we can construct Pascal’s triangle as follows:

1. Let row 0 have a single entry, (0
0), with the value 1.

2. For each entry k in the row n, (n
k), calculate the value of the entry by

adding the two entries just above it, i.e., the entries to its immediate left

and right, (n−1
k−1) + (n−1

k ), and if one of the two entries does not exist, then

replace its value with 0.

In order to strengthen our intuition, the figure below shows the first five rows

of Pascal’s triangle,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Here, we see that the entry (4
2), whose value is 6, is calculated by adding the

entries (3
1) and (3

2), both having the value 3, which again have been calculated

by adding the values just above them, like so,

1 2 1

ց ւ ց ւ

3 3

ց ւ

6

Now, in order to translate Pascal’s triangle into a Coq formalization, we first

have to tweak the above inductive description a bit by making a few extra
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observations of the edge cases of Pascal’s triangle. As such, we notice that the

two outer legs only consists of 1s,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

which gives us two alternative base cases,

(

n

0

)

= 1, (6.1)

and,
(

n

n

)

= 1. (6.2)

However, these do not capture the entries for which n < k, i.e., all values to

the right of Pascal’s triangle,

1 0 0 0 . . .

1 1 0 0 . . .

1 2 1 0 0 . . .

1 3 3 1 0 . . .

1 4 6 4 1 0 . . .

but, as seen in the above figure, we can simply state that,

(

n

k

)

= 0, when n < k. (6.3)

If we combine the three base cases listed above with the following adjusted

version of the inductive case described at the beginning of this section,

(

n + 1

k + 1

)

=

(

n

k + 1

)

+

(

n

k

)

, (6.4)

which incidentally is called Pascal’s rule, we are ready to formalize Pascal’s

triangle.

Now, instead of defining a type from which we can construct a whole

triangle, we instead define an entry type, corresponding to an entry in any

triangle,

Inductive Entry : Type :=

| entry : nat → nat → nat → Entry.

which takes three natural numbers: its row index, its column index and its

value. For example, the entry (entry 4 2 6) describes the entry (4
2) = 6 of

Pascal’s triangle. By focusing on a single entry of a triangle, we can define an

inductive predicate that describes all entries of Pascal’s triangle,
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Inductive Pascal : Entry → Prop :=

| pascal_base_n_0 : ∀ (n : nat), (Pascal (entry n 0 1))
| pascal_base_n_n : ∀ (n : nat), 0 < n → (Pascal (entry n n 1))

| pascal_base_n_lt_k : ∀ (n k : nat), n < k → (Pascal (entry n k 0))

| pascal_inductive_S_n’ : ∀ (n’ k’ v’’ v’ v : nat),
v = v’’ + v’ →
(Pascal (entry n’ k’ v’’)) →
(Pascal (entry n’ (S k’) v’)) →
(Pascal (entry (S n’) (S k’) v)).

where the first three cases,

| pascal_base_n_0 : ∀ (n : nat), (Pascal (entry n 0 1))
| pascal_base_n_n : ∀ (n : nat), 0 < n → (Pascal (entry n n 1))

| pascal_base_n_lt_k : ∀ (n k : nat), n < k → (Pascal (entry n k 0))

correspond to the three base cases in Formula 6.1-6.3, and the last case,

| pascal_inductive_S_n’ : ∀ (n’ k’ v’’ v’ v : nat),
v = v’’ + v’ →
(Pascal (entry n’ k’ v’’)) →
(Pascal (entry n’ (S k’) v’)) →
(Pascal (entry (S n’) (S k’) v)).

corresponds to the adjusted inductive case in Formula 6.4. Thus, we have

now described Pascal’s triangle and translated it into an Entry type, which

captures any entry of a triangle, along with an inductive predicate Pascal,

which describes the set of entries in Pascal’s triangle.

We now take a step back and define the binomial theorem, which we use

to motivate the introduction of the binomial coefficient that is closely tied to

Pascal’s triangle, thus completing the circle.

6.1.2 The binomial theorem

Given a binomial (x + y)n, where x and y are variables, and n is a natural

number, we want to describe the expansion of (x + y)n as a sum of its terms,

also called monomials.

If we examine the first four expansions of (x + y)n, where n = {0, 1, 2, 3},

we get the following equations,

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3,

from which we notice a pattern that can be made more distinct by explicitly
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writing every coefficient and exponent of every monomial in the expansions,

(x + y)0 = 1x0y0

(x + y)1 = 1x1y0 + 1x0y1

(x + y)2 = 1x2y0 + 2x1y1 + 1x0y2

(x + y)3 = 1x3y0 + 3x2y1 + 3x1y2 + 1x0y3.

(6.5)

Now it is clear that for a given binomial expansion the exponent of x is decre-

mented for each monomial of the expansion, starting at n, as we traverse them

from left to right. Conversely, the exponent of y, starting at 0, is incremented

for each monomial of the expansion. If we let k denote the kth monomial of

an expansion, we can generalize the observation just made to the sum,

n

∑
k=0

xn−kyk, (6.6)

which generates the correct exponentiation of the monomials in the expan-

sion. For example, if we let n = 3, we get,

3

∑
k=0

x3−kyk = x3y0 + x2y1 + x1y2 + x0y3,

which enumerates the monomials of the binomial expansion of (x + y)3, in

Formula 6.5, except for the coefficients of the monomials, which we still have

to account for. Now, if we rearrange the monomials of Formula 6.5, such that

they are vertically aligned around the same center,

1x0y0

1x1y0 1x0y1

1x2y0 2x1y1 1x0y2

1x3y0 3x2y1 3x1y2 1x0y3

and remove everything but the coefficients,

1

1 1

1 2 1

1 3 3 1

(6.7)

we obtain the first four rows of Pascal’s triangle. Thus, the entries of Pascal’s

triangle enumerate the coefficients of the monomials in the binomial expan-

sion of (x + y)n. As such, we also refer to (n
k) as a binomial coefficient, a con-

cept we discuss further in the next section, since it gives us a way to calculate

the coefficient of the kth monomial in the binomial expansion of (x + y)n.

Returning to Formula 6.6, we can now combine it with the binomial coef-

ficient (n
k) and obtain the sum,

n

∑
k=0

(

n

k

)

xn−kyk, (6.8)
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which calculates the binomial expansion of the expression (x + y)n, yielding

the following theorem.

Theorem 1 (Binomial theorem). Given two natural numbers x and y, and an

exponent n, the expression (x + y)n can be expanded into the sum,

(x + y)n =

(

n

0

)

xny0 +

(

n

1

)

xn−1y1 + · · ·+

(

n

n − 1

)

x1yn−1 +

(

n

n

)

x0yn,

where (n
k) is the binomial coefficient. This expansion can also be written in summation

notation as,

(x + y)n =
n

∑
k=0

(

n

k

)

xn−kyk

=
n

∑
k=0

(

n

k

)

xkyn−k,

(6.9)

where the last equivalence follows from the symmetry of the sequence of binomial

coefficients and of x and y.

Later in this dissertation, we define functions in the Coq proof assistant to

calculate the individual monomials of a binomial expansion and also prove

a simplified version of the binomial theorem in which x is the only variable

and y has been substituted by 1,

(1 + x)n =
n

∑
k=0

(

n

k

)

xk. (6.10)

Having defined the binomial theorem, we return to the binomial coefficient

and show how to calculate and formalize it.

6.1.3 The binomial coefficient

As mentioned in the previous section, the binomial coefficient (n
k) is equal

to the coefficient of the kth monomial in the binomial expansion of (x + y)n

and can be read from Pascal’s triangle. This suggests that we can obtain

a binomial coefficient function if we can reduce the predicate Pascal into

something computable.

In order to come up with such a binomial coefficient function, we need to

cover the base cases and inductive cases for the row and column indices, n

and k. Hence, we first observe that the base case (n
0) = 1, covers the two cases

where (n = 0, k = 0) and (n = S n’, k = 0), which leaves the cases (n =

0, k = S k’) and (n = S n’, k = S k’). For the case (n = 0, k = S k’),

we know from the definition of Pascal that for all values n < k the result

is 0, and similarly we know that the case (n = S n’, k = S k’) is the sum

of the two entries just above it (n = n’, k = S k’) and (n = n’, k = k’).

Combining all this we get the following Coq formalization,
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Fixpoint binomial_coefficient (n k : nat) : nat :=

match n, k with

| n, 0 ⇒ 1
| 0, S k’ ⇒ 0
| S n’, S k’ ⇒ binomial_coefficient n’ (S k’) +

binomial_coefficient n’ k’

end.

Notation "C( n , k )" := (binomial_coefficient n k).

where we use the alternative notation, C(n, k), for the binomial coefficient

function. To show that the properties of Pascal also holds for binomial_-

coefficient, we prove Pascal’s rule,

Theorem Pascal_s_rule’ :

∀ (n’ k’ : nat),
C(S n’, S k’) = C(n’, S k’) + C(n’, k’).

which follows from the definition of binomial_coefficient, and the prop-

erty that all entries where n < k are 0,

Lemma binomial_coefficient_n_lt_k_implies_0 :

∀ (n k : nat), n < k → C(n, k) = 0.

which we prove by induction on the row index, n, and case analysis on the

column index, k. Finally, we prove that the value of binomial_coefficient

is 1 when n = n,

Lemma binomial_coefficient_n_eq_k_implies_1 :

∀ (n : nat), C(n, n) = 1.

which is done by induction on the row index, n, and using the already proved

binomial_coefficient_n_lt_k_implies_0 property. Thus, we have now for-

malized the binomial coefficient function in Coq and proved basics properties

about it.

Having defined both Pascal and the binomial_coefficient function, we

move on to prove that they are indeed equivalent.

6.1.4 Equivalence of Pascal’s triangle
and the binomial coefficient function

When comparing the definitions of the binomial_coefficient function and

the Pascal predicate, we observe that if we have an entry which is a Pascal

entry, Pascal (entry n k v), then its value, v, must be equal to the cor-

responding value of the binomial coefficient function, v = C(n, k), which

brings us to the following equivalence proof,

Theorem Pascal_iff_binomial_coefficient :

∀ (n k v : nat),
Pascal (entry n k v) ↔ v = C(n, k).

which states that an Entry is in Pascal’s triangle if and only if its value is equal

to the corresponding value of the binomial coefficient function. We prove the

implication from left to right,
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Lemma Pascal_implies_binomial_coefficient :

∀ (n k v : nat),
Pascal (entry n k v) → v = C(n, k).

by induction on the row index n and case analysis on the different clauses of

the Pascal predicate, and likewise prove the implication from right to left,

Lemma binomial_coefficient_implies_Pascal :

∀ (n k v : nat),
v = C(n, k) → Pascal (entry n k v).

by induction on the row index, n followed by case analysis on the entry index,

k, where each subcase is matched to a corresponding clause of the Pascal

predicate. Thus, we have now proved that there exists an equivalence relation

between entries of Pascal’s triangle and the values calculated by the binomial

coefficient function.

Now that we have defined the canonical versions of Pascal’s triangle and

the binomial coefficient function, and formalized both in the Coq proof assis-

tant, we are ready to introduce their rotated counterparts.

6.2 Rotating Pascal’s triangle

and the binomial coefficient

In this section, we introduce and formalize the rotated versions of Pascal’s

triangle and the binomial coefficient.

First, we compare Pascal’s triangle with the triangles generated by Moess-

ner’s sieve, which we use to motivate the rotated Pascal’s triangle. Due to

the tight connection between Pascal’s triangle and the binomial coefficient

function, we also define the rotated binomial coefficient function and finally

prove the equivalence between the rotated Pascal’s triangle and the rotated

binomial coefficient function.

6.2.1 Rotated Pascal’s triangle

In order to motivate the introduction of the rotated Pascal’s triangle, we start

by examining the triangles generated by applying Moessner’s sieve of rank 5

on a sequence of 1s,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 3 6 11 17 24 33 43 54 . . .

1 4 15 32 65 108 . . .

1 16 81 . . .
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from which we notice that the initial Moessner triangle is in fact Pascal’s

triangle that has been rotated, as seen in the figure below,

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

This observation can be made for all ranks of Moessner’s sieve, and has pre-

viously been made by Long [22] and Hinze [15], which encourages us to

formalize this rotated version of Pascal’s triangle. Now, if we index the tri-

angle in terms of its rows and columns, denoted r and c, both indexed from

0, we can state similar properties capturing the characteristics of the rotated

Pascal’s triangle, as we did in the case of Pascal.

First, we notice that the base case of Pascal’s triangle, where (n
0) = 1, now

corresponds to the first column of the rotated Pascal’s triangle,

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

Furthermore, the case where (n
k) = 0, when n < k, has now disappeared

due to the rotation transformation making us unable to index outside of the

triangle, and the case (n
n) = 1 now corresponds to the first row of the rotated

Pascal’s triangle,

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

Lastly, for the inductive case, (n
k) = (n−1

k ) + (n−1
k−1), where we previously added

the two entries just above the entry we wanted to calculate, we now add its

immediate western and northern neighbors,

1

↓

2 → 3

↓ ↓

1 → 3 → 6

Combining these observations, we can formalize a predicate which captures

all entries in the rotated Pascal’s triangle,
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Inductive Rotated_Pascal : Entry → Prop :=

| rotated_pascal_base_r_0 :

∀ (r : nat), (Rotated_Pascal (entry r 0 1))
| rotated_pascal_base_0_c :

∀ (c : nat), 0 < c → (Rotated_Pascal (entry 0 c 1))

| rotated_pascal_induction_r_c :

∀ (r’ c’ v’’ v’ v : nat),
v = v’’ + v’ →
(Rotated_Pascal (entry (S r’) c’ v’’)) →
(Rotated_Pascal (entry r’ (S c’) v’)) →
(Rotated_Pascal (entry (S r’) (S c’) v)).

in a manner analogously to the definition of Pascal. With this predicate, we

have now motivated the rotated Pascal’s triangle and formalized it in Coq as

a predicate describing all entries in the rotated triangle.

Just as we defined a binomial coefficient function as a dual to Pascal’s

triangle, we now move on to define a rotated binomial coefficient function as

a dual to the rotated Pascal’s triangle.

6.2.2 Rotated binomial coefficient

If we were to try and define the rotated binomial coefficient function in a

straight-forward manner, where we translated the clauses of Rotated_Pascal

into base- and inductive cases for the row and column indices, r and c, like

so,

Fixpoint rotated_binomial_coefficient (r c : nat) : nat :=

match r, c with

| r, 0 ⇒ 1
| 0, c ⇒ 1
| S r’, S c’ ⇒ rotated_binomial_coefficient r’ (S c’) +

rotated_binomial_coefficient (S r’) c’

end.

we would not be allowed to by the Coq proof assistant, since it would not

be able to guess the decreasing argument of our recursive call. The reason

why it cannot guess the decreasing argument is because of the inductive case

containing two recursive calls, in which the first call decreases the row in-

dex while the second call decreases the column index. So, instead we have

to define the rotated binomial coefficient function in terms of the existing

binomial_coefficient function.

In order to do so, we first introduce the notation R(r, c) to mean the

rotated binomial coefficient function applied on the row index, r, and column

index, c, which we then use to capture the relation to the existing binomial_-

coefficient function, C(n, k). First, we observe that the row index r maps

directly to the row index n, since we have the following relation of the base

cases R(r, 0) = C(r, 0) = 1. Furthermore, if we let r = 0, we notice that

the column index c maps to both n and k as R(0, c) = C(c, c) as also
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observed in the previous section. Putting these relations together yields the

following formalization of the rotated binomial coefficient function,

Definition rotated_binomial_coefficient (r c : nat) : nat :=

C(c + r, c).

Notation "R( r , c )" := (rotated_binomial_coefficient r c).

Now that we have defined rotated_binomial_coefficient, we can prove

some of its properties as already characterized in Rotated_Pascal. First, we

show that Pascal’s rule also holds in a rotated version,

Theorem rotated_Pascal_s_rule’ :

∀ (r’ c’ : nat),
R(S r’, S c’) = R(S r’, c’) + R(r’, S c’).

which follows by case analysis on the row index, r. Furthermore, we

also prove that the two base cases of Rotated_Pascal hold for rotated_-

binomial_coefficient,

Lemma unfold_rotated_binomial_coefficient_base_case_r_0 :

∀ (r : nat),
R(r, 0) = 1.

Lemma unfold_rotated_binomial_coefficient_base_case_0_c :

∀ (c : nat),
0 < c → R(0, c) = 1.

Here, we prove the first property by case analysis on the row index, r, along

with the existing binomial_coefficient_n_eq_k_implies_1 property, while

the second property is proved by case analysis on the column index, c.

Lastly, we prove that rotated_binomial_coefficient is symmetric,

Theorem rotated_binomial_coefficient_is_symmetric :

∀ (r c : nat), R(r, c) = R(c, r).

which we do by induction on the row and column indices, r and c, while

using the already proved properties of rotated_binomial_coefficient. As

a corollary, we prove that binomial_coefficient is also symmetric,

Theorem binomial_coefficient_is_symmetric :

∀ (n k : nat),
k ≤ n →
C(n, k) = C(n, n - k).

by rewriting with the following equivalence relation between binomial_-

coefficient and rotated_binomial_coefficient,

Corollary binomial_coefficient_eq_rotated_binomial_coefficient :

∀ (n k : nat),
k ≤ n →
C(n, k) = R(n - k, k).

which captures the same relation as found in the definition of rotated_-

binomial_coefficient.
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Now that we have introduced both the rotated Pascal’s triangle and the

rotated binomial coefficient function, all we have left to do is prove an equiva-

lence relation between these two in a manner similar to what we did for their

canonical counterparts.

6.2.3 Equivalence of the rotated Pascal’s triangle
and the rotated binomial coefficient

If we once again compare the definitions of rotated_binomial_coefficient

and Rotated_Pascal, we note that the value of an entry in the rotated Pas-

cal’s triangle, Rotated_Pascal (entry r c v), must be equal to the value

calculated by rotated_binomial_coefficient, v = R(r, c), which yields

an equivalence relation completely analogous to the one for binomial_-

coefficient and Pascal,

Theorem Rotated_Pascal_iff_rotated_binomial_coefficient :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) ↔ v = R(r, c).

Furthermore, the two implications proofs are also proved in similar ways

to the ones for the canonical versions of Pascal’s triangle and the binomial

coefficient function. As such the proof of the implication from left to right,

Lemma Rotated_Pascal_implies_rotated_binomial_coefficient :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) → v = R(r, c).

follows by induction on the row index, r, and case analysis on the different

clauses of Rotated_Pascal in the base case, and induction on the column

index, c, in the inductive case. Likewise, the proof of the implication from

right to left,

Lemma rotated_binomial_coefficient_implies_Rotated_Pascal :

∀ (r c v : nat),
v = R(r, c) → Rotated_Pascal (entry r c v).

follows by induction on the row index, r, and case analysis on the column

index, c, where each subcase is matched to the corresponding clause of the

Rotated_Pascal predicate. This proves the equivalence relation of Rotated_-

Pascal and rotated_binomial_coefficient.

As in the case of rotated_binomial_coefficient, we prove that the ro-

tated Pascal’s triangle is symmetric,

Theorem Rotated_Pascal_is_symmetric :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) ↔
Rotated_Pascal (entry c r v).

which we do by substituting occurrences of Rotated_Pascal with rotated_-

binomial_coefficient and using rotated_binomial_coefficient_is_-

symmetric. Likewise, we can prove that Pascal is symmetric,
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Theorem Pascal_is_symmetric :

∀ (n k v : nat),
k ≤ n →
(Pascal (entry n k v) ↔
Pascal (entry n (n - k) v)).

as we have also proved that binomial_coefficient is symmetric.

Lastly, now that we have proved equivalence between Rotated_Pascal

and rotated_binomial_coefficient, and between rotated_binomial_-

coefficient and binomial_coefficient, we can transitively obtain the

proof that an Entry is a Pascal entry if and only if it is also a Rotated_-

Pascal entry,

Theorem Rotated_Pascal_iff_Pascal :

∀ (n k v : nat),
Rotated_Pascal (entry n k v) ↔
Pascal (entry (n + k) k v).

which we have stated in such a way that we can ignore all values outside of

the canonical Pascal’s triangle. The proofs of the two implications,

Corollary Pascal_implies_Rotated_Pascal :

∀ (n k v : nat),
Pascal (entry (n + k) k v) →
Rotated_Pascal (entry n k v).

and

Corollary Rotated_Pascal_implies_Pascal :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) →
Pascal (entry (r + c) c v).

follow as corollaries of the already proved equivalence relations mentioned in

this and the previous section.

We have now reached the goal of this chapter, as we have formalized

Pascal’s triangle and the binomial coefficient function along with their rotated

counterparts. Thus, we are now ready to combine what we have learned in

this and the previous chapter in order to characterize the triangles generated

by Moessner’s sieve in the next chapter.

6.3 Summary

In this chapter, we have introduced and formalized Pascal’s triangle and the

binomial coefficient function along with their rotated counterparts, which de-

scribe the set of initial triangles generated by Moessner’s sieve.

We obtained the above results by first describing the construction of Pas-

cal’s triangle in an inductive fashion, followed by translating it into a Coq for-

malization as the inductive type, Entry, and the inductive predicate, Pascal.
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Afterwards, we introduced the binomial coefficient function, as a result of de-

scribing the binomial theorem, and formalized it as the function binomial_-

coefficient, which we proved to have an equivalence relation with Pascal.

Having formalized the canonical versions of Pascal’s triangle and the bi-

nomial coefficient function, we motivated the introduction of their rotated

counterparts by examining the triangles generated by Moessner’s sieve, and

noticing that the first triangle generated is always equal to Pascal’s triangle.

Consequently, we defined a similar predicate for the rotated Pascal’s triangle,

Rotated_Pascal, and the rotated binomial coefficient function, rotated_-

binomial_coefficient, as in the canonical case, and proved an equivalence

relation between the two, while also proving an equivalence relation between

the canonical and rotated formalizations.

64



Dependency graph of the proofs introduced in Chapter 6. Note how the

sparsity of the graph reflects the simplicity of the formalizations and the con-

nections between them.
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Chapter 7

A characteristic function

of Moessner’s sieve

It might be worth-while to point out
that the purpose of abstracting is not to be vague,

but to create a new semantic level
in which one can be absolutely precise.

Edsger W. Dijkstra, 1972 (EWD340)

The goal of this chapter is to introduce a characteristic function of Moessner’s

sieve, which computes the entries of a given Moessner triangle without need-

ing to compute the prefix of the sieve. Furthermore, we present a correctness

proof for the characteristic function, which shows that it computes the same

Moessner triangles as created by the dual sieve. In the same vein, we also

prove the correctness of the triangle creation procedure of the dual sieve with

respect to the traditional sieve procedure that works on streams.

The chapter is structured as follows. In Section 7.1, we derive the opera-

tional description of a characteristic function of Moessner’s sieve, which we

then formalize in Section 7.2 as the two Coq procedures moessner_entry and

rotated_moessner_entry. Following this, we prove a relation between the

repeated application of make_tuple on a seed tuple of a given Moessner tri-

angle, expressed as a binomial expansion, and the resulting columns of the

created triangle, expressed in terms of the characteristic function rotated_-

moessner_entry, in Section 7.3. Building on the proofs of Section 7.3, we

prove the correctness of our characteristic functions, moessner_entry and

rotated_moessner_entry, in Section 7.4, through the construction of an

auxiliary procedure, repeat_make_tuple, which bridges the proof gap be-

tween the triangle creation procedures, create_triangle_horizontally and

create_triangle_vertically, and the characteristic functions, moessner_-

entry and rotated_moessner_entry. Lastly, with the help of the auxiliary

procedure repeat_make_tuple, we also prove the correctness of the triangle

creation procedures with respect to the traditional sieve procedure, sieve,

thus verifying that our dual of Moessner’s sieve is indeed valid.
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7.1 Characterizing Moessner triangles

In order to come up with a characteristic function of the triangles generated

by Moessner’s sieve, we first have to uncover the patterns by which they are

constructed. Hence, let us examine the first three Moessner triangles created

by applying Moessner’s sieve of rank 5 – yielding powers of 4 – on the stream

of 1s,
1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

1 1 1 1 1

5 6 7 8

11 17 24

15 32

16

1 1 1 1 1

9 10 11 12

33 43 54

65 108

81

(7.1)

and see if we can discover any properties that help us characterize the tri-

angles. As previously pointed out in this dissertation and by Hinze [14], we

can observe that the initial triangle generated by Moessner’s sieve is always

equal to the rotated Pascal’s triangle, having a depth equal to the rank of the

Moessner triangle plus one. Furthermore, we also notice that the subsequent

Moessner triangles exhibit Pascal-like properties, i.e., Pascal’s rule holds for

all triangles, as every entry is the sum of its immediate western and north-

ern neighbors, as previously illustrated in Figure 5.3 and originally noted

by Long [22]. Knowing that the Moessner triangles behave in a Pascal-like

fashion, hints at a possible binomial coefficient-like characteristic function,

parameterized over the first row and column of a given Moessner triangle.

If we again focus on Figure 7.1, it is trivial to see that the first row of every

Moessner triangle is filled with 1s, while we need to discover a new property

in order to characterize the first column of every triangle.

Returning to the initial Moessner triangle, we know from the equivalence

between Pascal’s triangle and the binomial coefficient, that the hypotenuse of

the triangle will always enumerate the coefficients of the monomials of the

binomial expansion of (1 + t)r, where r is equal to the rank of the triangle,

and t is a variable. Using the initial Moessner triangle of Figure 7.1 as an

example, we get the binomial expansion,

(1 + t)4 = 1 · t4 + 4 · t3 + 6 · t2 + 4 · t1 + 1 · t0,

where the values of the hypotenuse, (1, 4, 6, 4, 1), do indeed enumerate the

binomial coefficients of the expansion. Incidentally, the hypotenuse also enu-

merates the actual terms of the binomial expansion when t = 1,

(1 + 1)4 = 1 · 14+4 · 13+6 · 12+4 · 11+1 · 10

= 1+4+6+4+1,

which raises the question of what happens if we let t denote the triangle

index, starting from t = 1. As it turns out, letting t = 2,

(1 + 2)4 = 1 · 24+4 · 23+6 · 22+4 · 21+1 · 20

= 16+32+24+8+1
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results in the terms of the binomial expansion to be equal to the values found

in the hypotenuse of the second Moessner triangle, (16, 32, 24, 8, 1), in Fig-

ure 7.1. We can observe that this property holds for all triangles,

(1 + 3)4 = 1 · 34+4 · 33+6 · 32+4 · 31+1 · 30

= 81+108+54+12+1,

as seen here for t = 3, and was recently pointed out by Danvy et al. [7] as a

characterization of the values dropped in the individual triangles of Moess-

ner’s sieve. Combining this observation with the fact that the entries of a

Moessner triangle are created using Pascal’s rule, leads us to the realization

that the first column of the (1+ t)th Moessner triangle enumerates the partial

sums of the monomials of the binomial expansion (1 + t)r,

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

⇒

1 1 1 1 1

5 6 7 8

11 17 24

15 32

16

⇒

1 1 1 1 1

9 10 11 12

33 43 54

65 108

81

(7.2)

as seen in Figure 7.2, where (1, 4, 6, 4, 1) partially sums to (1, 5, 11, 15, 16), and

(1, 8, 24, 32, 16) partially sums to (1, 9, 33, 65, 81).

Having characterized how every Moessner triangle is constructed using

Pascal’s rule, where the first row of a triangle is a sequence of 1s and the first

column is a partial sum parameterized over the binomial expansion, we are

ready to formalize the characteristic function in Coq.

7.2 Defining a characteristic function

Synthesizing the observations made in the previous section, we now present

two characteristic functions of Moessner’s sieve. First, we define a characteris-

tic function that is analogous to our existing binomial_coefficient function,

moessner_entry, followed by a rotated version, rotated_moessner_entry,

defined in terms of the first characteristic function, moessner_entry.

69



7.2.1 Moessner entry

In order to translate the informal description of the characteristic function

made in Section 7.1 into a valid Coq function, we first define it as a function

that is analogous to the existing binomial_coefficient function. As such,

we rotate the first two Moessner triangles of Figure 7.1 into a Pascal-like con-

figuration,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1

5 1

11 6 1

15 17 7 1

16 32 24 8 1

(7.3)

where we use the same row-and-entry indexing scheme, n and k, as in the

case of the binomial_coefficient function,

Fixpoint binomial_coefficient (n k : nat) : nat :=

match n with

| 0 ⇒ match k with
| 0 ⇒ 1
| S k’ ⇒ 0
end

| S n’ ⇒ match k with
| 0 ⇒ 1
| S k’ ⇒ binomial_coefficient n’ (S k’) +

binomial_coefficient n’ k’

end

end.

Just like the binomial_coefficient function, we have four combinations of

n and k being either 0 or the successor of some n’ or k’, where the only case

that is different from the binomial_coefficient function is the one where n

= S n’ and k = 0, corresponding to the first column of a rotated Moessner

triangle as discussed in the previous section. While we simply return 1 in

the case of the binomial_coefficient function, we instead have to add the

appropriate monomial of the last row of the previous triangle. For example,

in Figure 7.3 the value 11 in the third row of the second triangle is obtained by

adding 5, located immediately above it, and the value 6, located at the third

entry of the last row of the previous triangle. This is the exact same behavior

as we saw in Figure 7.2, but for the rotated Moessner triangles.

Combining the logic for the four cases of n and k yields the following

binomial coefficients-like characteristic function of a Moessner triangle,
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Fixpoint moessner_entry (r n k t : nat) : nat :=

match n with

| 0 ⇒ match k with
| 0 ⇒ 1
| S k’ ⇒ 0
end

| S n’ ⇒ match k with
| 0 ⇒ monomial t r (S n’) +

moessner_entry r n’ 0 t

| S k’ ⇒ moessner_entry r n’ (S k’) t +
moessner_entry r n’ k’ t

end

end.

indexed using the row and column indices n and k, where r denotes the rank

of the triangle and t the triangle index. The monomial function, used in the

inductive case of n, is defined as,

Definition monomial (t r n : nat) : nat :=

C(r, n) ∗ (t ^ n).

and computes a single monomial of the binomial expansion (1 + t)r, when

given a triangle index, t, a rank, r, and an index, n, of a monomial in the

expansion.

Given moessner_entry’s strong ties to the binomial_coefficient func-

tion, it is no surprise that we can also prove that it exhibits some of the same

properties. As observed, Pascal’s rule holds true for all values of moessner_-

entry,

Theorem moessner_entry_Pascal_s_rule :

∀ (n’ r k’ t : nat),
moessner_entry r (S n’) (S k’) t =

moessner_entry r n’ (S k’) t +

moessner_entry r n’ k’ t.

and so do the following two properties,

Lemma moessner_entry_n_eq_k_implies_1 :

∀ (n r t : nat),
moessner_entry r n n t = 1.

and

Lemma moessner_entry_n_lt_k_implies_0 :

∀ (r n k t : nat),
n < k →
moessner_entry r n k t = 0.

completely analogous to the lemmas proved in the case of the binomial_-

coefficient function, for describing the entries of the right-most leg and

entries outside of the triangle. Furthermore, we can now state and prove

the repeatedly mentioned equivalence relation between the initial Moessner

triangle and Pascal’s triangle, by showing that the binomial_coefficient

function and moessner_entry compute the same values when t = 0,
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Theorem moessner_entry_eq_binomial_coefficient :

∀ (n k r : nat),
moessner_entry r n k 0 = C(n, k).

The equivalence proof follows by induction on the row index, n, and case

analysis on the entry index, k, thus proving the assumed connection between

Moessner’s sieve and Pascal’s triangle.

Lastly, we define a new Stream which enumerates a row of a Pascal-like

Moessner triangle,

CoFixpoint moessner_entries (r n k t : nat) : Stream nat :=

(moessner_entry r n k t) :::

(moessner_entries r n (S k) t).

using our newly created characteristic function, moessner_entry. The re-

lation between moessner_entries and moessner_entry is captured by the

following property,

Lemma Str_nth_moessner_entries :

∀ (i r n k t : nat),
Str_nth i (moessner_entries r n k t) =

moessner_entry r n (i + k) t.

which allows us to go from an element indexed by moessner_entries to a

value computed by moessner_entry. The proof of the above property follows

by induction on the element index, i, and rewriting according to the initial

value and stream derivative of moessner_entries. We use moessner_entries

later in this dissertation, when we prove Moessner’s theorem.

Having defined a binomial coefficient-like characteristic function for the

triangles generated by Moessner’s sieve, we move on to define its rotated

counterpart.

7.2.2 Rotated Moessner entry

Since the binomial_coefficient function and moessner_entry exhibit the

same triangular structure, the relation between moessner_entry and its ro-

tated counterpart, rotated_moessner_entry, is identical to the existing rela-

tion between binomial_coefficient and rotated_binomial_coefficient,

Definition rotated_binomial_coefficient (r c : nat) : nat :=

C(c + r, c).

Notation "R( r , c )" := (rotated_binomial_coefficient r c).

Thus, we define the rotated version of moessner_entry like so,

Definition rotated_moessner_entry (n r c t : nat) : nat :=

moessner_entry n (c + r) c t.

where n denotes the rank, r the row, c the column, and t the triangle. Further-

more, rotated_moessner_entry has similar properties to the ones discussed

in the previous section, for moessner_entry,
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Lemma rotated_moessner_entry_Pascal_s_rule :

∀ (n r’ c’ t : nat),
rotated_moessner_entry n (S r’) (S c’) t =

rotated_moessner_entry n r’ (S c’) t +

rotated_moessner_entry n (S r’) c’ t.

along with

Lemma rotated_moessner_entry_r_eq_0_implies_1 :

∀ (c n t : nat),
rotated_moessner_entry n 0 c t = 1.

and

Lemma rotated_moessner_entry_c_eq_0 :

∀ (r’ n t : nat),
rotated_moessner_entry n (S r’) 0 t =

monomial t n (S r’) + rotated_moessner_entry n r’ 0 t.

which we use extensively when reasoning about rotated_moessner_entry

in many of our later proofs. Lastly, there also exists a similar equivalence

relation between the rotated Pascal’s triangle and rotated_moessner_entry,

when t = 0,

Corollary rotated_moessner_entry_eq_rotated_binomial_coefficient :

∀ (n r c : nat),
rotated_moessner_entry n r c 0 = R(r, c).

which follows as a corollary of moessner_entry_eq_binomial_coefficient.

As in the case of moessner_entry, we also create a Stream which enumer-

ates a specific column of a Moessner triangle,

CoFixpoint rotated_moessner_entries (n r c t : nat) : Stream nat :=

(rotated_moessner_entry n r c t) :::

(rotated_moessner_entries n (S r) c t).

using the characteristic function rotated_moessner_entry. It too has the fol-

lowing indexing property,

Lemma Str_nth_rotated_moessner_entries :

∀ (i n r c t : nat),
Str_nth i (rotated_moessner_entries n r c t) =

rotated_moessner_entry n (r + i) c t.

along with a version of Pascal’s rule,

Lemma rotated_moessner_entries_Pascal_s_rule :

∀ (n r’ c’ t : nat),
rotated_moessner_entries n (S r’) (S c’) t ∼
(rotated_moessner_entries n (S r’) c’ t) ⊕
(rotated_moessner_entries n r’ (S c’) t).

working on streams created by rotated_moessner_entries, which we prove

by coinduction and rewriting according to Pascal’s rule for rotated_-

moessner_entry.
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Now that we have defined our two characteristic functions of Moessner’s

sieve, moessner_entry and rotated_moessner_entry, we turn our attention

towards proving the correctness of these characteristic functions. However, in

order to do so, we first have to construct the needed scaffolding on which to

build the correctness proofs. Thus, our next step is to introduce procedures

that describe the seed tuples of the Moessner triangles generated by Moess-

ner’s sieve, in terms of the monomials of a binomial expansion. We then use

these procedures to characterize the columns of the triangles generated by

applying our triangle creation procedures on the seed tuples.

7.3 Moessner entry and monomials

In this section, we prove a relation between the cth column of a Moessner

triangle and the monomials of its vertical seed tuple from which it is created.

In order to do so, we first define procedures for explicitly enumerating

the monomials of a binomial expansion, monomials, and their partial sums,

monomials_sum, which we then use to state and prove an equivalence relation

between the first column of a Moessner triangle, enumerated by rotated_-

moessner_entries, and its seed tuple, expressed in terms of the defined

monomial procedures. Having shown how to go from a vertical seed tuple to

the first column of a Moessner triangle, we then prove how to obtain the (S

c’)th column, enumerated by rotated_moessner_entries, when given the

c’th column, thus providing us with a base case and inductive case for a later

correctness proof of rotated_moessner_entry.

7.3.1 Monomials and monomials sum

As mentioned in the previous sections, we have observed that the values of

the hypotenuse of a triangle generated by Moessner’s sieve,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 3 6 11 17 24 33 43 54 . . .

1 4 15 32 65 108 . . .

1 16 81 . . .

acts as the seed tuple for the subsequent triangle, and enumerates the individ-

ual monomials of the binomial expansion of (1 + t)r, where r is the rank of the

Moessner triangle and t is the triangle index. Furthermore, we also know that

the first column of the (1 + t)th triangle is enumerated by the partial sums

of its seed tuple, corresponding to the partial sums of the mentioned mono-

mials. Hence, if we are to reason about the seed tuples of a given Moessner

triangle, we have to introduce procedures which compute the corresponding

monomials. As such, we define the procedure monomials,
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CoFixpoint monomials (t r n : nat) : Stream nat :=

(monomial t r n) ::: (monomials t r (S n)).

which enumerates the monomials of a binomial expansion when given a tri-

angle index, t, a rank, r, and a start index, n, of the expansion. Similarly, we

define the procedure monomials_sum,

CoFixpoint monomials_sum (t r n a : nat) : Stream nat :=

let a’ := (monomial t r n) + a in

a’ ::: (monomials_sum t r (S n) a’).

which takes the same arguments as monomials along with an accumulator,

a, and enumerates the partial sums of the same binomial expansion, from a

given start index, n.

Lastly, we want to prove that the stated relation of monomials_sum being

the partial sums of monomials is indeed correct,

Lemma stream_partial_sums_acc_monomials_bisim_monomials_sum :

∀ (t r n a : nat),
stream_partial_sums_acc a (monomials t r n) ∼
monomials_sum t r n a.

which is done by coinduction using just the definitions of the two streams’

initial values and stream derivatives for rewriting.

Now that we have defined procedures for enumerating the monomials

of the binomial expansion, and their partial sums, we move on to prove an

equivalence relation between the seed tuple of a Moessner triangle, expressed

in terms of monomials, and its initial column, expressed in terms of rotated_-

moessner_entries.

7.3.2 The first column of a Moessner triangle

As a result of the last proof in the previous section, stream_partial_sums_-

acc_monomials_bisim_monomials_sum, and the following equivalence rela-

tion between make_tuple and stream_partial_sums_acc,

Theorem equivalence_of_make_tuple_and_stream_partial_sums_acc :

∀ (l’ a : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l’) σ ) a =

Str_prefix l’ (stream_partial_sums_acc a σ ).

which we have previously proved, we obtain the corollary,

Corollary make_tuple_monomials_eq_monomials_sum :

∀ (l t r n a : nat),
make_tuple (Str_prefix (S l) (monomials t r n)) a =

Str_prefix l (monomials_sum t r n a).

which states that applying make_tuple on a prefix of monomials yields a pre-

fix of monomials_sum. Furthermore, we can also prove that the first column

of a Moessner triangle, generated by our characteristic function, rotated_-

moessner_entries, is bisimilar to monomials_sum,

75



Corollary rotated_moessner_entries_bisim_monomials_sum :

∀ (n t : nat),
monomials_sum t n 0 0 ∼
rotated_moessner_entries n 0 0 t.

for the same rank, n, and triangle index, t, which follows from the theorem,

Theorem Str_nth_monomials_sum_eq_rotated_moessner_entry :

∀ (r t n a : nat),
Str_nth r (monomials_sum t n 0 a) =

(rotated_moessner_entry n r 0 t) + a.

combined with Str_nth_rotated_moessner_entries, proved in Section 7.2.2,

and the fact that element-wise equality implies bisimilarity. In order to prove

Str_nth_monomials_sum_eq_rotated_moessner_entry, we do induction on

the row index, r, and use the following Pascal-like property of monomials_-

sum,

Lemma shift_start_index_monomials_sum :

∀ (i’ r n a t : nat),
(monomial t r n) + (Str_nth i’ (monomials_sum t r (S n) a)) =

(monomial t r (n + (S i’))) + (Str_nth i’ (monomials_sum t r n a)).

which allows us to shift the start index of monomials_sum to monomial in cer-

tain cases. The proof of shift_start_index_monomials_sum follows by in-

duction on the element index, i, combined with the following stream deriva-

tive property of monomials_sum,

Lemma Str_nth_monomials_sum_stream_derivative :

∀ (i n t l a : nat),
Str_nth i (monomials_sum t l n a)′ =

Str_nth i ((monomials_sum t l (S n) a) ⊕ #(monomial t l n)).

which is also proved by induction on the element index i.

Combining make_tuple_monomials_eq_monomials_sum and rotated_-

moessner_entries_bisim_monomials_sum gives us the following corollary,

Corollary make_tuple_monomials_eq_rotated_moessner_entries :

∀ (l’ n’ t : nat),
make_tuple (Str_prefix (S l’) (monomials t n’ 0)) 0 =

Str_prefix l’ (rotated_moessner_entries n’ 0 0 t).

which clearly states that applying make_tuple on a prefix of monomials,

which is also the content of our vertical seed tuples, yields the first col-

umn of a corresponding Moessner triangle, expressed in terms of our char-

acteristic function rotated_moessner_entries. Thus, we have proved the

first relation between the inner workings of our triangle creation procedure

create_triangle_vertically, specifically make_tuple, and our characteris-

tic function rotated_moessner_entries, and monomials, which describe the

hypotenuse – or seed tuple – of a given Moessner triangle.

As we have now proved the base case of our characterization, which states

that the first column of any Moessner triangle is equal to the partial sums of
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the monomials enumerated by the hypotenuse of the previous triangle, which

in turn is also equal to the first column enumerated by rotated_moessner_-

entries, we move on to tackle the inductive step which relates the c’th and

(S c’)th column of a Moessner triangle, in terms of rotated_moessner_-

entries.

7.3.3 The subsequent columns of a Moessner triangle

Given that the subsequent columns of a Moessner triangle are created by

partial summation using make_tuple, as seen in the definition of create_-

triangle_vertically, we can simply state that partially summing the c’th

column enumerated by rotated_moessner_entries yields the (S c’)th col-

umn,

Corollary partial_sums_rotated_moessner_entries_bisim_next_column :

∀ (n c’ t : nat),
(stream_partial_sums (rotated_moessner_entries n 0 c’ t)) ∼
(rotated_moessner_entries n 0 (S c’) t).

since we have already proved the base case, c = 0, in terms of rotated_-

moessner_entries. As in the previous section, we can prove the bisimilarity

by showing that the two streams are element-wise equal,

Theorem Str_nth_partial_sums_rotated_moessner_entries :

∀ (i n c’ t : nat),
Str_nth i (stream_partial_sums

(rotated_moessner_entries n 0 c’ t)) =

Str_nth i (rotated_moessner_entries n 0 (S c’) t).

which is done by induction on the element index, i, and rewriting according

to the already proved properties of rotated_moessner_entry and the lemma,

Lemma Str_nth_rotated_moessner_entries_over_r :

∀ (i n r’ c’ t : nat),
Str_nth i (rotated_moessner_entries n (S r’) (S c’) t) =

Str_nth i (stream_partial_sums_acc

(rotated_moessner_entry n r’ (S c’) t)

(rotated_moessner_entries n (S r’) c’ t)).

which is itself proved by induction on the element index, i.

Lastly, we can prove that applying make_tuple on the cth column of

rotated_moessner_entries yields the (S c)th column,

Corollary make_tuple_rotated_moessner_entries :

∀ (l’ n’ c’ t : nat),
make_tuple (Str_prefix

(S l’) (rotated_moessner_entries n’ 0 c’ t)) 0 =

Str_prefix l’ (rotated_moessner_entries n’ 0 (S c’) t).

due to the equivalence proof of make_tuple and stream_partial_sums,

which, combined with the proof that the first column of any Moessner tri-

angle is enumerated by rotated_moessner_entries,
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Corollary make_tuple_monomials_eq_rotated_moessner_entries :

∀ (l’ n’ t : nat),
make_tuple (Str_prefix (S l’) (monomials t n’ 0)) 0 =

Str_prefix l’ (rotated_moessner_entries n’ 0 0 t).

gives us both the base case and inductive case of an implicit correctness

proof of rotated_moessner_entry, as the characteristic function of Moess-

ner’s sieve.

Next, we combine the proofs of this section with the introduction of a

new construct, repeat_make_tuple, which bridges the gap between create_-

triangle_vertically and rotated_moessner_entry, in order to state a

proper correctness proof of rotated_moessner_entry.

7.4 Correctness of Moessner entry

Building on the work of the previous sections, we now prove the correctness

of our characteristic function, rotated_moessner_entry, by first extracting

a new procedure, repeat_make_tuple, from create_triangle_vertically

which simplifies its core and bridges the gap in the equivalence proof of

create_triangle_vertically and rotated_moessner_entry. Furthermore,

we also prove an equivalence relation between Moessner’s sieve working on

streams, sieve, and our triangle creation procedures, create_triangle_-

horizontally and create_triangle_vertically, thus completing the chain

from the traditional version of Moessner’s sieve working on streams to our

characteristic function.

7.4.1 Simplifying the mechanics of create triangle vertically

Instead of trying to directly prove the correctness of rotated_moessner_-

entry with respect to create_triangle_vertically, we first investigate

whether our current definitions afford the introduction of simpler procedures

on which to build the correctness proof.

Returning to the definition of create_triangle_vertically,

Fixpoint create_triangle_vertically (xs ys : tuple) : triangle :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: (_ :: _) as xs’ ⇒
let ys’ := make_tuple ys x

in ys’ :: (create_triangle_vertically xs’ ys’)

end.

we note that reasoning about its behavior requires us to prove two base cases

along with an inductive case, which involves two tuples and the construction

of a triangle. However, if we could instead lift the core operation out of

the procedure and into a simpler one, we could reduce the complexity of our

proofs.
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We observe that by setting the xs of create_triangle_vertically to al-

ways be 0s, as in the case of the dual sieve, we can simplify the mechanics of

create_triangle_vertically to be the repeated application of make_tuple

on a vertical seed tuple, ys, with the accumulator value 0. This brings us to

the following procedure,

Fixpoint repeat_make_tuple (ys : tuple) (a n : nat) : tuple :=

match n with

| 0 ⇒ ys
| S n’ ⇒ repeat_make_tuple (make_tuple ys a) a n’
end.

which only takes a single seed tuple, ys, an accumulator, a, and the number of

applications of make_tuple, n, while presenting a much cleaner structure than

create_triangle_vertically, as it only has one base case and one inductive

case, and returns a tuple rather than a whole triangle.

Given that we have already proved how we can go from a seed tuple,

expressed in terms of monomials, to the initial column of a Moessner triangle,

expressed in terms of rotated_moessner_entries, and likewise go from the

c’th column to the (S c’)th column of a Moessner triangle, again expressed

in terms of rotated_moessner_entries, we seem to have a valid candidate

for stating and proving a general correctness proof of rotated_moessner_-

entry.

7.4.2 More columns of Moessner triangles

Having reduced the essence of create_triangle_vertically to the proce-

dure repeat_make_tuple, we are now in a position to formalize the natural

extension of make_tuple_rotated_moessner_entries,

Theorem repeat_make_tuple_rotated_moessner_entries :

∀ (c l n t : nat),
repeat_make_tuple

(Str_prefix (c + l) (rotated_moessner_entries n 0 0 t)) 0 c =

Str_prefix l (rotated_moessner_entries n 0 c t).

which states that if we start from the first column generated by rotated_-

moessner_entries, of length (c + l), and apply make_tuple c times, we get

the cth column of rotated_moessner_entries of length l, as we remove one

element of the tuple per application of make_tuple.

The proof follows by induction on the column index, c, and the following

helper lemma,

Lemma shift_make_tuple_in_repeat_make_tuple :

∀ (ys : tuple) (n a : nat),
make_tuple (repeat_make_tuple ys a n) a =

repeat_make_tuple (make_tuple ys a) a n.

which formalizes an associative property of make_tuple over repeat_make_-

tuple, and is proved by induction on the number of application of make_-
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tuple, n. Lastly, due to the relation between monomials an rotated_-

moessner_entries, we obtain the following corollary,

Corollary repeat_make_tuple_monomials_eq_moessner_entries :

∀ (c l n t : nat),
repeat_make_tuple

(Str_prefix (S c + l) (monomials t n 0)) 0 (S c) =

Str_prefix l (rotated_moessner_entries n 0 c t).

from our proof of repeat_make_tuple_rotated_moessner_entries, which

states that applying make_tuple (S c) times on a prefix of monomials, repre-

senting our set of potential seed tuples, yields a corresponding prefix of the

cth column enumerated by rotated_moessner_entries.

With this strong relation between repeat_make_tuple and rotated_-

moessner_entries in our hands, all we need to do to bridge the gap be-

tween create_triangle_vertically and rotated_moessner_entry, in or-

der to prove the correctness of rotated_moessner_entry, is to prove that

repeat_make_tuple is equivalent to create_triangle_vertically, when xs

is a tuple of 0s.

7.4.3 Correctness proofs of repeat-make-tuple
and rotated-moessner-entry

While we have proved that applying repeat_make_tuple on monomials yields

a result in terms of rotated_moessner_entries, we still need to prove that

repeat_make_tuple does indeed have an equivalence relation to create_-

triangle_vertically in order to finish our correctness proofs of rotated_-

moessner_entry.

We formulate the equivalence relation between repeat_make_tuple and

create_triangle_vertically by stating that applying make_tuple on a tu-

ple, ys, (S j) times yields the same result as the jth column of the triangle

created by applying create_triangle_vertically on ys as the vertical seed

tuple and a tuple of 0s as the horizontal seed tuple,

Theorem correctness_of_repeat_make_tuple :

∀ (j : nat) (ys : tuple),
(repeat_make_tuple ys 0 (S j)) =

(nth j (create_triangle_vertically

(tuple_constant (length ys) 0)

ys)

[]).

The proof is done by induction on the column index, j, followed by case anal-

ysis on the tuple, ys. Lastly, as in the case of repeat_make_tuple_rotated_-

moessner_entries, we also need a shift-like property of make_tuple with

respect to create_triangle_vertically,
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Lemma shift_make_tuple_create_triangle_vertically :

∀ (j’ : nat) (ys : tuple),
make_tuple

(nth j’

(create_triangle_vertically

(tuple_constant (length ys) 0) ys) []) 0 =

nth (S j’)

(create_triangle_vertically

(tuple_constant (length ys) 0) ys) [].

which is also proved by induction on the column index j, thus finishing the

proof correctness_of_repeat_make_tuple.

Having proved the correctness of repeat_make_tuple, we now have an

equivalence proof between rotated_moessner_entry and repeat_make_-

tuple, and an equivalence proof between repeat_make_tuple and create_-

triangle_vertically, thus all we need to prove the correctness of rotated_-

moessner_entry is to compose the two proofs into one. As such, our fi-

nal proof states that the ith entry of the jth column created by create_-

triangle_vertically, when applied on a vertical seed tuple characterized

by monomials, can be computed by rotated_moessner_entry when letting

the row index be equal to i and the column index equal to j,

Theorem correctness_of_rotated_moessner_entry :

∀ (i j r t : nat),
j ≤ S r →
S i ≤ S r - j →
(nth i

(nth j

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0)))

[])

0) =

rotated_moessner_entry r i j t.

The theorem follows by rewriting according to correctness_of_repeat_-

make_tuple, proved above, and Str_nth_rotated_moessner_entries,

proved in Section 7.2.2, along with a modified version of repeat_make_-

tuple_monomials_eq_moessner_entries,

Lemma repeat_make_tuple_monomials_eq_moessner_entries_general :

∀ (k j n t : nat),
j ≤ k →
Str_prefix (k - j) (rotated_moessner_entries n 0 j t) =

repeat_make_tuple (Str_prefix (S k) (monomials t n 0)) 0 (S j).

Proving the generalization of repeat_make_tuple_monomials_eq_-

moessner_entries is done by induction on the indices k and j, while

rewriting with the existing proofs of repeat_make_tuple_monomials_-

eq_moessner_entries, shift_make_tuple_in_repeat_make_tuple, and
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make_tuple_rotated_moessner_entries. This proofs the correctness of our

characteristic function.

Having proved correctness_of_rotated_moessner_entry, we are now

certain that our characteristic function is indeed correct within the bounds of a

given Moessner triangle created by create_triangle_vertically. However,

we still have not proved the correctness of create_triangle_vertically

with respect to sieve.

7.4.4 Correctness proof of create-triangle-vertically

In Chapter 4 we introduced Moessner’s sieve working on streams, repre-

sented by sieve_step and sieve,

Definition sieve_step (i k : nat) (σ : Stream nat) :=

stream_partial_sums (drop i k σ ).

and

Fixpoint sieve (i k n : nat) (σ : Stream nat) : Stream nat :=

match n with

| 0 ⇒ sieve_step i k σ

| S n’ ⇒ sieve_step i k (sieve (S i) (S k) n’ σ )

end.

which we now prove to be equivalent to make_tuple and repeat_make_tuple,

respectively, thus transitively proving the correctness of our triangle cre-

ation procedures, create_triangle_horizontally and create_triangle_-

vertically.

In order to state an equivalence relation between make_tuple and sieve_-

step, we first observe that sieve_step behaves like stream_partial_sums,

for all stream prefixes having length less than the drop index i. Furthermore,

we have already proved an equivalence relation between make_tuple and

stream_partial_sums_acc,

Theorem equivalence_of_make_tuple_and_stream_partial_sums_acc :

∀ (l’ a : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l’) σ ) a =

Str_prefix l’ (stream_partial_sums_acc a σ ).

allowing us to formulate the following theorem,

Theorem equivalence_of_make_tuple_and_sieve_step_gen :

∀ (l i k a : nat) (σ : Stream nat),

l ≤ i →
make_tuple (Str_prefix (S l) σ ) a =

Str_prefix l ((sieve_step i k σ ) ⊕ #a).

which states that applying make_tuple on the prefix of a stream, σ, with an

accumulator, a, is equivalent to the prefix of the sum of sieve_step applied

to σ and the constant stream #a, when the length of the prefix is less than or
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equal to the drop index, l ≤ i. The proof follows from the equivalence be-

tween make_tuple and stream_partial_sums_acc and the following helper

lemma,

Lemma Str_prefix_drop_gen :

∀ (l i k : nat) (σ : Stream nat),

l ≤ i →
Str_prefix l (drop i k σ ) =

Str_prefix l σ .

which captures the observation made between Str_prefix and drop. As a

corollary, we get the slightly simpler equivalence relation,

Corollary equivalence_of_make_tuple_and_sieve_step :

∀ (l : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l) σ ) 0 =

Str_prefix l ((sieve_step l (S l) σ )).

between make_tuple and sieve_step.

Now that we have captured the relation between sieve_step and make_-

tuple, we are in position to state an equivalence relation between sieve and

repeat_make_tuple,

Theorem equivalence_of_repeat_make_tuple_and_sieve :

∀ (i n : nat) (σ : Stream nat),

n ≤ i →
repeat_make_tuple (Str_prefix (S i) σ ) 0 (S n) =

Str_prefix (i - n) (sieve i (S i) n σ ).

We prove the equivalence between repeat_make_tuple and sieve by case

analysis on the drop index, i, followed by induction on the number of make_-

tuple applications, n. Besides equivalence_of_make_tuple_and_sieve_-

step, the proof also relies on a helper lemma similar to the one between

Str_prefix and drop,

Lemma Str_prefix_sieve :

∀ (n l i : nat) (σ : Stream nat),

l ≤ i →
Str_prefix l (sieve (S i) (S (S i)) n σ ) =

Str_prefix l (sieve (S (S i)) (S (S (S i))) n σ ).

which essentially states that the prefix of two different applications of sieve

on the same stream, σ, are equivalent as long as the drop index i is greater

than or equal to the prefix length l. The proof follows by induction on the

number of applications of sieve_step, n.

Lastly, due to the correctness of repeat_make_tuple and the equivalence

of create_triangle_vertically and create_triangle_horizontally, we

can prove that sieve is also equivalent to create_triangle_horizontally,
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Corollary equivalence_of_sieve_and_create_triangle_horizontally :

∀ (n i : nat) (σ : Stream nat),

n ≤ i →
Str_prefix (i - n) (sieve i (S i) n σ ) =

nth n (create_triangle_horizontally

(Str_prefix (S i) σ )

(tuple_constant

(length (Str_prefix (S i) σ )) 0)) [].

by rewriting according to equivalence_of_repeat_make_tuple_and_sieve,

correctness_of_repeat_make_tuple, and equivalence_of_vertical_-

and_horizontal_triangle_swap which proves the corollary, and thus the

correctness of create_triangle_horizontally and create_triangle_-

vertically, with respect to sieve.

We have now finally proved the correctness of all procedures relating to

Moessner’s sieve and its dual, starting from sieve and create_triangle_-

vertically all the way to the helper procedure repeat_make_tuple and our

characteristic function rotated_moessner_entry.

7.5 Summary

In this chapter we have introduced two characteristic functions of Moess-

ner’s sieve, moessner_entry and rotated_moessner_entry, which computes

the entries of a given Moessner triangle without having to compute the pre-

fix of the sieve. Furthermore, we have presented correctness proofs for the

characteristic function rotated_moessner_entry, with respect to create_-

triangle_vertically, and for the triangle creation procedure create_-

triangle_vertically, with respect to the traditional sieve procedure.

The characteristic functions were derived by observing that every Moess-

ner triangle behaves in a Pascal-like way combined with the fact that the val-

ues dropped in the traditional Moessner’s sieve enumerates the monomials

of the binomial expansion.

The correctness proof of rotated_moessner_entry was done by relating

the first column enumerated by rotated_moessner_entry to the partial sums

of the monomials of a binomial expansion and by relating the subsequent

columns enumerated by rotated_moessner_entry with the repeated appli-

cation of make_tuple on their prefixes. Furthermore, the correctness proof re-

quired the introduction of an auxiliary procedure, repeat_make_tuple, which

simplified the mechanics of create_triangle_vertically and thus eased the

reasoning needed to complete the proof.

Lastly, the correctness proof of create_triangle_vertically, with re-

spect to sieve, was proved by first establishing an equivalence between

sieve_step and make_tuple, followed by the utilization of the procedure

repeat_make_tuple to shorten the gap between the operational description

of create_triangle_vertically and sieve, thus allowing the completion of

the correctness proof.
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Dependency graph of the proofs introduced in Chapter 7. Note again a cluster

of scaffolding formalizations that results in a sparse graph connecting the

individual theorems.
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Chapter 8

Proving Moessner’s theorem

Every scientist worthy of the name,
but above all a mathematician,

experiences in his work the same sensations as an artist;
his pleasures are as great and of the same nature.

Henri Poincare

The goal of this chapter is to prove Moessner’s theorem adapted to the

dual sieve, which we call Moessner’s idealized theorem. Hence, we prove

Moessner’s idealized theorem as a corollary of a more general theorem that

characterizes the hypotenuse of the nth Moessner triangle created by the dual

of Moessner’s sieve.

The chapter is structured as follows. In Section 8.1, we characterize the

hypotenuse of a Moessner triangle, created with one of our triangle creation

procedures, in terms of its seed tuples. Using the characterization of the

hypotenuse we move on to characterize the nth triangle created by the dual

sieve, in terms of the triangle creation procedure, in Section 8.2. With these

proofs, we are able to characterize the hypotenuse of the nth triangle created

by the dual of Moessner’s sieve, which gives us Moessner’s idealized theorem

as a corollary.

8.1 Characterizing the hypotenuse

of a Moessner triangle

In this section, we first prove an equivalence relation between monomial

and our characteristic functions, moessner_entry and rotated_moessner_-

entry, which we then use to prove a characterization of the hypotenuse of

a Moessner triangle, created with create_triangle_vertically, in terms of

monomials.
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8.1.1 Equivalence of moessner-entry and monomial

While we have proved that partially summing the monomials of a bino-

mial expansion yields the first column of a Moessner triangle enumerated by

rotated_moessner_entry, and likewise proved that partially summing the

cth column yields the (S c)th column, both expressed in terms of rotated_-

moessner_entry, we have not yet shown a relation between the hypotenuse

of a Moessner triangle and our characteristic functions, moessner_entry and

rotated_moessner_entry.

Now, if we draw the second Moessner triangle created by applying Moess-

ner’s sieve of rank 5 on the stream of 1s,

1 1 1 1 1

5 6 7 8

11 17 24

15 32

16

we observe that the hypotenuse of the triangle, (1, 8, 24, 32, 16), enumerates

the monomials of a binomial expansion, (1 + t)r, when t = 2 and r = 4. The

same expansion is also enumerated by the stream moessner_entries,

CoFixpoint moessner_entries (r n k t : nat) : Stream nat :=

(moessner_entry r n k t) :::

(moessner_entries r n (S k) t).

in the opposite order, (16, 32, 24, 8, 1), when given similar arguments. Since

this relation can be observed in the general case, we state the following propo-

sition,

Corollary moessner_entry_eq_monomial :

∀ (n k t : nat),
k ≤ n →
moessner_entry n n (n - k) t =

monomial (S t) n k.

between moessner_entry and monomial, which captures the property above

as seen from the two entry indices, (n - k) and n. The proof follows as

a corollary of the equivalent statement of the relation between rotated_-

moessner_entry and monomial,

Theorem rotated_moessner_entry_eq_monomial :

∀ (n k t : nat),
k ≤ n →
rotated_moessner_entry n k (n - k) t =

monomial (S t) n k.

which is proved using nested induction on the row and column indices, n and

k, along with the following helper theorem,
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Theorem rotated_moessner_entry_rank_decompose_by_row :

∀ (r c n t : nat),
rotated_moessner_entry (S n) (S r) c t =

t ∗ rotated_moessner_entry n r c t +
rotated_moessner_entry n (S r) c t.

which captures a new relation between the entries of two Moessner triangles

having the same triangle index, t, but different ranks, n and (S n). We post-

pone the proof of this theorem to the next chapter, which we devote entirely

to this new property, as it opens up a range of new observations and proofs

to be made about Moessner’s sieve. Lastly, the following modified version of

Pascal’s rule,

Lemma rotated_moessner_entry_constrained_negative_Pascal_s_rule :

∀ (n’ k’ t : nat),
S k’ ≤ n’ →
rotated_moessner_entry n’ k’ (n’ - k’) t +

rotated_moessner_entry n’ (S k’) (n’ - S k’) t =

rotated_moessner_entry n’ (S k’) (n’ - k’) t.

for rotated_moessner_entry, is needed in order to complete the proof of

rotated_moessner_entry_eq_monomial. The proof follows by nested induc-

tion on the row and column indices, n and k.

As a consequence of having proved rotated_moessner_entry_eq_-

monomial, we are actually in position to state and prove the following simpli-

fied version of the binomial theorem,

Theorem Binomial_theorem :

∀ (t n : nat),
(S t) ^ n = Str_nth (S n) (stream_partial_sums (monomials t n 0)).

which states that the last element of the partial sums of a binomial

expansion yields the corresponding exponentiation as stated by the bi-

nomial theorem. The proof follows by a series of rewrites using the

existing proofs: stream_partial_sums_acc_monomials_bisim_monomials_-

sum and Str_nth_monomials_sum_eq_rotated_moessner_entry along with

rotated_moessner_entry_eq_monomial and the lemma,

Lemma monomial_r_eq_n_implies_power :

∀ (t r : nat),
monomial t r r = t ^ r.

which is proved by rewriting according to the rules proved for the binomial_-

coefficient function.

8.1.2 The hypotenuse of create-triangle-vertically
expressed in terms of monomials

Having proved an equivalence relation between rotated_moessner_entry

and monomial, which describes the individual entries of the hypotenuse of
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a Moessner triangle, we move on to prove a relation between create_-

triangle_vertically and monomials, which captures the whole hypotenuse

of a Moessner triangle.

In order to do so, we once again start by looking at an application example

of Moessner’s sieve, specifically the first two Moessner triangles of rank 4 and

their seed tuples, generated by the dual of Moessner’s sieve,

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 4 5 6 7 8

0 1 3 6 6 11 17 24

0 1 4 4 15 32

0 1 1 16

0 0

(8.1)

Here, we want to describe the two hypotenuses, (1, 4, 6, 4, 1) and

(16, 32, 24, 8, 1), in terms of the two vertical seed tuples, (1, 0, 0, 0, 0, 0) and

(1, 4, 6, 4, 1, 0). Now, we have already observed that the vertical seed tuple of

any Moessner triangle enumerates the monomials of the binomial expansion

(1 + t)r, where t is the triangle index and r is the rank of the triangle. Fur-

thermore, we know that partially summing monomials yields monomials_sum,

Corollary stream_partial_sums_monomials_bisim_monomials_sum :

∀ (t r n : nat),
stream_partial_sums (monomials t r n) ∼
monomials_sum t r n 0.

which is equal to the first column of rotated_moessner_entries,

Corollary rotated_moessner_entries_bisim_monomials_sum :

∀ (n t : nat),
monomials_sum t n 0 0 ∼
rotated_moessner_entries n 0 0 t.

Likewise, we also know that the hypotenuse of a given Moessner triangle

enumerates the monomials of the same binomial expansion above, (1 + t)r,

in the opposite order, which is also the case for moessner_entries. Thus,

if we perform the first application of make_tuple, of the create_triangle_-

vertically procedure, on both triangles in Figure 8.1, we get the following

result,

0 0 0 0 0

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

0 0 0 0 0

1 1 1 1 1

5 6 7 8

11 17 24

15 32

16

(8.2)
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where the seed tuples correspond to the first columns enumerated by

rotated_moessner_entries, while the hypotenuses correspond to the

streams enumerated by moessner_entries, when increasing the start index

by 1. If we translate the general case of the state shown in Formula 8.2 to

Coq, we get the following theorem,

Theorem hypotenuse_create_triangle_vertically_rotated_moessner_entries :

∀ (n r c t : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S n) 0)

(Str_prefix (S n) (rotated_moessner_entries r 0 c t))) =

Str_prefix n (moessner_entries r (c + n) (S c) t).

which captures the relation between the partials sums of a seed tuple, passed

to create_triangle_vertically, expressed in terms of rotated_moessner_-

entries, and the tail of the original hypotenuse of the created triangle, ex-

pressed in terms of moessner_entries. The proof of the above relation is

done by induction on the rank, n, and rewriting with make_tuple_rotated_-

moessner_entries, which states that applying make_tuple on the c column

enumerated by rotated_moessner_entry yields the (S c)th column. Now, if

we take one step backwards and state the seed tuple in terms of monomials,

we get,

Theorem hypotenuse_create_triangle_vertically_monomials :

∀ (n r t : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S n)) 0)

(Str_prefix (S (S n)) (monomials t r 0))) =

(Str_prefix (S n) (moessner_entries r n 0 t)).

where (S c) has been substituted with 0 and the prefix sizes have been

increased by 1. The proof of hypotenuse_create_triangle_vertically_-

monomials follows from hypotenuse_create_triangle_vertically_-

rotated_moessner_entries and rotated_moessner_entries_bisim_-

monomials_sum.

The last piece of the puzzle we need is to define the hypotenuse in terms of

monomials instead of moessner_entries. As already observed, moessner_-

entries and monomials enumerate the same sequence of values in reverse or-

der, when n = r in hypotenuse_create_triangle_vertically_monomials.

Thus, we can state the following theorem,

Theorem hypotenuse_create_triangle_vertically :

∀ (r t’ : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t’ r 0))) =

(rev (Str_prefix (S r) (monomials (S t’) r 0))).
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which captures that passing a list of monomials of the binomial expansion

(1 + t)r, where t = t′, to create_triangle_vertically, returns a Moessner

triangle whose hypotenuse is the same binomial expansion, where t = (S t′).

The proof of hypotenuse_create_triangle_vertically follows from

hypotenuse_create_triangle_vertically_monomials and the proof,

Lemma rev_Str_prefix_moessner_entries_eq_monomials :

∀ (r t’ : nat),
Str_prefix (S r) (moessner_entries r r 0 t’) =

rev (Str_prefix (S r) (monomials (S t’) r 0)).

stating the reverse relation between monomials and moessner_entries. In

order to prove rev_Str_prefix_moessner_entries_eq_monomials, we need

a helper procedure,

Fixpoint monomials_list (t r n : nat) : list nat :=

match n with

| 0 ⇒ [monomial t r 0]
| S n’ ⇒ (monomial t r (S n’)) :: (monomials_list t r n’)
end.

which enumerates the same values as monomials, but in the opposite order.

The role of monomials_list then becomes to connect moessner_entries and

monomials by proving a relation that connects the two to monomials_list.

As we have defined monomials_list to enumerate the same monomials

as monomials, but in reverse order, we can state the following simple lemma,

Lemma monomials_list_eq_rev_Str_prefix_monomials :

∀ (n r t : nat),
monomials_list t r n =

rev (Str_prefix (S n) (monomials t r 0)).

which we prove by induction on the length, n, combined with the helper

lemma,

Lemma rev_Str_prefix_monomials :

∀ (l n r t : nat),
rev (Str_prefix (S l) (monomials t r n)) =

monomial t r (n + l) :: rev (Str_prefix l (monomials t r n)).

which we prove similarly by induction on the prefix length, l. Having proved

the relation between monomials and monomials_list, our last step is to prove

the relation between monomials_list and rotated_moessner_entries.

Similar to the lemma above, we can state the following relation between

monomials_list and moessner_entries,

Lemma monomials_list_eq_Str_prefix_moessner_entries :

∀ (l n t’ : nat),
l ≤ n →
Str_prefix (S l) (moessner_entries n n (n - l) t’) =

monomials_list (S t’) n l.
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for which we are mainly interested in the case where l = n, as this cov-

ers the whole expansion. The proof of monomials_list_eq_Str_prefix_-

moessner_entries is done by induction on the length, l, using the already

proved equivalence relation,

Corollary moessner_entry_eq_monomial :

∀ (n k t : nat),
k ≤ n →
moessner_entry n n (n - k) t =

monomial (S t) n k.

for rewriting between the list heads expressed in terms of moessner_entries

and monomial.

By proving rev_Str_prefix_moessner_entries_eq_monomials, we get

the last piece needed to prove,

Theorem hypotenuse_create_triangle_vertically :

∀ (r t’ : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t’ r 0))) =

(rev (Str_prefix (S r) (monomials (S t’) r 0))).

which consequently means that we can now reason about any Moessner tri-

angle created by applying create_triangle_vertically on a seed tuple ex-

pressed in terms of monomials.

With this vital proof in hand, our next step is to scale the proof from

one Moessner triangle to a list of Moessner triangles, i.e., to prove the re-

lation holds for the nth Moessner triangle created by create_triangles_-

vertically, from which Moessner’s idealized theorem follows as a corollary.

8.2 Proving Moessner’s theorem

Having proved a relation between the seed tuple and hypotenuse of any

Moessner triangle created with the triangle creation procedure create_-

triangle_vertically, we move on to describe the nth triangle created

with create_triangles_vertically, in terms of the procedure create_-

triangle_vertically and monomials. Being able to characterize the hy-

potenuse of the nth Moessner triangle, we finish the chapter by proving

Moessner’s idealized theorem as a corollary of this more general theorem.

8.2.1 A list of Moessner triangles

If we return to the theorem hypotenuse_create_triangle_vertically, we

note that applying create_triangle_vertically on (Str_prefix (S (S

r)) (monomials t r 0)), as the seed tuple, yields the hypotenuse (rev

(Str_prefix (S r) (monomials (S t) r 0))), which combined with the

fact that create_triangles_vertically appends a 0 and reverses the result,
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Fixpoint create_triangles_vertically (n : nat) (xs ys : tuple)

: list triangle :=

match n with

| 0 ⇒ [create_triangle_vertically xs ys]
| S n’ ⇒
let ts := create_triangle_vertically xs ys

in ts :: (create_triangles_vertically n’ xs

(rev (cons 0 (hypotenuse ts))))

end.

suggests that we can concisely describe the nth triangle as the one created by

applying create_triangle_vertically on the seed tuple Str_prefix (S (S

r)) (monomials (n + t) r 0),

Theorem nth_triangle_create_triangles_vertically :

∀ (n r t : nat),
nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0)))

[] =

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials (n + t) r 0))).

Proving nth_triangle_create_triangles_vertically is done by induction

on the triangle index, n, combined with rewriting using the just proved theo-

rem hypotenuse_create_triangle_vertically. Now that we are able to rea-

son about the (n + t)th Moessner triangle created by create_triangles_-

vertically, starting from the tth triangle, we have been given a powerful

theorem with which we can now prove Moessner’s idealized theorem as a

corollary.

8.2.2 Moessner’s idealized theorem

In order to prove Moessner’s idealized theorem, we first prove the following

corollary,

Corollary bottom_element_of_nth_triangle_is_power :

∀ (n r : nat),
nth 0

(hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials 0 r 0)))

[]))

1 = (S n) ^ r.
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which captures the fact that the bottom-most element of the nth triangle, i.e.,

the last element of the first column, starting from the triangle t = 0, cre-

ated by our dual sieve, is equal to (S n)r, where n is the triangle index and

r the rank of the Moessner triangle. The proof follows by rewriting using

nth_triangle_create_triangles_vertically and hypotenuse_create_-

triangle_vertically along with rev_monomials_list_eq_monomials and

monomial_r_eq_n_implies_power.

As Moessner’s sieve is traditionally modeled as a stream, we take the left-

hand side of the proposition in bottom_element_of_nth_triangle_is_power

and construct a Stream which enumerates its result for increasing values of

n. This gives us the following procedure,

CoFixpoint moessner_stream (n r : nat) : Stream nat :=

(nth 0 (hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials 0 r 0)))

[])) 1)

::: (moessner_stream (S n) r).

which enumerates the same values as the result sequence of the traditional

version of Moessner’s sieve.

If we now define an appropriate stream of successive powers,

CoFixpoint successive_powers (b e : nat) : Stream nat :=

(S b) ^ e ::: successive_powers (S b) e.

where b is the base and e is the exponent, we can state a clear version of

Moessner’s idealized theorem,

Theorem Moessner_s_theorem :

∀ (b e : nat),
moessner_stream b e ∼ successive_powers b e.

which follows by coinduction, where we rewrite with bottom_element_of_-

nth_triangle_is_power in order to prove that the two initial values are

equal, while the coinduction hypothesis proves that the stream derivatives

are bisimilar. This concludes the proof of Moessner’s theorem.

8.3 Summary

In this chapter, we have prove Moessner’s theorem adapted to our dual sieve,

which we have named Moessner’s idealized theorem. Consequently, we

proved Moessner’s idealized theorem as a corollary of a more general the-

orem that characterizes the hypotenuse of the nth Moessner triangle created

by our dual of Moessner’s sieve, create_triangles_vertically.

The proof of Moessner’s idealized theorem was done by first proving an

equivalence between rotated_moessner_entry and monomial, which led to
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the characterization of the hypotenuse of a Moessner triangle created by

create_triangle_vertically, expressed in terms of the monomials proce-

dure. By extending the characterization to describe the nth triangle created

by create_triangles_vertically in terms of create_triangle_vertically

and monomials, we obtained a more general proof characterizing the output

of Moessner’s sieve from which Moessner’s idealized theorem then followed

as a corollary.
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Dependency graph of the proofs introduced in Chapter 8. Notice the clear

flow from top to bottom of the theorems driving the chapter, each surrounded

by a small set of helper lemmas.
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Chapter 9

A grid of triangles

The trick, William Potter,
is not minding that it hurts.

Robert Bolt, Lawrence of Arabia

However vast the darkness,
we must supply our own light.

Stanley Kubrick

In this chapter, we introduce a new combinatorial property which connects

Moessner triangles of different rank but with the same triangle index, thus

acting as a dual to the existing connection between Moessner triangles of the

same rank but different triangle index. This duality proposes the view of

Moessner’s sieve as generating a 2-dimensional grid of triangles instead of

just a 1-dimensional sequence of triangles. Specifically, we first introduce a

rank-upgrading procedure which takes a seed tuple of a Moessner triangle

of rank n and returns the seed tuple of the same Moessner triangle of rank

(S n). Furthermore, we also prove several rank decomposition rules, which

describe an entry of a Moessner triangle of rank (S n) as a sum of entries in

the same Moessner triangle of rank n.

The chapter is structured as follows. In Section 9.1, we motivate the idea

of viewing Moessner’s sieve as generating a grid of triangles, and introduce a

rank-upgrading procedure, which takes a seed tuple of a Moessner triangle of

rank n and returns the seed tuple of the same Moessner triangle of rank (S n).

Furthermore, we also prove the correctness of the rank-upgrading procedure

and demonstrate its use. As a dual to the first section, we introduce a set

of rank decomposition rules in Section 9.2, which allows us to describe any

entry of a Moessner triangle of rank (S n) as a sum of entries in the same

Moessner triangle of rank n. We prove the decomposition rules in terms of our

characteristic functions, moessner_entry and rotated_moessner_entry, and

obtain the equivalent rules for create_triangle_vertically as corollaries.
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9.1 Generating a grid of triangles with Moessner’s sieve

In this section, we propose the idea of viewing the output of Moessner’s

sieve as a grid of triangles by first observing a connection between the seed

tuples of the tth Moessner triangle of different rank, n and (S n). Using

this observation, we introduce a rank-upgrading procedure, upgrade_seed_-

tuple, which takes a seed tuple of a Moessner triangle of rank n and returns

the seed tuple of the same Moessner triangle of rank (S n). Furthermore, we

prove the correctness of the upgrade_seed_tuple procedure and demonstrate

its application.

9.1.1 A connection between seed tuples

In order to motivate the idea of Moessner’s sieve generating a grid of trian-

gles, we start by examining the first three Moessner triangles of rank 3 and 4,

along with their respective seed tuples,

0 0 0 0 0

1 1 1 1 1

0 1 2 3

0 1 3

0 1

0

0 0 0 0 0 0

1 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

0 0 0 0 0

1 1 1 1 1

3 4 5 6

3 7 12

1 8

0

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6 7 8

6 11 17 24

4 15 32

1 16

0

0 0 0 0 0

1 1 1 1 1

6 7 8 9

12 19 27

8 27

0

0 0 0 0 0 0

1 1 1 1 1 1

8 9 10 11 12

24 33 43 54

32 65 108

16 81

0

Now, for both sieves we know that we can move from left to right, i.e., increase

the index of the triangles, but we do not know if we can move from top to

bottom, i.e., increase the rank of the triangles. However, if we remember that

we can characterize each seed tuple as an instance of the binomial expansion

(1 + t)n, where n is the rank of the Moessner triangle and t is the triangle

index, we search for a combinatorial property that allows us to go from the

seed tuple corresponding to the binomial expansion where n = n′ to the

seed tuple corresponding to the binomial expansion where n = (S n′), thus

obtaining the needed vertical movement in the grid of triangles.

If we examine the two seed tuples generated by the first Moessner tri-

angles, (1, 3, 3, 1) and (1, 4, 6, 4, 1), we observe that we can obtain the second
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seed tuple from the first using the following scheme,

1 = 1 + 0

4 = 3 + 1

6 = 3 + 3

4 = 1 + 3

1 = 0 + 1,

(9.1)

where we obtain the (S i)th element of rank (S n) by adding the (S i)th ele-

ment of rank n plus the value of an accumulator which contains the value of

the ith element of rank n – coincidentally this calculation is also equivalent to

an application of Pascal’s rule in Pascal’s triangle for these values. However,

when we examine the next pair of seed tuples, (1, 6, 12, 8) and (1, 8, 24, 32, 16),

we realize that the above scheme is insufficient for calculating the second tu-

ple from the first. Fortunately, we receive a hint from the fact that the last

elements of the two tuples are equal to 23 and 24, respectively, which means

that we can obtain the latter by multiplying the former by 2. With this in

mind, we change the scheme accordingly and get,

16 = 2 · 8 + 0

32 = 2 · 12 + 8

24 = 2 · 6 + 12

8 = 2 · 1 + 6

1 = 2 · 0 + 1,

(9.2)

which now yields the desired result. It turns out that this Pascal-like property,

of adding the two nearest entries of the seed tuple of rank n′, holds in general

if we substitute the 2 with (1+ t). For example, if we look at the hypotenuses

of the third pair of triangles, where t = 2, we get the following calculations,

81 = (1 + 2) · 27 + 0

108 = (1 + 2) · 27 + 27

54 = (1 + 2) · 9 + 27

12 = (1 + 2) · 1 + 9

1 = (1 + 2) · 0 + 1,

(9.3)

which confirm the correctness of the formula – this property can also be seen

from the multiplicative property, (1 + t)1+n = (1 + t) · (1 + t)n, of the bino-

mial expansion. Thus, we have now demonstrated how to obtain the seed

tuple of rank (S n), when given the seed tuple of rank n, which means that

we can now move in a vertical direction as well as a horizontal direction in

the grid of triangles shown at the beginning of this section.

Having covered the motivation for perceiving Moessner’s sieve as gener-

ating a grid of triangles, rather than a sequence of triangles, we move on to
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construct a rank-upgrading procedure, which given a seed tuple of rank n

returns the corresponding seed tuple of rank (S n), thus implementing the

vertical direction discussed above.

9.1.2 Rank upgrading procedure

When taking the description of the rank-upgrading procedure in the previous

section and translating it into Coq, we initially note that the procedure should

take a seed tuple, xs, an accumulator, a, and a triangle index, t, as inputs.

Furthermore, we want to pattern match on the structure of the seed tuple, xs,

as the procedure works by traversing the tuple and operating on its elements.

Lastly, we observe that for the base case of the pattern matching, xs = [], we

simply return a list containing just the accumulator, while in the inductive

case of the pattern matching, xs = x :: xs’, we add the accumulator, a, to

(S t) ∗ x and cons the intermediate result with the result of the recursive

call on xs’. Putting these pieces together we get the procedure,

Fixpoint upgrade_seed_tuple_aux (t a : nat) (xs : tuple) : tuple :=

match xs with

| [] ⇒ [a]
| x :: xs’ ⇒ (S t) ∗ x + a :: upgrade_seed_tuple_aux t x xs’
end.

for which we also define a function that initializes the accumulator to 0,

Definition upgrade_seed_tuple (t : nat) (xs : tuple) : tuple :=

upgrade_seed_tuple_aux t 0 xs.

such that the three examples in Figure 9.1-9.3 can be expressed as the propo-

sitions,

upgrade_seed_tuple 0 (rev (Str_prefix 4 (monomials 1 3 0))) =

rev (Str_prefix 5 (monomials 1 4 0)).

upgrade_seed_tuple 1 (rev (Str_prefix 4 (monomials 2 3 0))) =

rev (Str_prefix 5 (monomials 2 4 0)).

upgrade_seed_tuple 2 (rev (Str_prefix 4 (monomials 3 3 0))) =

rev (Str_prefix 5 (monomials 3 4 0)).

where the presence of rev is the result of the procedure having to read the

seed tuples from the bottom up. As in the case of our previous formalizations,

we now proceed by proving the correctness of our rank-upgrading procedure,

upgrade_seed_tuple, which corresponds to proving a generalization of the

three example propositions above.
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9.1.3 Correctness of rank upgrading procedure

To prove the correctness of our newly defined rank-upgrading procedure,

upgrade_seed_tuple, we use the knowledge of the previous section to char-

acterize the input and output of the procedure in terms of the monomials

function, which gives the following correctness proof,

Theorem correctness_of_upgrade_seed_tuple :

∀ (n t : nat),
upgrade_seed_tuple t (rev (Str_prefix (S n) (monomials (S t) n 0))) =

rev (Str_prefix (S (S n)) (monomials (S t) (S n) 0)).

which captures the relation between two seed tuples of rank n and (S n).

In order to prove correctness_of_upgrade_seed_tuple, we restate the

proof by first replacing the occurrences of monomialswith moessner_entries,

which is done by rewriting with the already proved lemma,

Lemma rev_Str_prefix_moessner_entries_eq_monomials :

∀ (r t’ : nat),
Str_prefix (S r) (moessner_entries r r 0 t’) =

rev (Str_prefix (S r) (monomials (S t’) r 0)).

followed by unfolding the definition of upgrade_seed_tuplewhich yields the

proposition,

S t ∗ moessner_entry n n 0 t
:: upgrade_seed_tuple_aux t (moessner_entry n n 0 t)

(Str_prefix n (moessner_entries n n 1 t)) =

Str_prefix (S (S n)) (moessner_entries (S n) (S n) 0 t)

that we subsequently turn into the correctness theorem of the underlying

rank-upgrading procedure upgrade_seed_tuple_aux,

Theorem correctness_of_upgrade_seed_tuple_aux :

∀ (n t : nat),
(S t) ∗ (moessner_entry n n 0 t)

:: upgrade_seed_tuple_aux t (moessner_entry n n 0 t)

(Str_prefix n (moessner_entries n n 1 t)) =

Str_prefix (S (S n)) (moessner_entries (S n) (S n) 0 t).

However, proving the correctness of upgrade_seed_tuple_aux requires us to

once again state the proof a bit differently. As such, we replace moessner_-

entries with monomials_list by rewriting with,

Lemma monomials_list_eq_Str_prefix_moessner_entries :

∀ (l n t’ : nat),
l ≤ n →
Str_prefix (S l) (moessner_entries n n (n - l) t’) =

monomials_list (S t’) n l.

where l = n, giving us a new correctness proof of upgrade_seed_tuple_aux,
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Lemma correctness_of_upgrade_seed_tuple_aux_list :

∀ (n r t : nat),
upgrade_seed_tuple_aux

t (monomial (S t) r (S n)) (monomials_list (S t) r n) =

monomials_list (S t) (S r) (S n).

with respect to monomials_list,

Fixpoint monomials_list (t r n : nat) : list nat :=

match n with

| 0 ⇒ [monomial t r 0]
| S n’ ⇒ (monomial t r (S n’)) :: (monomials_list t r n’)
end.

and parameterized over both the rank and entry indices, n and r, instead of

just the rank, n. Having stated a correctness proof of upgrade_seed_tuple_-

aux, where n and r are independent, we can now prove it by induction on the

rank, n, and rewriting according to,

Theorem monomial_decompose_rank :

∀ (t r’ n’ : nat),
monomial t (S r’) (S n’) =

monomial t r’ (S n’) + t ∗ monomial t r’ n’.

which captures the Pascal-like decomposition rule of the monomials in the

seed tuples, demonstrated in the previous section. The proof of monomial_-

decompose_rank follows from Pascal’s rule,

Theorem Pascal_s_rule’ :

∀ (n’ k’ : nat),
C(S n’, S k’) = C(n’, S k’) + C(n’, k’).

thus proving the correctness of upgrade_seed_tuple_aux in terms of

monomials_list.

Having proved correctness_of_upgrade_seed_tuple_aux_list, we can

then prove correctness_of_upgrade_seed_tuple_aux by case analysis on

the rank, n, and rewriting using the properties of the monomial function. Fi-

nally, we obtain the proof of correctness_of_upgrade_seed_tuple as we

have already reduced the proof to a proposition stated in terms of upgrade_-

seed_tuple_aux.

Lastly, as a corollary of the correctness proofs, we can prove that applying

upgrade_seed_tuple on the hypotenuse of the tth Moessner triangle of rank

n is equivalent to the hypotenuse of the tth Moessner triangle of rank (S n),

Corollary upgrade_seed_tuple_create_triangle_vertically :

∀ (n t : nat),
upgrade_seed_tuple

t (hypotenuse

(create_triangle_vertically

(tuple_constant (S (S n)) 0)

(Str_prefix (S (S n)) (monomials t n 0)))) =
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hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S n))) 0)

(Str_prefix (S (S (S n))) (monomials t (S n) 0))).

thus demonstrating how the procedure upgrade_seed_tuple can be used to

switch the rank between calls to create_triangle_vertically.

Having proved the correctness of upgrade_seed_tuple and demonstrated

its use, we take a step back and investigate the dual of this section. Specifi-

cally, our next step is to prove how to decompose the entries of the tth Moess-

ner triangle of rank (S n) in terms of the same Moessner triangle of rank

n.

9.2 Rank decomposition of Moessner triangles

In this section, we take the dual approach of the previous section by first

motivating the introduction of a series of rank decomposition rules, which

allows us to describe the entries of a Moessner triangle of rank (S n) in terms

of the same Moessner triangle of rank n. Having covered the motivation

for the rank decomposition rules, we then formalize them in Coq using our

characteristic function, rotated_moessner_entry, and afterwards adapt the

rules to our triangle creation procedure, create_triangle_vertically, as

corollaries.

9.2.1 Motivating the decomposition of Moessner triangles

Starting from the same example as in the previous section, we examine the

first three Moessner triangles of rank 3 and 4,

0 0 0 0 0

1 1 1 1 1

0 1 2 3

0 1 3

0 1

0

0 0 0 0 0 0

1 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

0 0 0 0 0

1 1 1 1 1

3 4 5 6

3 7 12

1 8

0

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6 7 8

6 11 17 24

4 15 32

1 16

0

0 0 0 0 0

1 1 1 1 1

6 7 8 9

12 19 27

8 27

0

0 0 0 0 0 0

1 1 1 1 1 1

8 9 10 11 12

24 33 43 54

32 65 108

16 81

0
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and use the knowledge we have gathered so far to drive our motivation. In-

stead of looking at the calculations in Formula 9.2 and 9.3 as the upgrading

of a seed tuple, we flip the perspective and see it as an example of decompos-

ing the hypotenuse in terms of the Moessner triangle of lower rank. Taking

this idea one step further, we propose the idea that there exists a set of rank

decomposition rules which work for all entries of a triangle and not just the

hypotenuse/seed tuple. With this idea in mind, we focus on the first column

of the second and third pair of Moessner triangles and try to apply the same

scheme as before, except that we make two minor adjustments,

1. we multiply the first term with t instead of (1 + t), and

2. we start with an accumulator equal to the last value of the column in-

stead of 0,

which gives us the following calculations, for the second and third triangles,

16 = 1 · 8 + 8

15 = 1 · 7 + 8

11 = 1 · 4 + 7

5 = 1 · 1 + 4

1 = 1 · 0 + 1,

and

81 = 2 · 27 + 27

65 = 2 · 19 + 27

33 = 2 · 7 + 19

9 = 2 · 1 + 7

1 = 2 · 0 + 1,

(9.4)

demonstrating that the property also holds for the initial column of every

Moessner triangle. Remembering that the different Moessner triangles are

constructed using Pascal’s rule, we restate the calculations in Formula 9.4 as,

16 = 2 · 8 + 0

15 = 2 · 7 + 1

11 = 2 · 4 + 3

5 = 2 · 1 + 3

1 = 2 · 0 + 1,

and

81 = 3 · 27 + 0

65 = 3 · 19 + 8

33 = 3 · 7 + 12

9 = 3 · 1 + 6

1 = 3 · 0 + 1,

(9.5)

by realizing that each of the values used for accumulators, in Formula 9.4, is

actually the sum of one of the values in the seed tuple (western neighbor) and

the entry which we have already multiplied by t (northern neighbor),

16 = 1 · 8 + (8 + 0)

15 = 1 · 7 + (7 + 1)

11 = 1 · 4 + (4 + 3)

5 = 1 · 1 + (1 + 3)

1 = 1 · 0 + (0 + 1),

and

81 = 2 · 27 + (27 + 0)

65 = 2 · 19 + (19 + 8)

33 = 2 · 7 + (7 + 12)

9 = 2 · 1 + (1 + 6)

1 = 2 · 0 + (0 + 1).

Thus, we get (1 + t) times the entry above the desired entry (northern neigh-

bor) and a value of the seed tuple/hypotenuse of the previous triangle (west-

ern neighbor).
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Noting that we now have a Pascal-like rule which works across ranks,

we examine whether it also holds true for the subsequent columns of the

Moessner triangles. As such, we try to calculate the second column of the

second and third pair of triangles using the first columns for accumulator

values, instead of the seed tuples,

32 = 2 · 12 + 8

17 = 2 · 5 + 7

6 = 2 · 1 + 4

1 = 2 · 0 + 1,

and

108 = 3 · 27 + 27

43 = 3 · 8 + 19

10 = 3 · 1 + 7

1 = 3 · 0 + 1.

(9.6)

Again, we obtain the desired results, which demonstrates a consistent Pascal-

like property across ranks and triangles. Thus, we have now shown how it

is possible to state an entry of a Moessner triangle of rank (S n) as a sum of

entries in the same Moessner triangle of rank n.

Next, we transform our motivating examples into concrete proofs of the

rank decomposition rules in the Coq proof assistant.

9.2.2 Formalizing the decomposition rules in Coq

A subtle point lies in the fact that while the Moessner triangles have a finite

number of entries in each column, this is not the case of our characteristic

function rotated_moessner_entry,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 5 6 7 8 9 9 10 11 12 13

1 3 6 10 15 11 17 24 33 42 33 43 54 66 76

1 4 10 20 35 15 32 55 88 130 65 108 162 192 268

1 5 15 35 70 16 48 103 191 321 81 189 351 543 811

as the gray values above are the results of computing entries outside of the

Moessner triangles using our characteristic function. Thus, we obtain a more

general, and easier to state, proof of the rank decomposition rules by prov-

ing the property for the characteristic function, rotated_moessner_entry,

rather than directly on the triangle creation procedure, create_triangle_-

vertically, or on the simplified procedure, repeat_make_tuple.

In the previous section, we demonstrated two Pascal-like properties that

could be merged into one simpler property, expressing an entry of a Moessner

triangle of rank (S n) in terms of the same entry in the triangle of rank n along

with the entry above it (northern neighbor), which works for all columns of

a Moessner triangle. Consequently, we start by stating and proving this last

rank decomposition rule,

Theorem rotated_moessner_entry_rank_decompose_by_row :

∀ (r c n t : nat),
rotated_moessner_entry (S n) (S r) c t =

t ∗ rotated_moessner_entry n r c t +
rotated_moessner_entry n (S r) c t.
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which states that the entry in the (S r)th row and cth column of a Moessner

triangle of rank (S n), is the sum of t times the entry at the rth row and

cth column of rank n and the entry at the (S r)th row and cth column of

rank n. As mentioned, this rule captures the examples we have shown above,

and the proof of the theorem proceeds by nested induction on the row and

column indices, r and c, and rewriting according to already proved properties

of rotated_moessner_entry and monomial. From this theorem follows the

equivalent proof for moessner_entry as a corollary,

Corollary moessner_entry_rank_decompose_by_row :

∀ (r c n t : nat),
moessner_entry (S n) (c + S r) c t =

t ∗ moessner_entry n (c + r) c t +
moessner_entry n (c + S r) c t.

along with the two Pascal-like properties,

Corollary rotated_moessner_entry_rank_decompose_Pascal_like_c_eq_0 :

∀ (r n t : nat),
rotated_moessner_entry (S n) (S r) 0 t =

(S t) ∗ rotated_moessner_entry n r 0 t +
monomial t n (S r).

and

Corollary rotated_moessner_entry_rank_decompose_Pascal_like_c_gt_0 :

∀ (r c n t : nat),
rotated_moessner_entry (S n) (S r) (S c) t =

(S t) ∗ rotated_moessner_entry n r (S c) t +
rotated_moessner_entry n (S r) c t.

and their equivalent proofs for moessner_entry,

Corollary moessner_entry_rank_decompose_Pascal_like_c_eq_0 :

∀ (r n t : nat),
moessner_entry (S n) (S r) 0 t =

S t ∗ moessner_entry n r 0 t +
monomial t n (S r).

and

Corollary moessner_entry_rank_decompose_Pascal_like_c_gt_0 :

∀ (r c n t : nat),
moessner_entry (S n) (S c + S r) (S c) t =

(S t) ∗ moessner_entry n (S c + r) (S c) t +
moessner_entry n (c + S r) c t.

Lastly, we can translate these rank decomposition rules to work on create_-

triangle_vertically, which gives the following three corollaries,
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Corollary create_triangle_vertically_decompose_by_rank :

∀ (i j r t : nat),
j ≤ r → S i ≤ r - j →
(nth (S i) (nth j

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (monomials t (S r) 0))) []) 0) =

t ∗ (nth i (nth j
(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0) +

(nth (S i) (nth j

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0).

and

Corollary create_triangle_vertically_rank_decompose_Pascal_like_c_eq_0 :

∀ (i r t : nat),
i < (S r) →
(nth (S i) (nth 0

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (monomials t (S r) 0))) []) 0) =

(S t) ∗ (nth i (nth 0
(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0) +

monomial t r (S i).

and

Corollary create_triangle_vertically_rank_decompose_Pascal_like_c_gt_0 :

∀ (i j r t : nat),
j ≤ r → S i ≤ r - j →
(nth (S i) (nth (S j)

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (monomials t (S r) 0))) []) 0) =

(S t) ∗ (nth i (nth (S j)
(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0) +

(nth (S i) (nth j

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0).

where the complexity of the statements once again emphasizes the gains

we receive by reasoning with our characteristic function rather than directly

on the triangle creation procedures, create_triangle_horizontally and

create_triangle_vertically.
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Combining the above proofs and the procedure of the previous section,

we have now introduced and proved a new property of Moessner’s sieve

that creates a vertical connection between the seed tuples and entries of two

Moessner triangles with the same triangle index, t, but different ranks, n

and (S n), thus acting as a dual to the existing properties which horizontally

connects two triangles with different triangle index, t, but same rank, n, in

this implicit grid of triangles.

9.3 Summary

In this chapter, we have introduced a new combinatorial property which con-

nects Moessner triangles of different rank but with the same triangle index,

thus acting as a dual to the existing connection between Moessner trian-

gles of the same rank but different triangle index. This duality implies a

2-dimensional grid of Moessner triangles, where the triangle index is increas-

ing as we go along the horizontal axis, from left to right, while the rank is

increasing when going along the vertical axis, from top to bottom. These grid

properties have been introduced as a rank-upgrading procedure, which takes

a seed tuple of the tth Moessner triangle of rank n and returns the seed tuple

of the tth Moessner triangle of rank (S n), and several rank decomposition

rules, which describe an entry of the tth Moessner triangle of rank (S n) as a

sum of entries in the tth Moessner triangle of rank n.

The rank-upgrading procedure, upgrade_seed_tuple, was the result of

the observation that we could obtain the seed tuple of the Moessner triangle

of rank (S n) by adding pairs of entries in the seed tuple of the Moessner

triangle of rank n where one was multiplied with the triangle index.

Conversely, the rank decomposition rules were the result of exploring

whether the decomposition rule only applied for the seed tuples or if it per-

sisted into the entries of the Moessner triangles.
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Dependency graph of the proofs introduced in Chapter 9. Notice again the

sparsity and size of the graph, reflecting the robustness of the scaffolding to

obtain new results.
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Chapter 10

Proving Long’s theorem

One chord is fine.
Two chords are pushing it.

Three chords and you’re into jazz.

Lou Reed

Simple things should be simple,
complex things should be possible.

Alan Kay

The goal of this chapter is to prove an idealized version of Long’s theorem

stated in terms of the dual of Moessner’s sieve. Thus, we first adapt Long’s

original theorem to the dual sieve that leads us to state two versions of Long’s

theorem, the first of which generalizes the seed value of 1 in Moessner’s

idealized theorem to an arbitrary constant, d, which we call Long’s weak

theorem, while the second generalizes Long’s weak theorem from a seed tuple

of one nonzero entry, d, to two, c and d, which we call Long’s idealized

theorem. Lastly, we state a conjecture which generalizes Long’s idealized

theorem from a seed tuple with two nonzero entries, c and d, to a seed tuple

with an arbitrary number of nonzero entries.

The chapter is structured as follows. In Section 10.1, we start by adapting

Long’s theorem to the dual sieve, which motivates the statement of Long’s

weak theorem and Long’s idealized theorem. As a result, we prove Long’s

weak theorem in Section 10.2, which generalizes Moessner’s idealized the-

orem from a seed value of 1 to an arbitrary constant d, and prove Long’s

idealized theorem in Section 10.3, which generalizes the weak form of Long’s

theorem from a seed tuple of one nonzero entry, d, to two, c and d. Finally, we

conjecture the generalization of Long’s idealized theorem from a seed tuple

with two nonzero entries, c and d, to a seed tuple with an arbitrary number

of nonzero entries, in Section 10.4.
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10.1 Long’s theorem and the dual of Moessner’s sieve

In order to prove Long’s theorem using our dual sieve, we start by repeating

its traditional definition and afterwards adapt it to the dual sieve.

Long’s original theorem states that if we apply Moessner’s sieve of rank k

on an initial sequence which can be described as an arithmetic progression,

c, c + d, c + 2d, c + 3d, . . . ,

we obtain the result sequence,

c · 1k−1, (c + d) · 2k−1, (c + 2d) · 3k−1, . . . ,

which we can visualize as the sieve,

c c + d c + 2d c + 3d c + 4d c + 5d c + 6d c + 7d . . .

c 2c + d 3c + 3d 4c + 7d 5c + 12d 6c + 18d . . .

c 3c + d 7c + 8d 12c + 20d . . .

c 8c + 8d . . .

Furthermore, Long [22] also noted that we can generalize the sieve above by

adding a row of ds,

d d d d d d d d d d

c c + d c + 2d c + 3d c + 4d c + 5d c + 6d c + 7d

c 2c + d 3c + 3d 4c + 7d 5c + 12d 6c + 18d

c 3c + d 7c + 8d 12c + 20d

c 8c + 8d

which unfortunately gives us an inconsistent initial column, since it contains

a d at the top but cs in the remaining entries. So, we take the liberty of

adjusting the initial configuration of the sieve to better suit our dual sieve,

by ridding ourselves of the above inconsistency. Thus, we move the cs of the

initial column into the vertical seed tuple, and at the same time generalize

to a single seed value c, while putting the ds in the horizontal seed tuples,

yielding the following sieve,1

d d d d d d d d d d

c c + d c + 2d c + 3d c + 4d c + 5d c + 6d c + 7d c + 8d

0 c + d 2c + 3d 3c + 6d 4c + 11d 5c + 17d 6c + 24d

0 c + d 3c + 4d 7c + 15d 12c + 32d

0 c + d 8c + 16d

0

While moving the cs has changed the coefficients of the ds in the sieve, we

now have a more consistent initial configuration, which we believe to be in

1The addition of the dotted vertical lines between each column is for the sake of readability.
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the spirit of Long’s original theorem, with one constant, c, in the vertical seed

tuple and the horizontal seed tuples filled with the constant d. As it turns

out, we can perform a further generalization of the initial configuration by

replacing the sequence of ds with a d followed by 0s, while putting it in the

vertical seed tuple, as we did with the sequence of 1s when we defined the

dual of Moessner’s sieve in Chapter 5,

0 0 0 0 0 0 0 0 0 0 0 0

d d d d d d d d d d d

c c + d c + 2d c + 3d c + 4d c + 5d c + 6d c + 7d c + 8d

0 c + d 2c + 3d 3c + 6d 4c + 11d 5c + 17d 6c + 24d

0 c + d 3c + 4d 7c + 15d 12c + 32d

0 c + d 8c + 16d

0

This results in a minimal initial configuration consisting of a vertical seed

tuple containing a constant d and a constant c followed by 0s. We can now

state Long’s idealized theorem as starting from an initial configuration with a

vertical seed tuple of length k, where k ≥ 2, and containing a c and a d, which

yields the result sequence enumerated by the formula,

d · (1 + t)k−2 + c · (1 + t)k−3. (10.1)

As a result of the transformations made above, we now notice that the coeffi-

cients of the cs correspond to the values of Moessner triangles at rank 3 while

the coefficients of the ds now correspond to the values of Moessner triangles

at rank 4. This observation suggests that we can view the above sieve as the

composition of two sieves, one creating Moessner triangles of rank 3 filled

with cs,
0 0 0 0 0 0 0 0 0 0

c c c c c c c c c c

0 c 2c 3c 3c 4c 5c 6c

0 c 3c 3c 7c 12c

0 c c 8c

0 0

and one creating Moessner triangles of rank 4 filled with ds,

0 0 0 0 0 0 0 0 0 0 0 0

d d d d d d d d d d d d

0 d 2d 1d 4d 4d 5d 6d 7d 8d

0 d 3d 6d 6d 11d 17d 24d

0 d 4d 4d 15d 32d

0 d d 16d

0 0
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This divides our proof of Long’s idealized theorem into two subgoals:

1. Prove the generalization of Moessner’s idealized theorem seeded with

a constant d instead of a 1, which we call Long’s weak theorem, and

2. prove the correctness of the decomposition of a composite sieve into two

separate sieves, from which we can prove Long’s idealized theorem.

Thus, it is clear that our next task is to prove Long’s weak theorem.

10.2 Proving Long’s weak theorem

As pointed out in the previous section, we are able to reduce Long’s the-

orem into two separate sieves, each parameterized over a constant, c or d,

that follows the exact same pattern as the dual sieve of Moessner’s idealized

theorem, as seen by the following figures,

0 0 0 0 0 0

1 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

0 0 0 0 0 0

1d 1d 1d 1d 1d 1d

0 1d 2d 3d 4d

0 1d 3d 6d

0 1d 4d

0 1d

0

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6 7 8

6 11 17 24

4 15 32

1 16

0

0 0 0 0 0 0

1d 1d 1d 1d 1d 1d

4d 5d 6d 7d 8d

6d 11d 17d 24d

4d 15d 32d

1d 16d

0

where the only difference between the two sieves is the addition of the con-

stant d to all entries in the second sieve. Since the structure of the two sieves

are completely identical, all we have to do in order to prove Long’s weak

theorem is to add the parameter d to all our existing definitions and proofs,

which we used to prove Moessner’s idealized theorem.

Hence, we start by stating Long’s weak theorem as,

Theorem Long_s_weak_theorem :

∀ (b e d : nat),
p_moessner_stream b e d ∼ d ⊗ successive_powers b e.
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where p_moessner_stream is identical to moessner_stream except that it is

also parameterized over the constant d,

CoFixpoint p_moessner_stream (n r d : nat) : Stream nat :=

(nth 0 (hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials 0 r 0 d)))

[])) 1)

::: (p_moessner_stream (S n) r d).

which is propagated to the seed tuple expressed in terms of p_monomials,

CoFixpoint p_monomials (t r n d : nat) : Stream nat :=

(p_monomial t r n d) ::: (p_monomials t r (S n) d).

which again is identical to monomials except for the constant d. Likewise, it

relies on p_monomial,

Definition p_monomial (x n k d : nat) : nat :=

d ∗ C(n,k) ∗ x ^ k.

which multiplies a monomial of a binomial expansion with the constant d.

The proof of Long_s_weak_theorem essentially follows from the two proofs,

Corollary hypotenuse_create_triangle_vertically_p_monomials :

∀ (r t d : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials t r 0 d))) =

(rev (Str_prefix (S r) (p_monomials (S t) r 0 d))).

and

Theorem nth_triangle_create_triangles_vertically_p_monomials :

∀ (n r t d : nat),
nth n

(create_triangles_vertically n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials t r 0 d)))

[] =

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials (n + t) r 0 d))).

which are proved using the exact same proof script as in the case of Moess-

ner’s idealized theorem, except for the addition of the constant d, which does

not affect any of the proofs. Thus, we skip going through the rest of the proofs

of Long_s_weak_theorem, since we would simply be repeating what we have

already said and proved in the previous chapters of this dissertation.

Having proved Long’s weak theorem, we take the next logical step and

prove Long’s idealized theorem.
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10.3 Proving Long’s idealized theorem

Just as Long’s weak theorem naturally generalizes Moessner’s idealized the-

orem from a seed value of 1 to a constant d, we now generalize Long’s weak

theorem from a seed tuple with one nonzero entry, d, to two, c and d, from

which we obtain Long’s idealized theorem.

As always, we start out our proof from an example in order to build our

intuition, thus we return to the sieve example from Section 10.1,

0 0 0 0 0 0 0 0 0 0 0 0

d d d d d d d d d d d

c c + d c + 2d c + 3d c + 4d c + 5d c + 6d c + 7d c + 8d

0 c + d 2c + 3d 3c + 6d 4c + 11d 5c + 17d 6c + 24d

0 c + d 3c + 4d 7c + 15d 12c + 32d

0 c + d 8c + 16d

0

about which we remember that we can view the sieve as the composition of

two simpler sieves, one creating Moessner triangles of rank 3 containing cs

and one creating Moessner triangles of rank 4 containing ds. Now, in order

to prove this decomposition we start by proving a more general theorem,

Theorem hypotenuse_create_triangle_vertically_list_sum :

∀ (r : nat) (σ τ : Stream nat),

hypotenuse

(create_triangle_vertically

(tuple_constant r 0)

((Str_prefix r σ ) ⊕
(Str_prefix r τ ))) =

(hypotenuse

(create_triangle_vertically

(tuple_constant r 0)

(Str_prefix r σ ))) ⊕
(hypotenuse

(create_triangle_vertically

(tuple_constant r 0)

(Str_prefix r τ ))).

which states that taking the hypotenuse of a Moessner triangle created from

a vertical seed tuple that is a sum of two tuples, here defined as the prefixes

of two streams, (Str_Prefix r σ) and (Str_Prefix r τ), yields the same

result as summing the hypotenuses of the Moessner triangles created from

each of the two tuples. The decomposition theorem is proved by induction on

the prefix length r and rewriting with existing equivalences, along with two

new helper lemmas for dealing with the list heads in the inductive case,
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Lemma length_of_list_sum :

∀ (xs ys : list nat),
length (xs ⊕ ys) = max (length xs) (length ys).

and

Lemma nth_make_tuple_list_sum :

∀ (n r i j : nat) (σ τ : Stream nat),

nth n (make_tuple (Str_prefix r σ ) i) 0 +

nth n (make_tuple (Str_prefix r τ ) j) 0 =

nth n ((make_tuple (Str_prefix r σ ) i) ⊕
(make_tuple (Str_prefix r τ ) j)) 0.

We prove length_of_list_sum by structural induction on the first list, xs,

and case analysis on the second list, ys, while we prove nth_make_tuple_-

list_sum by induction on the element index, n, and case analysis on the

prefix length, r. This completes the proof of hypotenuse_create_triangle_-

vertically_list_sum. As a corollary of the above theorem, we obtain,

Corollary hypotenuse_create_triangle_vertically_p_monomials_list_sum :

∀ (r t d c : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r))) (0 ::: (p_monomials t r 0 c))) ⊕
(Str_prefix (S (S (S r))) (p_monomials t (S r) 0 d)))) =

(hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (0 ::: (p_monomials t r 0 c))))) ⊕
(hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (p_monomials t (S r) 0 d)))).

by simply instantiating σ and τ to (0 ::: (p_monomials t r 0 c)) and

(p_monomials t (S r) 0 d), respectively, which describes the situation in

our initial example for any rank, r, and constants, c and d, but only for one

triangle. Hence, if we let t = 0 and r = 3 we get the decomposition of our

example sieve for the first Moessner triangle.

Having proved that we can decompose a seed tuple expressed as a sum of

two tuples filled with monomials parameterized over cs and ds, we move on

to prove that the nth Moessner triangle, created from an initial configuration

consisting of a seed tuple expressed in terms of a sum, can also be described

in terms of a seed tuple over a similar sum,
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Theorem nth_triangle_create_triangles_vertically_p_monomials_list_sum :

∀ (n r t d c : nat),
nth n

(create_triangles_vertically n

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r))) (0 ::: (p_monomials t r 0 c))) ⊕
(Str_prefix (S (S (S r))) (p_monomials t (S r) 0 d)))) [] =

create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r))) (0 ::: (p_monomials (n + t) r 0 c))) ⊕
(Str_prefix (S (S (S r))) (p_monomials (n + t) (S r) 0 d))).

We prove the above theorem by induction on the triangle index, n, and using

the just proved hypotenuse_create_triangle_vertically_p_monomials_-

list_sum along with,

Corollary hypotenuse_create_triangle_vertically_p_monomials :

∀ (r t d : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials t r 0 d))) =

(rev (Str_prefix (S r) (p_monomials (S t) r 0 d))).

which we proved as part of Long’s weak theorem. Furthermore, we also need

a few extra helper lemmas to deal with the padding of the stream prefixes

and tuples,

Lemma hypotenuse_create_triangle_vertically_remove_padding :

∀ (r : nat) (σ : Stream nat),

hypotenuse (create_triangle_vertically

(tuple_constant (S r) 0)

(Str_prefix (S r) (0 ::: σ ))) =

hypotenuse (create_triangle_vertically

(tuple_constant (S r) 0)

(Str_prefix r σ )).

and

Lemma create_triangle_vertically_horizontal_seed_tuple_padding :

∀ (r : nat) (σ : Stream nat),

hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S r) σ )) =

(hypotenuse

(create_triangle_vertically

(tuple_constant (S r) 0)

(Str_prefix (S r) σ ))) ++ [0].

both of which are proved by induction on the stream prefix length, r,

thus proving nth_triangle_create_triangles_vertically_p_monomials_-

list_sum.
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Now, by combining the theorem hypotenuse_create_triangle_-

vertically_p_monomials_list_sum with the theorem nth_triangle_-

create_triangles_vertically_p_monomials_list_sum we can prove the

following corollary,

Corollary bottom_element_of_nth_triangle_is_power_p_monomials_list_sum :

∀ (n r d c : nat),
nth 0

(hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r)))

(0 ::: (p_monomials 0 r 0 c))) ⊕
(Str_prefix (S (S (S r)))

(p_monomials 0 (S r) 0 d)))) [])) 1 =

(c ∗ (S n) ^ r) + (d ∗ (S n) ^ (S r)).

which states the desired sum of monomials,

(c * (S n) ^ r) + (d * (S n) ^ (S r)),

originally stated in Formula 10.1 and adapted to our Coq formalization, that

we want as the result sequence of Long’s idealized theorem. Hence, we now

repeat the steps we used to prove Moessner’s idealized theorem, by first

defining a long_stream,

CoFixpoint long_stream (n r d c : nat) : Stream nat :=

(nth 0 (hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r)))

(0 ::: (p_monomials 0 r 0 c))) ⊕
(Str_prefix (S (S (S r)))

(p_monomials 0 (S r) 0 d)))) [])) 1)

::: (long_stream (S n) r d c).

which enumerates the bottom values of the successive Moessner triangles

created by the composite dual sieve of Long’s idealized theorem, that we

then use to state Long’s idealized theorem,

Theorem Long_s_theorem :

∀ (b e d c : nat),
long_stream b e d c ∼
(c ⊗ (successive_powers b e)) ⊕ (d ⊗ (successive_powers b (S e))).

which we prove by coinduction and by rewriting the initial value with

bottom_element_of_nth_triangle_is_power_p_monomials_list_sum.
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So far, we have generalized Moessner’s idealized theorem from a seed

value of 1 to a constant d, giving us Long’s weak theorem, which we fur-

ther generalized by extending the initial configuration from a seed tuple of

one nonzero entry, d, to two nonzero entries, c and d, thus proving Long’s

idealized theorem. Consequently, we investigate the possibility of taking the

generalization one step further by going from a seed tuple of two nonzero

entries to a seed tuple with an arbitrary number of nonzero entries.

10.4 Beyond Long’s theorem

Since Long’s idealized theorem describes the result sequence generated by

Moessner’s sieve, when starting from a seed tuple of two constants, c and d,

0 0 0 0 0 0 0 0 0 0 0 0

d d d d d d d d d d d

c c + d c + 2d c + 3d c + 4d c + 5d c + 6d c + 7d c + 8d

0 c + d 2c + 3d 3c + 6d 4c + 11d 5c + 17d 6c + 24d

0 c + d 3c + 4d 7c + 15d 12c + 32d

0 c + d 8c + 16d

0

we now ask the obvious question of what happens if we start from a seed

tuple of 3 or even n values? Looking at the result sequence of the above

sieve, we know that it enumerates the values of the binomial, c · (1 + t)3 + d ·

(1 + t)4, which gives us the idea to label c = a3 and d = a4, and fill the rest of

the seed tuple with ai,

0 0 0 0 0 0

a4 a4 a4 a4 a4 a4

a3 a3 + a4 a3 + 2a4 a3 + 3a4 a3 + 4a4

a2 a2 + a3 + a4 a2 + 2a3 + 3a4 a2 + 3a3 + 6a4

a1 a1 + a2 + a3 + a4 a1 + 2a2 + 3a3 + 4a4

a0 a0 + a1 + a2 + a3 + a4

0

yielding the above Moessner triangle. Now, if we examine the entries of the

hypotenuse in this triangle,

a4

a3 + 4a4

a2 + 3a3 + 6a4

a1 + 2a2 + 3a3 + 4a4

a0 + a1 + a2 + a3 + a4
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we notice that we can rearrange them into the following Pascal-like triangle,

a0

a1 a1

a2 2a2 a2

a3 3a3 3a3 a3

a4 4a4 6a4 4a4 a4

where the sum of the entries yields the following result,

a0 + 2a1 + 4a2 + 8a3 + 16a4,

located at the bottom of the first column of the second triangle of the sieve,

which we can restate as,

a0 · 20 + a1 · 21 + a2 · 22 + a3 · 23 + a4 · 24.

Likewise, if we calculated the next triangle and the subsequent first column,

we would obtain the values,

a0 + 3a1 + 9a2 + 27a3 + 81a4,

which we can once again restate as,

a0 · 30 + a1 · 31 + a2 · 32 + a3 · 33 + a4 · 34.

This observation suggests that the repeated application of create_-

triangle_vertically on the vertical seed tuple,

a4, a3, a2, a1, a0,

yields a result sequence that enumerates the values of the polynomial,

p(t) =
4

∑
i=0

ai · (1 + t)i,

where t is the triangle index. Thus, we conjecture that applying the dual

sieve on an initial configuration where the vertical seed tuple consists of the

constants,

an, an−1, . . . , a1, a0,

yields a sequence of Moessner triangles where the bottom elements, compris-

ing the result sequence, enumerate the values of the polynomial,

p(t) =
n

∑
i=0

ai · (1 + t)i.

While we do not have a formal proof for this conjecture yet, we have seen

strong indications of its correctness throughout this chapter, as we can de-

compose a seed tuple consisting of any sum of two tuples and have proved

that the conjecture holds for the binomial ai+1 · (1 + t)i+1 + ai · (1 + t)i, as

stated by Long’s idealized theorem.

The relation between Moessner’s sieve and polynomial evaluation is fur-

ther explored in the next chapter, where we relate Horner’s method to Moess-

ner’s sieve.
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10.5 Summary

In this chapter, we have proved an idealized version of Long’s theorem stated

in terms of the dual of Moessner’s sieve. Furthermore, we have conjectured a

new generalization of Long’s theorem that connects it to polynomial evalua-

tion.

In order to state and prove Long’s idealized theorem, we started by adapt-

ing Long’s original theorem to our dual sieve which resulted in a series of

generalizations leading to the division of Long’s idealized theorem into two

subgoals:

1. The generalization of Moessner’s idealized theorem from a seed value

of 1 to a constant d, which we have named Long’s weak theorem, and

2. the generalization from one constant, d, to a pair of constants, c and d,

which we have named Long’s idealized theorem.

Proving the first part simply required the addition of the constant d in all

definitions and proofs used for proving Moessner’s idealized theorem, with-

out having to change the proof script beyond that. The second part followed

by showing that a seed tuple of any sum of two tuples can be decomposed

into the sum of two sieves; one for each tuple. This observation lead to the

conjecture of a generalization of Long’s idealized theorem stated in terms of

a tuple of constants.
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Dependency graph of the proofs introduced in Chapter 10. Just like the de-

pendency graph of Moessner’s theorem, observe again how the theorems

structure the general flow, while the helper lemmas are mostly local to a spe-

cific theorem.
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Chapter 11

Deriving Moessner’s sieve

from Horner’s method

“What makes the desert beautiful,”
said the little prince,

“is that somewhere it hides a well...”

Antoine de Saint-Exupéry,
The Little Prince

The goal of this chapter is to derive Moessner’s sieve from the procedure

known as Horner’s method. By doing so, we strengthen the connection

between Moessner’s sieve and polynomial evaluation, as conjectured in the

previous chapter, while also expanding the space of possible applications of

Moessner’s sieve significantly, as Horner’s method has several applications in

both algebra [33] and combinatorics [13].

The chapter is structured as follows. In Section 11.1, we introduce the

definition of Horner’s method for polynomial evaluation and polynomial di-

vision, while also proving an equivalence relation between the two. Hav-

ing covered the basics of Horner’s method, we show how to obtain Taylor

polynomials by repeated application of Horner’s method in Section 11.2. In

Section 11.3, we use the knowledge we have acquired in the previous two

sections to derive Moessner’s sieve from Horner’s method.

11.1 Defining Horner’s method

Horner’s method [6, 16], named after the British mathematician William

George Horner, refers to two procedures for evaluating or dividing a poly-

nomial by means of the same recursive substitution scheme,1 using the small-

1History has it that similar procedures to Horner’s method had previously been used by a

range of Chinese mathematicians between 100 BC and 1303, while the latest example preceding

Horner is Paolo Ruffini in 1804, 15 years before Horner published his article before the Royal

Society in 1819 [33].
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est possible number of operations [26, 45].2 The latter method for dividing

a polynomial is often used together with Newton’s method for finding the

roots of a polynomial, but this falls out of the scope of this dissertation.

In this section, we first introduce Horner’s method for polynomial eval-

uation followed by Horner’s method for polynomial division, both of which

we formalize in Coq and prove to have an equivalence relation.

11.1.1 Polynomial evaluation using Horner’s method

In order to understand the advantages of using Horner’s method for eval-

uating a polynomial, we first examine how this is usually done. If we let

p(x) = 7x4 + 2x3 + 5x2 + 4x + 6 and x = 3, then we would evaluate p(3) one

term at a time and sum all the intermediate results. However, by doing so

we are unfortunately performing redundant operations when evaluating the

exponents, as can be seen when we unfold the evaluation of the exponents,

p(3) = 7 · (34) + 2 · (33) + 5 · (32) + 4 · (3) + 6

= 7 · (3 · 3 · 3 · 3) + 2 · (3 · 3 · 3) + 5 · (3 · 3) + 4 · (3) + 6.

Here, the evaluation of the largest exponent, 34 = (3 · 3 · 3 · 3), also calculates

all exponents of a lesser degree, i.e., 33 = (3 · 3 · 3) and 32 = (3 · 3), as its

intermediate results. Luckily, we can transform the formula of the polynomial

p in such a way that the operations calculating the exponents are shared

across the terms. In fact, since the number of multiplications by 3 decreases

by 1 for each term, we can nest the multiplications across the terms like so,

p(3) = 7 · (3 · 3 · 3 · 3) + 2 · (3 · 3 · 3) + 5 · (3 · 3) + 4 · (3) + 6

p(3) = (7 · (3 · 3 · 3) + 2 · (3 · 3) + 5 · (3) + 4) · 3 + 6

p(3) = ((7 · (3 · 3) + 2 · (3) + 5) · 3 + 4) · 3 + 6

p(3) = (((7 · 3 + 2) · 3 + 5) · 3 + 4) · 3 + 6,

(11.1)

thus removing any redundant multiplications used for evaluating the expo-

nents. Formula 11.1 now exhibits a simple inductive structure which adds

one multiplication and one addition for each term in the polynomial p. As a

result, we can now evaluate the final formula of p,

p(3) = (((7 · 3 + 2) · 3 + 5) · 3 + 4) · 3 + 6, (11.2)

by repeatedly performing a multiplication and an addition, starting from the

innermost set of parentheses,

p(3) = (((7 · 3 + 2) · 3 + 5) · 3 + 4) · 3 + 6

= ((23 · 3 + 5) · 3 + 4) · 3 + 6

= (74 · 3 + 4) · 3 + 6

= 226 · 3 + 6

= 684.

(11.3)

2Operations refer strictly to addition and multiplication in this context.
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If we compare the number of operations performed in the first and last equa-

tion of Formula 11.1, we count a total of 14 in the former and 8 in the latter.

The difference of 6 operations corresponds exactly to the number of mul-

tiplications required to evaluate the exponents in the first equation. Thus,

our transformation of the polynomial formula into its inductive form, has

removed the computational overhead of evaluating each of the exponents in

sequence. Lastly, it has even been proved that the number of additions and

multiplications used in this procedure, are indeed the smallest number pos-

sible for evaluating a polynomial [26, 45].

Upon closer examination of the intermediate results of Formula 11.3, we

can make out a recursive substitution scheme happening under the hood,

7 = 7

23 = 7 · 3 + 2

74 = 23 · 3 + 5

226 = 74 · 3 + 4

684 = 226 · 3 + 6.

(11.4)

where each intermediate result is the result of multiplying the previous result

by 3 and adding the next coefficient. If we assign the intermediate values on

the left-hand side, (7, 23, 74, 226, 684), to the variable bi, assign the value 3 to

the variable k, and lastly assign the values corresponding to the coefficients

of p, (7, 2, 5, 4, 6), to the variable ai, we can restate Formula 11.4 like so,

b4 = a4

b3 = b4 · k + a3

b2 = b3 · k + a2

b1 = b2 · k + a1

b0 = b1 · k + a0.

(11.5)

Formula 11.5 now reflects a recursively structured, and easily generalizable,

substitution procedure where b4 = a4 is the base case, and the inductive case

is defined in terms of the next coefficient in the polynomial and the preceding

intermediate result, b3 = b4 · k+ a3. The procedure terminates when it reaches

the last term of the polynomial p, where b0 = b1 · k + a0 is the result of

evaluating p(k).

We call the above procedure Horner’s method [16] for polynomial evalu-

ation, and formalize it in Coq by first representing a polynomial as a list of

natural numbers,

Notation polynomial := (list nat).

for which we define the procedure,

129



Fixpoint horner_poly_eval_acc (cs : polynomial) (x a : nat) : nat :=

match cs with

| [] ⇒ a
| c :: cs’ ⇒ horner_poly_eval_acc cs’ x (c + x ∗ a)
end.

which takes a polynomial, corresponding to ai, an x, corresponding to k, and

an accumulator, a, corresponding to the intermediate result bi. As described

above, it returns the final value of the accumulator, a, in the base case, and

multiplies a by x for each recursive call and adds the coefficient c. Lastly, we

define a wrapper procedure,

Definition horner_poly_eval (cs : polynomial) (x : nat) : nat :=

horner_poly_eval_acc cs x 0.

which initializes the accumulator to 0. As a result, we can now evaluate the

example polynomial of Formula 11.2, p(x) = 7x4 + 2x3 + 5x2 + 4x + 6, for

x = 3, by passing the coefficients of p as the list [7; 2; 5; 4; 6], along with

3 as the value of x, to horner_poly_eval like so,

horner_poly_eval [7; 2; 5; 4; 6] 3 = 684,

giving the expected result, 684.

Having formalized Horner’s method for polynomial evaluation, as the

procedures horner_poly_eval_acc and horner_poly_eval, we now define

Horner’s method for polynomial division.

11.1.2 Polynomial division using Horner’s method

Now that we have used Horner’s method as an efficient procedure for eval-

uating a polynomial, using a recursive substitution scheme, we move on to

examine its use for polynomial division.

According to the definition of polynomial division, when dividing two

polynomials, p and d,
p(x)
d(x)

, where d 6= 0, the result is a quotient, q, and a

remainder, r, satisfying the relation,

p(x) = d(x) · q(x) + r(x), (11.6)

where r has a degree less than d. For the goal of this chapter, we restrict

ourselves to division with a binomial, x − k, which means that r is always a

constant, and 0 when d divides p.

One procedure for polynomial division is polynomial long division, de-

scribed in further details in the glossary, which we can use to divide the poly-

nomial p(x) = 2x3 + 4x2 + 11x + 3 with the binomial d(x) = x − 2, giving us
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the following result,

2x2 + 8x + 27

x − 2
)

2x3 + 4x2 + 11x + 3

− 2x3 + 4x2

8x2 + 11x

− 8x2 + 16x

27x + 3

− 27x + 54

57

where we can read the quotient, 2x2 + 8x + 27, from the line above the nu-

merator, 2x3 + 4x2 + 11x + 3, and we can read the remainder, 57, from the

value below the last horizontal line in the calculation. Lastly, we can verify

the calculations by checking that the relation in Formula 11.6 is satisfied,

2x3 + 4x2 + 11x + 3 = (x − 2)(2x2 + 8x + 27) + 57.

If we examine the intermediate results of the procedure, (2, 8, 27, 57), i.e., the

leftmost values under each horizontal line, we can make out a similar recur-

sive substitution scheme to what we saw in the case of polynomial evaluation,

2 = 2

8 = 2 · 2 + 4

27 = 8 · 2 + 11

57 = 27 · 2 + 3.

where each intermediate result is equal to the previous result multiplied by

the second term of the denominator, x − 2, plus the next coefficient. This

time we assign the intermediate results on the left to the variable bi−1, the last

result to the variable r, the second term of the denominator to the variable k,

and the coefficients of p to the variable ai, which yields the following set of

equations,

b2 = a3

b1 = b2 · k + a2

b0 = b1 · k + a1

r = b0 · k + a0.

These equations strongly suggest that we can divide p with d using the same

recursive substitution procedure, as described in the evaluation case, spend-

ing just one addition and multiplication per term, which again reduces the

number of operations to a minimum. Furthermore, we can put the substitu-
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tion scheme above in a tabular format, similar to polynomial long division,

a3 a2 a1 a0

k b2 · k b1 · k b0 · k

a3 b2 · k + a2 b1 · k + a1 b0 · k + a0

= b2 = b1 = b0 = r

(11.7)

where the coefficients of the polynomial are located at the top row, the second

term of the denominator to the far left, and the coefficients of the resulting

quotient, b2, b1, b0, and the remainder, r, at the bottom row of the table.

We formalize the tabular representation in Formula 11.7 as the following

procedure,

Fixpoint horner_poly_div_acc (cs’ : polynomial) (x a : nat) :

polynomial :=

match cs’ with

| [] ⇒ []
| c’ :: cs’’ ⇒
(c’ + (x ∗ a)) :: (horner_poly_div_acc cs’’ x (c’ + (x ∗ a)))

end.

which performs the exact same substitution scheme as in horner_poly_-

eval_acc, except that it also aggregates the intermediate results and adds

them to the result polynomial. Likewise, we define a wrapper function,

Definition horner_poly_div (cs : polynomial) (x : nat) : polynomial :=

match cs with

| [] ⇒ []
| c :: cs’ ⇒ c :: (horner_poly_div_acc cs’ x c)
end.

which sets the initial accumulator to the first coefficient and adds it to the

result polynomial. Now, if we wanted to divide our initial polynomial p(x) =

2x3 + 4x2 + 11x + 3 with the binomial d(x) = x − 2, we would pass the list

[2; 4; 11; 3] as the input polynomial cs and 2 as the input value x to

horner_poly_div, from which we would get the result list [2; 8; 27; 57],

where [2; 8; 27] are the coefficient of the quotient and 57 is the remainder.

Thus, we have now defined Horner’s method for polynomial division as the

procedures horner_poly_div_acc and horner_poly_div.

Next, we prove an equivalence relation between the two procedures for

polynomial evaluation and polynomial division using Horner’s method.

11.1.3 Equivalence of the two Horner procedures

Due to the strong similarity between the procedure for polynomial evalua-

tion and the procedure for polynomial division, we are interested in stating

an equivalence relation between the two. As such, we note that the last el-

ement in the result polynomial of horner_poly_div is equal to the result of

horner_poly_eval when given the same input,
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Theorem horner_poly_eval_eq_horner_poly_div :

∀ (cs : polynomial) (x : nat),
horner_poly_eval cs x =

last (horner_poly_div cs x) 0.

Proving the relation requires us to first prove a similar equivalence relation be-

tween the underlying procedures horner_poly_div_acc and horner_poly_-

eval_acc, parameterized over the accumulator, a,

Theorem horner_poly_eval_acc_eq_horner_poly_div_acc :

∀ (cs’ : polynomial) (c x a : nat),
horner_poly_eval_acc (c :: cs’) x a =

last (horner_poly_div_acc cs’ x (c + x ∗ a)) (c + x ∗ a).

We prove the underlying theorem by structural induction on the polynomial,

cs, allowing us to prove the original equivalence by case analysis on the

polynomial, cs. Incidentally, the theorem horner_poly_eval_eq_horner_-

poly_div also proves an implementation-specific version of the polynomial

remainder theorem, which we state in the next section.

Having motivated and formalized Horner’s method for polynomial evalu-

ation and polynomial division, as the two procedures horner_poly_eval and

horner_poly_div, and proved their equivalence, we proceed by describing

how to obtain Taylor polynomials using Horner’s method.

11.2 Obtaining Taylor Polynomials

Having covered the definition of Horner’s method for polynomial evaluation

and polynomial division, we show how to calculate Taylor polynomials using

Horner’s method.

In the first section we state two preliminary theorems, the polynomial

remainder theorem and Taylor’s theorem, which we then use to show how to

generate Taylor polynomials using Horner’s method.

11.2.1 Preliminaries

Below, we first state the polynomial remainder theorem followed by the defi-

nitions of Taylor series and Taylor polynomials, which we use to finally state

Taylor’s theorem.

As pointed out in the previous section, if we divide a polynomial, p, with

a binomial, x − k, the remainder of the division is equal to p(k), which is

captured by the polynomial remainder theorem.

Theorem 2 (Polynomial remainder theorem). Given a polynomial,

p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0,

where a0, . . . , an ∈ N, and a binomial,

d(x) = x − k,

133



where k ∈ N, the remainder of dividing p with d, denoted r, is equal to p(k).

Furthermore, d divides p if and only if p(k) = 0.

Next, we define Taylor series and Taylor polynomials in order to state

Taylor’s theorem. A Taylor series is the representation of a function as an

infinite sum of terms, calculated from the values of the function’s derivatives

at a specific point.

Definition 1 (Taylor series). Given a function p and a natural number k, the

Taylor series of p is,

p(k)

0!
(x − k)0 +

p′(k)

1!
(x − k)1 +

p′′(k)

2!
(x − k)2 +

p(3)(k)

3!
(x − k)3 + · · · ,

which can be written as,
∞

∑
i=0

p(i)(k)

i!
(x − k)i.

A Taylor series with a finite number of terms, n ∈ N, is called a Taylor

polynomial and written,
n

∑
i=0

p(i)(k)

i!
(x − k)i.

Since we are working solely with polynomials, we are able to restate any

polynomial as a Taylor polynomial, calculating the exact same values. This

brings us to the following simplified version of Taylor’s theorem defined over

polynomials and natural numbers.

Theorem 3 (Taylor’s theorem). Given a polynomial, p, and two natural numbers,

n and k, the n-th order Taylor polynomial of p, Pn,k, at the point k is,

Pn,k(x) =
n

∑
i=0

p(i)(k)

i!
(x − k)i. (11.8)

Proving Taylor’s theorem falls out of the scope of this dissertation. Having

stated the above definitions and theorems, we now show how to obtain Taylor

polynomials using Horner’s method.

11.2.2 Generating Taylor polynomials

From Theorem 3, we know that given a polynomial,

p(x) =
n

∑
i=0

aix
i,

where a0, . . . , an ∈ N, and a k ∈ N, the Taylor polynomial of p at point k is,

Pn,k(x) =
n

∑
i=0

p(i)(k)

i!
(x − k)i,
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where every occurrence of the variable x has been substituted with x − k and

every coefficient ai has been substituted with
p(i)(k)

i! . Thus, we need a way to

compute these new values using Horner’s method.

If we let p(x) = 2x3 + 4x2 + 11x + 3 and k = 2, we can calculate the

coefficients of P3,2 – without the use of Horner’s method – by evaluating p

and its first three derivatives for x = 2,

p(2)

0!
=

2 · 23 + 4 · 22 + 11 · 2 + 3

0!
=

57

0!
= 57 (11.9)

p′(2)

1!
=

6 · 22 + 8 · 2 + 11

1!
=

51

1!
= 51 (11.10)

p′′(2)

2!
=

12 · 2 + 8

2!
=

32

2!
= 16 (11.11)

p(3)(2)

3!
=

12

3!
= 2, (11.12)

which yields the 3-rd order Taylor polynomial of p at point 2,

P3,2(x) =
p(2)

0!
(x − 2)0 +

p′(2)

1!
(x − 2)1

+
p′′(2)

2!
(x − 2)2 +

p(3)(2)

3!
(x − 2)3

P3,2(x) = 57(x − 2)0 + 51(x − 2)1 + 16(x − 2)2 + 2(x − 2)3

P3,2(x) = 2(x − 2)3 + 16(x − 2)2 + 51(x − 2) + 57.

(11.13)

Looking at the calculations above, we do not only have to evaluate four poly-

nomials and divide each of them with a factorial, but we also have to take the

repeated derivative of p. It would be useful if we could calculate these values

using our existing definitions. From Theorem 2, we know that dividing p

with a binomial, d(x) = x − 2,

x3 x2 x1 x0

2 4 11 3

2 4 16 54

2 8 27 57

yields the quotient q0(x) = 2x2 + 8x + 27 and remainder r0 = p(2), which is

also equal to
p(2)

0! , since 0! = 1. This corresponds to the result of Formula 11.9,

which is also why we have subscripted the remainder with a 0, since it is the

value of the coefficient of P3,2 with index i = 0,

r0 =
p(2)

0!
= 57.

Furthermore, it turns out that if we keep dividing the obtained quotient, a

pattern emerges that connects the remainders of the subsequent divisions

with the remaining coefficients of P3,2. If we divide the quotient of the first
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division, q0(x) = 2x2 + 8x + 27, with the same binomial as before, d(x) =

x − 2,
x2 x1 x0

2 8 27

2 4 24

2 12 51

we get the quotient q1(x) = 2x + 12 and remainder r1 = 51. In line with

the previous result, we notice that the remainder, r1, is equal to the result of

Formula 11.10, i.e., the value of the coefficient of P3,2 with index i = 1,

r1 =
p′(2)

1!
= 51.

If we repeat this procedure once more with the quotient q1(x) = 2x + 12,

x1 x0

2 12

2 4

2 16

we get the remainder r2 = 16, which matches the coefficient with index i = 2

in Formula 11.11,

r2 =
p′′(2)

2!
= 16,

and the quotient q2 = 2, which is also equal to the last remainder, r3, since q2

is constant, and therefore it is also equal to the coefficient with index i = 3 in

Formula 11.12,

q2 = r3 =
p(3)(2)

3!
= 2.

Now, with the following coefficients in hand,

r3 =
p′′′(2)

3!
= 2

r2 =
p′′(2)

2!
= 16

r1 =
p′(2)

1!
= 51

r0 =
p(2)

0!
= 57,

the 3-rd order Taylor polynomial of p at point 2 becomes,

P3,2(x) =
p(2)

0!
(x − 2)0 +

p′(2)

1!
(x − 2)1 +

p′′(2)

2!
(x − 2)2 +

p(3)(2)

3!
(x − 2)3

P3,2(x) = r0(x − 2)0 + r1(x − 2)1 + r2(x − 2)2 + r3(x − 2)3

P3,2(x) = 57(x − 2)0 + 51(x − 2)1 + 16(x − 2)2 + 2(x − 2)3

P3,2(x) = 2(x − 2)3 + 16(x − 2)2 + 51(x − 2) + 57,
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which is equal to the last Taylor polynomial in Formula 11.13. Thus, we

have demonstrated how to obtain the Taylor polynomial of a polynomial p

at a point k, by repeatedly dividing the resulting quotient polynomials with

a binomial, x − k, using Horner’s method, where p is the initial polynomial

to be divided [33]. Lastly, we can write the repeated application of Horner’s

method in a tabular format,

2 2 4 11 3

4 16 54

2 8 27 57

4 24

2 12 51

4

2 16

2.

(11.14)

where the divisions are merged into a triangular array, such that the hy-

potenuse of the triangle, highlighted in boldface, enumerates the coefficients

of the resulting Taylor polynomial.

We call this construction a Horner block and formalize it by first defining

a block to be a list of polynomials,

Notation block := (list polynomial).

allowing us to introduce the following procedure,

Fixpoint create_horner_block_acc (n x : nat) (cs : polynomial) : block :=

match n with

| O ⇒ []
| S n’ ⇒ let cs’ := removelast (horner_poly_div cs x) in

cs’ :: create_horner_block_acc n’ x cs’

end.

which performs the repeated application of Horner’s method for polynomial

division, while removing the last entry of each intermediate results. Here, cs

and x denote the same as in the case of horner_poly_div, while n specifies

the number of divisions. However, we note that there exists an extra base case

in Formula 11.14, as no value is dropped from the initial polynomial in the

Horner block. Hence, we define the wrapper,

Definition create_horner_block (n x : nat) (cs : polynomial) : block :=

match n with

| 0 ⇒ []
| S n’ ⇒ let cs’ := horner_poly_div cs x in

cs’ :: create_horner_block_acc n’ x cs’

end.

137



which performs a single division without removing the last entry, followed

by a call to create_horner_block_acc. Thus, we can obtain the Taylor poly-

nomial of a polynomial p at a point k by reading the hypotenuse of the block

returned by create_horner_block when given a list of p’s coefficients and a

value of k.

11.3 Derivation of Moessner’s sieve

Having covered polynomial division using Horner’s method and how to gen-

erate Taylor polynomials, we now show how these can be used to emulate

Moessner’s sieve. In order to do so, we first have to discuss a few extra

properties of Horner’s method.

If we let p(x) = x3 and want to obtain the Taylor polynomial P3,3, we can

do so in two ways:

1. We repeatedly divide p with x − 3 and obtain the hypotenuse corre-

sponding to the coefficients of P3,3,

x3 x2 x1 x0

3 1 0 0 0

3 9 27

1 3 9 27

3 18

1 6 27

3

1 9

1

2. We repeatedly divide p with x − 1, obtain the Taylor polynomial P3,1

which we again repeatedly divide with x − 1 to get P3,2, and lastly re-

peatedly divide P3,2 with x − 1 to get the coefficients of P3,3,

x3 x2 x1 x0

1 1 0 0 0

1 1 1

1 1 1 1

1 2

1 2 3

1

1 3

1

x3 x2 x1 x0

1 1 3 3 1

1 4 7

1 4 7 8

1 5

1 5 12

1

1 6

1

x3 x2 x1 x0

1 1 6 12 8

1 7 19

1 7 19 27

1 8

1 8 27

1

1 9

1

(11.15)
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From the above calculations, we first observe that the two result hypotenuses

– highlighted in boldface – are identical. Secondly, we observe that the first

remainder calculated in each of the three triangles in Formula 11.15, (1, 8, 27),

are equal to the powers of 3, (13, 23, 33), and thus equal to the values of p(1),

p(2) and p(3), which demonstrates that Horner’s method can be used to

enumerate the values of p for the set of positive natural numbers. Lastly,

upon closer examination of the procedure used above, we note that given a

polynomial,

p(x) = a3x3 + a2x2 + a1x + a0,

the repeated division of p with x − 1 has the following structure,

a3 a2 a1 a0

a3 a3 + a2 a3 + a2 + a1

a3 a3 + a2 a3 + a2 + a1 a3 + a2 + a1 + a0

a3 2a3 + a2

a3 2a3 + a2 3a3 + 2a2 + a1

a3

a3 3a3 + a2

a3

where every non-shifted row, starting with the first row,

a3 a2 a1 a0

a3 a3 + a2 a3 + a2 + a1 a3 + a2 + a1 + a0

a3 2a3 + a2 3a3 + 2a2 + a1

a3 3a3 + a2

a3

(11.16)

is the partial sum of the former non-shifted row. If we take the results of For-

mula 11.15 and strip away the left-most column and the top row, containing

the value of k and the exponents, we get the following three Horner blocks:

1 0 0 0

1 1 1

1 1 1 1

1 2

1 2 3

1

1 3

1

1 3 3 1

1 4 7

1 4 7 8

1 5

1 5 12

1

1 6

1

1 6 12 8

1 7 19

1 7 19 27

1 8

1 8 27

1

1 9

1

(11.17)

Here, we note the regular structure of the blocks where every block is created

from the hypotenuse of the previous block. Next, we perform the same trans-

formation on Formula 11.17 as seen in Formula 11.16, where every shifted
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row is removed in order to expose the partial summation pattern between

each intermediate result:

1 0 0 0

1 1 1 1

1 2 3

1 3

1

1 3 3 1

1 4 7 8

1 5 12

1 6

1

1 6 12 8

1 7 19 27

1 8 27

1 9

1

(11.18)

Lastly, we remove the redundant rows, which appear as both the hypotenuse

of one block and the initial row of the subsequent block, e.g., (1, 3, 3, 1) is both

the hypotenuse of the first Horner block and also the first row of the second

Horner block. Furthermore, we pile the blocks on top of each other,

1 0 0 0

1 1 1 1

1 2 3

1 3

1

1 4 7 8

1 5 12

1 6

1

1 7 19 27

1 8 27

1 9

1

(11.19)

resulting in a rotated mirror image of Moessner’s sieve,

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9

1 3 7 12 19 27

1 8 27

where the right-most column enumerates the successive powers of x3, which

is the statement of Moessner’s theorem for n = 3 and the observation made

by Van Yzeren [44]. Now, if we examine Formula 11.19 from the perspec-

tive of our dual sieve, we observe that the rows of the Horner-based sieve do

indeed enumerate the columns of the traditional sieve, just like our triangle

creation procedure, create_triangle_vertically. Furthermore, we observe

that the Horner-based sieve collects the values of the hypotenuse of the pre-

vious block in order to create the next, as made explicit in Formula 11.19,

just like the dual sieve, create_triangles_vertically. Together, these ob-

servations suggest that we can state an equivalence proof between create_-

triangle_vertically and create_horner_block.

In order to do so, we take a step back and state an equivalence relation

between create_horner_block and create_horner_block_acc,
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Theorem create_horner_block_eq_create_horner_block_acc :

∀ (n x : nat) (cs : polynomial),
create_horner_block n x cs =

create_horner_block_acc n x (cs ++ [0]).

since the latter exhibits a structure similar to create_triangle_vertically.

We prove the above relation by case analysis on the number of divisions,

n, followed by case analysis on the polynomial, cs, and rewriting with the

following helper lemma,

Lemma removelast_horner_poly_div_acc :

∀ (cs : polynomial) (x a : nat),
removelast (horner_poly_div_acc (cs ++ [0]) x a) =

horner_poly_div_acc cs x a.

which itself is proved by structural induction on the polynomial, cs. Hav-

ing proved the relation between create_horner_block and create_horner_-

block_acc, we have taken care of the extra base case for create_horner_-

block and can now state the following equivalence relation between create_-

horner_block_acc and create_triangle_vertically,

Theorem create_horner_block_acc_eq_create_triangle_vertically :

∀ (r : nat) (σ : Stream nat),

hypotenuse (create_horner_block_acc

r 1 (Str_prefix (S r) σ )) =

hypotenuse (create_triangle_vertically

(tuple_constant (S r) 0) (Str_prefix (S r) σ )).

which we prove by induction on the prefix length, r, and rewrite using a

set of equivalence relations between list_partial_sums, stream_partial_-

sums, make_tuple and horner_poly_div. Specifically, we prove the following

equivalence relation between list_partial_sums and make_tuple,

Corollary equivalence_of_list_partial_sums_and_make_tuple :

∀ (xs : tuple),
make_tuple xs 0 =

removelast (list_partial_sums xs).

that is a corollary of the equivalence relation,

Lemma equivalence_of_list_partial_sums_acc_and_make_tuple :

∀ (xs : tuple) (a : nat),
make_tuple xs a =

removelast (list_partial_sums_acc a xs).

which is proved by structural induction on the tuple, xs. Furthermore, we

prove the relation,

Lemma list_partial_sums_eq_horner_poly_div :

∀ (cs : polynomial),
list_partial_sums cs =

horner_poly_div cs 1.

that is proved by case analysis on the polynomial, cs, and rewriting with the

similar relation,
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Lemma list_partial_sums_acc_eq_horner_poly_div_acc :

∀ (cs : polynomial) (a : nat),
list_partial_sums_acc a cs =

horner_poly_div_acc cs 1 a.

which we prove by structural induction on the polynomial, cs. Finally, we

also use the theorem,

Theorem equivalence_of_make_tuple_and_stream_partial_sums_acc :

∀ (l’ a : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l’) σ ) a =

Str_prefix l’ (stream_partial_sums_acc a σ ).

which we have already proved in Chapter 5. With all these helper lem-

mas proved we obtain create_horner_block_acc_eq_create_triangle_-

vertically, which shows that create_triangle_vertically and create_-

horner_block_acc have a simple to state equivalence relation, which captures

the fact that the sieve observed by van Yzeren is actually emulating create_-

triangles_vertically, which accounts for it being the “rotated mirror im-

age” of Moessner’s sieve.

11.4 Summary

In this chapter, we have derived the dual of Moessner’s sieve from Horner’s

method and proved their equivalence.

In order to derive the dual sieve, we first introduced Horner’s method

for polynomial evaluation and polynomial division, after which we stated

the polynomial remainder theorem and Taylor’s theorem that we then used

to demonstrate how to obtain Taylor polynomials, using Horner’s method

for polynomial division. As a result, we transformed the successive calcula-

tions of Taylor polynomials, called Horner blocks, into the dual sieve we have

been working with throughout this dissertation, and proved an equivalence

between the two sieve implementations.
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Dependency graph of the proofs introduced in Chapter 11. Similarly to the

dependency graph of the grid of triangles, we obtain the equivalence between

Moessner’s sieve and Horner’s method using just a small set of new formal-

izations, reflecting their common foundation.
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Chapter 12

Conclusion and perspectives

In the end is my beginning.

T.S. Eliot

One never notices what has been done;
one can only see what remains to be done.

Marie Curie

The goal of this chapter is to conclude our dissertation by summarizing the

work we have done while discussing future work.

The chapter is structured as follows. In Section 12.1, we take a retrospec-

tive look at this study and we run some statistics on the proof scripts we

have written in the process. In Section 12.2, we conclude our findings and we

discuss future work in Section 12.3.

12.1 Retrospective

Measuring programming progress by lines of code
is like measuring aircraft building progress by weight.

Bill Gates

In the process of writing this dissertation, we have also written thousands of

lines of Coq code ranging from trivial unfolding lemmas to complex theo-

rems. In retrospect, all the statements of our proof scripts exhibit a strikingly

regular structure, mainly due to our overall elementary approach. We there-

fore wrote a Python script that parses the Coq code and performs a range

of statistical calculations. Below, we present a breakdown of the keywords

and tactics used, followed by some aggregated values showing the size and

complexity of our proofs.
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Counting words

Table 12.1 presents the number of occurrences of the different keywords and

tactics used in our proof scripts. In the first subtable of Table 12.1, there

Keyword #

Inductive 4

CoInductive 0

Notation+Infix 21

Fixpoint 25

CoFixpoint 17

Definition 34

Theorem 61

Lemma 415

Corollary 73

Instance 18

Tactic #

rewrite 2819

reflexivity 696

induction 145

bisimilar (coinduction) 61

apply+exact 445

inversion 68

case 108

unfold 300

fold 67

intro(s) 765

Table 12.1: Word count of the keywords and tactics used in our proof scripts.

are exactly 0 CoInductive definitions. This is because we import the Stream

definition from the standard library, and we define bisimilarity using an

Inductive generating function rather than a CoInductive proposition, in or-

der to use the paco library for our coinduction proofs. Furthermore, there is

a total of 76 Definitions, Fixpoints, and CoFixpoints, reflecting the size of

our scaffolding. Likewise, we have proved a total of 567 theorems, lemmas,

corollaries, and instances, of which 61 are theorems, suggesting a lower bound

on the number of non-trivial properties proved in the context of Moessner’s

sieve.

The second subtable of Table 12.1, shows the result of sticking to equa-

tional reasoning as the core of our reasoning, given the 2819 uses of rewrite

and 696 uses of reflexivity. Furthermore, throughout this dissertation we

have performed 145 proofs by induction, 61 proofs by coinduction, and 108

proofs by case analysis. Consequently, the values in Table 12.1 reflect the

elementary approach we have taken, focusing on equational reasoning sup-

ported by (co)induction proofs and case analysis, where every step of a proof

is clearly spelled out.

Aggregated statistics

As mentioned in the previous section, the final proof script of this dissertation

consists of 567 proofs. This is also reflected in Table 12.2, which further shows

that the 567 proofs consist of 5908 proof steps where the average length of a

proof is 10.42 proof steps and the median is 5 proof steps. However, while

the average and median values are pretty close to each other there still exists

a significant span in the length of the proofs, since the shortest proof is just
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number of proofs 567

total number of proof steps 5908

average proof length 10.42 proof steps

median proof length 5 proof steps

min proof size 2 proof steps

max proof size 279 proof steps

compilation time 34.89 seconds

lines of code 14782

Table 12.2: Aggregated statistics over all scripts.

2 steps while the longest is 279 steps. Investigating the reason for the latter

value, it turns out that the remarkable length is due to a significant set of

nested case analyses. The actual proof behind the value is of the theorem,

Theorem equivalence_of_vertical_and_horizontal_triangle_indices :

∀ (i j : nat) (xs ys : tuple),
(length xs) = (length ys) →
(nth i (nth j (create_triangle_horizontally xs ys) []) 0) =

(nth j (nth i (create_triangle_vertically xs ys) []) 0).

which states the index equivalence of the two triangle creation procedures.

The proof was done by nested induction on the entry indices, i and j, fol-

lowed by nested case analysis on the two tuples, xs and ys. This example

emphasizes the tendency throughout our proof scripts that long proofs are

often a consequence of many cases having to be proved, and not necessarily

a sign of complexity.

Lastly, we also investigate the complexity of our script with respect to

the compile time of the whole script from scratch. As a result, we find that

compiling the 14288 lines of code, divided across 14 different scripts, took

half a minute on a MacBook Pro with a 2.3 Ghz i5 processor and 8 GB of

memory.

Summary

In this section, we have taken a retrospective look at the actual Coq scripts

used in this dissertation and we calculated statistics on them. These calcu-

lations were made possible by the regular structure of the proofs, which is

the result of our elementary approach to Coq. Consequently, the calculated

statistics reflect our large proof base in terms of the number of proofs and

proof steps made, but it also reflects the elementary nature of our approach

as the majority of proof steps are equational rewrites, (co)induction proofs

or case analyses. This approach has also been emphasized throughout the

dissertation by the dependency graphs accompanying each chapter, which

depicts the interdependence and flow of the lemmas and theorems associated

with each chapter.
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12.2 Conclusion

In this dissertation, we have characterized Moessner’s sieve and proved

Moessner’s theorem along with some of its generalizations. Specifically,

we have formalized the dual of Moessner’s sieve that generates a sequence

of Moessner triangles, each constructed column by column, for which the

bottom-most elements correspond to the traditional result sequence of Moess-

ner’s sieve. Furthermore, we have defined a characteristic function of the dual

of Moessner’s sieve, which we have also proved to be correct, that calculates

a specific entry of a Moessner triangle without having to generate the pre-

fix of the sieve. Using these constructs, we have proved Moessner’s theorem

adapted to the dual sieve, called Moessner’s idealized theorem, and general-

ized it to an initial configuration consisting of a seed tuple with a single seed

value of 1, providing a minimal initial configuration for Moessner’s theorem.

Going beyond Moessner’s theorem, we have introduced a new property

of Moessner’s sieve that establishes a connection between Moessner triangles

of different rank, which suggests the existence of a 2-dimensional grid of

Moessner triangles, instead of just a 1-dimensional sequence. Furthermore,

we have tested the generality of the dual sieve by stating and proving Long’s

theorem in terms of it, called Long’s idealized theorem, which has led to the

conjecture of a new generalization of Long’s theorem connecting Moessner’s

sieve to polynomial evaluation.

Lastly, we have proved an equivalence relation between the repeated ap-

plication of Horner’s method for polynomial division and the dual sieve,

which strengthens the relation between Moessner’s sieve and polynomial

evaluation.

The above findings conclude the work of this dissertation.

12.3 Future work

We plan to prove the conjecture stated in Chapter 10 that generalizes the ini-

tial configuration of Long’s idealized theorem to an arbitrary seed tuple of

constants. We also wish to further explore the possibilities and properties

of the grid of Moessner triangles discussed in Chapter 9. Lastly, we wish

to explore the possible link between Moessner’s sieve and the range of al-

gebraic concepts such as Stirling numbers of the second kind [13], difference

sequences, Babbage’s Difference engine [36] and polynomial root finding [33],

which are all related to Horner’s method.
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Glossary

algebra An algebra is a mathematical structure defined over two sets, R and

M, each having two binary operations called addition and multipli-

cation. Furthermore, an operation exists, called scalar multiplication,

which is defined over both R and M. The operations of R and M satisfy

the following axioms:

∗ Addition (+) over R satisfies:

– Associativity: ∀a, b, c ∈ R, (a + b) + c = a + (b + c).

– Commutativity: ∀a, b ∈ R, a + b = b + a.

– Identity: ∃id ∈ R, ∀a ∈ R, a + id = a ∧ id + a = a.

∗ Multiplication (·) over R satisfies:

– Associativity: ∀a, b, c ∈ R, (a · b) · c = a · (b · c).

– Commutativity: ∀a, b ∈ R, a · b = b · a.

– Identity: ∃id ∈ R, ∀a ∈ R, a · id = a ∧ id · a = a.

– Zero: ∃z ∈ R, ∀a ∈ R, a · z = z ∧ z · a = z.

∗ Multiplication distributes over addition:

– Left distributivity: ∀a, b, c ∈ R, a · (b + c) = (a · b) + (a · c).

– Right distributivity: ∀a, b, c ∈ R, (b + c) · a = (b · a) + (c · a).

∗ All the axioms above also holds true for addition and multiplica-

tion over M.

∗ Scalar multiplication (·) over R and M satisfies:

– Left distributivity: ∀r ∈ R, ∀a, b ∈ M,

r · (a + b) = (r · a) + (r · b).

– Right distributivity: ∀r, s ∈ R, ∀a ∈ M,

(r + s) · a = (r · a) + (s · a).

– Associativity: ∀r, s ∈ R, ∀a ∈ M, (r · s) · a = r · (s · a).

– Identity: ∀a ∈ M, idR · a = a.

– Bilinear mapping: ∀r ∈ R, ∀a, b ∈ M,

r · (ab) = (r · a)b = a(r · b).

(Not used)

algebraic See algebra. (Pages 5, 6, 13)
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binomial A binomial is a polynomial with two non-zero terms,

p(x) = aix
i + ajx

j,

where x is a variable, ai and aj are coefficients, and i 6= j. In this disser-

tation, we mainly focus on the set of binomials that are also polynomials

of degree 1, i.e., p(x) = a1x + a0. (Pages 9, 54, 122, 123, 130, 132, 133,

135–137)

binomial coefficient Given two natural numbers, n and k, the binomial co-

efficient, (n
k), can be read as the coefficient of the kth monomial in the

binomial expansion of (x + y)n. The binomial coefficient can be calcu-

lated in several ways, one of which is the following recursive formula,
(

n

k

)

=

(

n − 1

k − 1

)

+

(

n − 1

k

)

, for 1 ≤ k ≤ n,

with base cases,
(

n

0

)

= 1, for all n ≥ 0, and

(

0

k

)

= 0, for all k ≥ 1.

Lastly, the binomial coefficient can also be read from Pascal’s triangle

as the kth entry of the nth row. Conversely, the entries of Pascal’s tri-

angle can be calculated with the above formula, which is also known as

Pascal’s rule. (Pages 3, 17, 51, 52, 54–58, 60, 62–64, 68, 70, 72)

binomial expansion The binomial theorem states that any exponentiation of

the form (x + y)n, where x and y are variables and n is a natural number,

can be expanded into the sum,

(x + y)n =
n

∑
k=0

(

n

k

)

xn−kyk,

where (n
k) is a binomial coefficient. In this dissertation, we focus on a

simpler version where y has been substituted with the constant 1,

(1 + x)n =
n

∑
k=0

(

n

k

)

xk,

yielding a polynomial of degree n, where x is a variable and (n
k) enu-

merates its coefficients. (Pages 3, 11, 12, 55, 56, 67–69, 71, 74, 75, 84,

88–90, 92, 100, 101, 117)

binomial theorem Given two natural numbers, x and y, and an exponent, n,

the exponentiation (x + y)n can be expanded into the sum,

(x + y)n =

(

n

0

)

xny0 +

(

n

1

)

xn−1y1 + · · ·+

(

n

n − 1

)

x1yn−1 +

(

n

n

)

x0yn,
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where (n
k) is the binomial coefficient. This expansion can also be written

in summation notation as,

(x + y)n =
n

∑
k=0

(

n

k

)

xn−kyk

=
n

∑
k=0

(

n

k

)

xkyn−k,

where the last equivalence follows from the symmetry of the sequence

of binomial coefficients and of x and y. (Pages 51, 52, 54, 56, 64, 89)

bisimilar See bisimulation. (Pages 30–33, 75, 95)

bisimilarity See bisimulation. (Pages 18–20, 28, 30–33, 36, 76, 77)

bisimulation A bisimulation is a binary relation, R ⊆ S × T, which re-

lates two coinductive types, S and T, that are observably similar. For

example, given a bisimulation over the streams of natural numbers,

R ⊆ N
ω × N

ω, and two streams, σ and τ, then the two streams are

said to be bisimilar if their initial values and stream derivatives are in-

distinguishable. This can be stated as the proposition: ∀σ, τ ∈ N
ω,

(σ, τ) ∈ R ⇒

{

(1) σ(0) = τ(0) and

(2) (σ′, τ′) ∈ R.

Lastly, since the bisimilarity relation, R, is an equivalence relation, we

want to reference it with an infix symbol. Hence, we use the symbol

‘ ∼′ that gives us the notation σ ∼ τ, instead of (σ, τ) ∈ R. (Pages 30,

31)

case analysis Case analysis, or proof by exhaustion, is a proof technique in

which the proof of a statement is split into a finite number of cases, each

of which is proved separately. For example, we may prove a statement

over natural numbers by splitting it into a proof where n = 0 and one

where n = S n′. (Pages 44, 57, 58, 61, 62, 72, 80, 83, 104, 119, 133, 141,

146, 147)

characteristic function A characteristic function describes every result of a

procedure, without emulating the procedure itself. The running exam-

ple of this dissertation is a characteristic function of Moessner’s sieve,

which can calculate any entry for a given Moessner triangle, without

needing to compute the prefix of the sieve first. (Pages 2, 3, 67–70,

72–76, 78, 82, 84, 87, 88, 99, 105, 107, 109, 148)

coalgebra A coalgebra is a mathematical structure defined over an inductive

set R and a coinductive set M, each having two binary operations called

addition (+) and multiplication (·). Furthermore, an operation exists,
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called scalar multiplication (·), which is defined over both R and M.

The sets R and M, their operations and scalar multiplication satisfies

the same axioms as in the case of algebras. (Page 10)

coalgebraic See coalgebra. (Pages 5, 10, 13)

coinduction Coinduction is the mathematical dual of structural induction

used for proving properties of coinductive types, i.e., streams, in con-

trast to inductive types, i.e., lists. One of the techniques used for proving

properties of coinductive types is the construction of a binary relation

know as a bisimulation, which relates two coinductive types that are

behaviorally equivalent. (Pages 12, 17, 19, 20, 30–33, 73, 75, 95, 121,

146)

coinduction principle The coinduction principle states that if two streams

are bisimilar then they are also element-wise equal: ∀σ, τ ∈ N
ω,

σ ∼ τ ⇒ ∀i, σ(i) = τ(i).

(Pages 28, 29, 32, 33)

coinductive See coinduction. (Pages 5, 10–13, 18, 19, 21, 28, 33, 36)

coinductive type Coinductive types are the dual of inductive types, which

are defined using coinduction instead of induction. Coinductive types

represent infinite data structures. (Pages 17, 18, 28)

Coq proof assistant The Coq proof assistant is an interactive theorem prover

that supports the development of mathematical proofs and formal spec-

ifications in a computational setting. All programs, properties, and

proofs are formalized in the Calculus of Inductive Constructions (CIC)

and verified by a type checking algorithm. (Pages 3, 11, 15, 16, 20, 21,

56, 58, 60, 107)

corecursion Corecursion is the dual of recursion. While recursion consumes

data by breaking down elements of an inductive type into its subparts

until reaching a base case, corecursion produces data of a coinduc-

tive type. For example, a corecursive procedure may lazily construct

a stream given a seed value and a progress function for generating the

tail of the stream. (Not used)

corecursive See corecursion. (Pages 11, 18, 29)

dropped sequence The dropped sequence is the sequence consisting of the

elements dropped in one iteration of Moessner’s sieve. For example,

when applying Moessner’s sieve on the sequence of natural numbers,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . . ,
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with rank k = 2, the dropped sequence becomes

2, 4, 6, 8, 10, . . . ,

while the result sequence becomes

1, 4, 9, 16, 25, . . . .

(Page 9)

dual sieve The dual sieve is an abbreviation for the “dual of Moessner’s

sieve”, which constructs a sequence of Moessner triangles generated

column by column, as opposed to a result sequence generated row by

row. (Pages 2, 3, 48, 67, 79, 87, 95, 113, 114, 116, 121, 123, 124, 140, 142,

148)

element An element is a specific member of a collection, e.g., a sequence or

list. For example, the value 3 is the third element of the list [1, 2, 3, 4].

(Pages 23–26, 29, 30, 40)

element-wise equal See element-wise equality. (Pages 32, 77)

element-wise equality Element-wise equality is the property of two ordered

collections having the exact same members. As such, we say that two

streams are element-wise equal if, ∀σ, τ ∈ N
ω,

∀i ∈ N, σ(i) = τ(i).

(Pages 32, 33, 76)

equational reasoning Equational reasoning is the act of reasoning about a

proof or program by substituting expressions using existing equiva-

lences. For example, if we know that y = 3 and x = 5, we can rewrite

the expression y2 = 2x − 1 like so,

y2 = 2 · x − 1

32 = 2 · x − 1

32 = 2 · 5 − 1

9 = 2 · 5 − 1

9 = 10 − 1

9 = 9,

thus obtaining a proposition we know to be true by reflexivity of Leibniz

equality. (Pages 16, 20, 146)

Eratosthenes’ sieve Eratosthenes’ sieve is a procedure for finding all prime

numbers up to a given limit. The essence of the procedure is to itera-

tively mark numbers which are multiples of already seen values, start-

ing with multiples of 2, leaving the primes unmarked. (Page 11)
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finite sequence A finite sequence is a sequence with a length, n ∈ N,

a0, a1, a2, . . . , an−2, an−1, an,

in contrast to an infinite sequence which continues indefinitely. (Not

used)

finite series A finite series is a series with a defined first and last term,

n

∑
i=0

ai = a0 + a1 + a2 + · · ·+ an−1 + an,

where n ∈ N, in contrast to an infinite series which continues indefi-

nitely. (Not used)

generating function Generating functions are synonymous with power se-

ries. (Page 12)

guardedness condition The guardedness condition captures the two restric-

tions made on recursive and corecursive calls in the Coq proof assistant.

For recursive calls, the argument being passed must be a subpart of the

initial argument. Conversely, every corecursive call must be an argu-

ment of a coinductive type constructor. (Page 11)

Horner block A Horner block is the resulting triangular array of values con-

structed by repeatedly dividing a polynomial, and its quotients, with a

binomial, x − k, using Horner’s method for polynomial division. For

example, performing the procedure on the polynomial,

f (x) = 1x4 + 0x3 + 0x2 + 0x1 + 0x0,

where k = 1, yields the following Horner block,

1 0 0 0 0

1 1 1 1

1 1 1 1 1

1 2 3

1 2 3 4

1 3

1 3 6

1

1 4

where the hypotenuse, (1, 4, 6, 4, 1), describes the coefficients of the Tay-

lor polynomial F4,1, where 4 is the degree of the polynomial and 1 is the

value of k. (Pages 9, 10, 137, 139, 140, 142)
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Horner’s method Horner’s method is a pair of efficient procedures for eval-

uating or dividing a polynomial using the same recursive substitution

scheme. (Pages 3, 9, 13, 123, 127–130, 132–135, 137–139, 142, 148)

hypotenuse A hypotenuse is the longest side in a right-angled triangle. In

this dissertation, we use ‘hypotenuse’ to describe the last diagonal of a

Moessner triangle or Horner block. (Pages 9, 11, 12, 47, 49, 68, 69, 74,

76, 77, 87–93, 95, 96, 101, 104, 106, 118, 122, 137–140)

induction Induction, specifically structural induction, is a proof technique

for proving that some proposition P(x) holds for all x of some induc-

tive type A. For every inductive type A there exists a partial order, <,

such that proofs by structural induction work by first proving that the

proposition P holds for all ground structures of A, called the base cases,

followed by proving that it also holds for all composite structures, called

the inductive cases. If P holds for all base cases and inductive cases, then

it also holds for all x. Note that we can use this approach to perform

mathematical induction over natural numbers, by doing structural in-

duction over an inductive nat type. (Pages 16, 17, 20, 25, 28, 30, 32,

33, 42, 44, 57, 58, 61, 62, 72, 76, 77, 79–81, 83, 88, 89, 91–94, 104, 108,

118–120, 133, 141, 142, 146, 147)

inductive See induction. (Pages 5, 6, 13, 16, 17, 21, 23–25, 30, 33, 52–54, 56,

59, 60, 62, 63, 71, 74, 77–79, 102, 118, 128, 129)

inductive type Inductive types are the dual of coinductive types, which are

defined using induction instead of coinduction. Inductive types repre-

sent finite data structures, e.g., lists. (Pages 17, 18, 23, 63)

infinite sequence An infinite sequence is a sequence which continues indefi-

nitely,

a0, a1, a2, . . . ,

in contrast to a finite sequence with a specific length. (Not used)

infinite series An infinite series is a series which continues indefinitely,

∞

∑
i=0

ai = a0 + a1 + a2 + · · · ,

in contrast to a finite series with a defined first and last term. (Not

used)

initial configuration An initial configuration is the set of objects from which

an instance of Moessner’s sieve is generated. For example, for an in-

stance of the dual sieve, the initial configuration is a horizontal and

vertical seed tuple, while it is an initial sequence for the traditional ver-

sion of Moessner’s sieve. (Pages 2, 3, 39, 45, 46, 48, 49, 114, 115, 119,

122, 123, 148)
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initial sequence The initial sequence is the sequence on which the first it-

eration of Moessner’s sieve is applied. (Pages 1, 2, 6–8, 12, 34, 35,

114)

initial value See stream. (Pages 10, 18, 28–31, 33, 35, 72, 75, 95, 121)

Leibniz equality Leibniz equality is the smallest equivalence relation be-

tween two objects, x and y, written x = y. Thus, if we can reduce y

to x, or conversely, then x and y are equivalent with respect to Leibniz

equality. (Pages 18, 30, 31, 33, 36)

list A list is an inductive type representing a finite sequence, defined like so:

∗ The empty list, [], is a list.

∗ Given a list, l′, we can construct a new list by adding an element,

e, onto it, e :: l′.

(Pages 6, 17, 23–28, 30, 33, 34, 36, 42, 44, 45, 47–49, 92, 93, 102, 118, 119,

129, 130, 132, 138)

list calculus We define a list calculus to be an inductive list type together

with a set of selectors, constructors and operators which manipulate

lists. (Pages 3, 23, 27–29, 34, 36)

Long’s idealized theorem Long’s idealized theorem states that applying the

dual sieve on a vertical seed tuple containing a pair of constants, c and

d, followed by 0s, yields the result sequence,

c · 1k−2 + d · 1k−3, c · 2k−2 + d · 2k−3, c · 3k−2 + d · 3k−3, . . . ,

where k > 2 is the length of the vertical seed tuple. (Pages 2, 3, 113,

115–118, 121–124, 148)

Long’s theorem Long’s (original) theorem states that applying Moessner’s

sieve on the initial sequence,

a, a + d, a + 2d, a + 3d, . . . ,

yields the result sequence,

a · 1k−1, (a + d) · 2k−1, (a + 2d) · 3k−1, . . . ,

where k is the rank of the sieve. (Pages 2, 3, 113, 114, 116, 124, 148)

Long’s weak theorem Long’s weak theorem states that applying the dual

sieve on a vertical seed tuple consisting of a constant, c, followed by

0s, yields the result sequence,

c · 1k−2, c · 2k−2, c · 3k−2, . . . ,

where k > 2 is the length of the vertical seed tuple. (Pages 113, 116–118,

120, 122, 124)
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Moessner triangle A Moessner triangle is one of the resulting triangular ar-

rays of values generated when applying Moessner’s sieve on a given

sequence. For example, when applying Moessner’s sieve of rank 5 on

the sequence of 1s, the first Moessner triangle becomes,

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

where the rank of the Moessner triangle is 4, i.e., its depth minus 1.

(Pages 2, 3, 7, 8, 10, 39, 40, 42–49, 59, 67–77, 79, 82, 84, 87–90, 92–96, 99,

100, 104–108, 110, 115, 118, 119, 121–123, 148)

Moessner’s idealized theorem Moessner’s idealized theorem states that ap-

plying the dual sieve on an initial configuration consisting of a horizon-

tal seed tuple of rank k (the tuple’s length minus 2), filled with 0s, and

a vertical seed tuple of rank k, filled with a 1 followed by 0s, yields a

sequence of Moessner triangles, where the bottom-most element of each

triangle enumerate the sequence of successive powers of rank k. (Pages

2, 3, 87, 93–96, 113, 116–118, 121, 122, 124, 148)

Moessner’s sieve Moessner’s sieve is a procedure for iteratively dropping el-

ements from a sequence and partially summing the remaining elements.

Specifically, given a sequence and a natural number k, called the rank,

the procedure first drops every kth element of the initial sequence and

partially sums the remaining elements to create a new sequence. From

the newly created sequence every (k − 1)th element is dropped and a

new sequence is created through partial summation. The procedure

stops when k reaches 1. For example, given the sequence of natural

numbers,

1, 2, 3, 4, 5, 6, 7, 8, 9, . . . ,

and letting k = 3. Moessner’s sieve generates the following triangular

arrays,

1 2 3 4 5 6 7 8 9 . . .

1 3 7 12 19 27 . . .

1 8 27 . . .

where the result sequence located at the last row is the sequence of

successive powers,

1k, 2k, 3k, . . .

with k = 3. For the example above, the result sequence is,

13, 23, 33, . . . ,
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which corresponds to the values (1, 8, 27, . . . ). The procedure was orig-

inally described by Alfred Moessner [27], while the term ‘Moessner’s

Sieve’ was coined by Danvy et al. [7], in reference to Erastosthenes’

Sieve. (Pages 1–3, 5–13, 16, 23, 27, 34–36, 39–41, 43, 45–49, 51, 58, 59, 63,

64, 67–69, 72, 74, 78, 82, 84, 87–90, 95, 96, 99–101, 110, 113–115, 122–124,

127, 138, 140, 142, 146, 148)

Moessner’s theorem Moessner’s (original) theorem states that applying

Moessner’s sieve on the initial sequence of natural numbers,

1, 2, 3, . . . ,

with rank k yields the result sequence of successive powers

1k, 2k, 3k, . . . .

(Pages 1–3, 5, 7–13, 72, 87, 95, 148)

monomial A monomial is a polynomial with one non-zero term aix
i,

p(x) = aix
i,

where x is a variable and ai is a coefficient. (Pages 11, 12, 54–56, 68–71,

74, 75, 77, 84, 88, 90, 92, 104, 117, 119, 121)

Pascal’s rule Pascal’s rule is a combinatorial identity for binomial coeffi-

cients. Given two natural numbers, n and k, the following relation holds,

(

n

k

)

=

(

n − 1

k − 1

)

+

(

n − 1

k

)

, for 1 ≤ k ≤ n,

where (n
k) is the binomial coefficient. Alternatively, this relation can be

written as,

(

n

k

)

+

(

n

k − 1

)

=

(

n + 1

k

)

, for 1 ≤ k ≤ n + 1.

(Pages 53, 57, 61, 68, 69, 71, 73, 89, 101, 104, 106)

Pascal’s triangle Pascal’s triangle is a triangular array of binomial coeffi-

cients,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
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indexed in terms of its rows and their entries, both index from 0. For

example, the entry having value 6 in the triangle above is the third entry

of the fifth row, thus the binomial coefficient (4
2) is equal to 6. Pascal’s

triangle is inductively constructed, starting from the base case of a single

entry 1 in the first row, we can construct the next row by adding the two

values immediately above the desired entry. For example, entry (3, 1) is

created by adding the values of (2, 1) and (2, 2),

1 2

ց ւ

3

(Pages 3, 7, 8, 46, 49, 51–60, 62–64, 68, 71, 72, 101)

polynomial A polynomial, p, is a sum of terms, aix
i, each consisting of a

coefficient, ai ∈ N, and a variable, x,

p(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0.

which can be written in summation notation as,

p(x) =
n

∑
i=0

aix
i.

(Pages 9, 123, 127–130, 132–135, 137–139, 141, 142, 148)

polynomial division Polynomial division is the act of dividing a polynomial,

p, with another polynomial, d, of the same or lower degree. When

dividing two polynomials, p and d,
p(x)
d(x)

, where d 6= 0, there exist two

polynomials, q and r, such that the result satisfies the relation p(x) =

d(x) · q(x) + r(x), where r is either 0 or has a degree less than d. We

call p the numerator, d the denominator, q the quotient, and lastly r the

remainder. (Pages 3, 127, 128, 130, 132, 133, 137, 138, 142, 148)

polynomial evaluation Given a polynomial,

p(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0,

and a natural number k, we evaluate p(k) by replacing all occurrences

of x with k, followed by evaluating each of the terms and summing the

result. (Pages 3, 123, 124, 127–133, 142, 148)

polynomial long division Polynomial long division is a generalization of

traditional long division that makes it possible to divide a polynomial

with another polynomial of the same degree or lower. As an example,

we let p(x) = 2x3 + 4x2 + 11x + 3 be the numerator, d(x) = x − 2 the

denominator, such that we divide p by d using the following procedure:
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1. Reorder the numerator, 2x3 + 4x2 + 11x + 3, and denominator, x −

2, into the following format,

x − 2
)

2x3 + 4x2 + 11x + 3

2. Divide the first term of the numerator, 2x3, with the first term of

the denominator, x, and write the result, 2x2, on the line above the

numerator,

2x2

x − 2
)

2x3 + 4x2 + 11x + 3

3. Multiply the result of the previous step, 2x2, with the denominator,

x − 2, and put the result, 2x3 − 4x2, below the numerator, flipping

the sign of each term,

2x2

x − 2
)

2x3 + 4x2 + 11x + 3

− 2x3 + 4x2

4. Subtract the intermediate result of the previous step, 2x3 − 4x2,

from the numerator, 2x3 + 4x2 + 11x+ 3, and write the result, 8x2 +

11x, below,

2x2

x − 2
)

2x3 + 4x2 + 11x + 3

− 2x3 + 4x2

8x2 + 11x

5. Repeat Steps 2 − 4, now using the intermediate result from Step 4,

8x2 + 11x, as the new numerator, until reaching the last term,

2x2 + 8x + 27

x − 2
)

2x3 + 4x2 + 11x + 3

− 2x3 + 4x2

8x2 + 11x

− 8x2 + 16x

27x + 3

− 27x + 54

57

6. The resulting quotient, 2x2 + 8x + 27, can now be read from the

line above the numerator, 2x3 + 4x2 + 11x + 3, and the remainder,

57, can be read from the value below the last horizontal line of the

calculation.
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In order to verify the calculations above, we simply check that,

2x3 + 4x2 + 11x + 3 = (x − 2)(2x2 + 8x + 27) + 57,

is true. (Pages 130, 132)

polynomial remainder theorem Given a polynomial,

p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0,

where a0, . . . , an ∈ N, and a binomial,

d(x) = x − k,

where k ∈ N, the remainder of dividing p with d, denoted r, is equal to

p(k). Furthermore, d divides p if and only if p(k) = 0. (Pages 133, 142)

positive natural numbers The set of positive natural numbers is the ordered

set of natural numbers having 1 as the smallest value: {1, 2, 3, 4, 5, . . . }.

(Pages 1, 2, 6–8, 11, 12)

power series A power series is an infinite series defined over a variable x,

having the form,

∞

∑
i=0

ai(x − k)i = a0(x − k)0 + a1(x − k)1 + a2(x − k)2 + · · · ,

where ai ∈ N are the coefficients and k ∈ N is a constant. The power

series is said to be centered at k. A common power series is the Taylor

series,

∞

∑
i=0

p(i)(k)

i!
(x − k)i =

p(k)

0!
(x − k)0 +

p′(k)

1!
(x − k)1 +

p′′(k)

2!
(x − k)2 + · · · ,

where p is a polynomial and the coefficients of the power series are

defined in terms of p’s derivatives at the point k. When k is equal to

zero, the power series has the form,

∞

∑
i=0

aix
i = a0x0 + a1x1 + a2x2 + · · · ,

an example of which is the Maclaurin series, a special case of the Taylor

series,
∞

∑
i=0

p(i)(0)

i!
xi =

p(0)

0!
x0 +

p′(0)

1!
x1 +

p′′(0)

2!
x2 + · · · ,

where p again is a polynomial. (Page 10)
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procedure A procedure is a sequence of instructions to perform a specific

task. A procedure can take a given number of arguments which de-

termine the execution of the procedure. A common procedure in this

dissertation is Moessner’s sieve, since it drops and partially sums se-

quences of values in a manner determined by its arguments: its rank

and initial sequence. (Pages 1, 2, 6, 11, 18, 19, 23, 26, 27, 29–31, 34–36,

39–47, 49, 67, 74, 75, 78, 79, 84, 90, 92, 93, 95, 96, 100, 102, 103, 105, 107,

110, 127, 129–133, 136, 137, 139)

quotient See polynomial division. (Pages 9, 130–132, 135, 137)

rank The rank of an object describes the size of the resulting Moessner trian-

gles generated from the associated sieve. As such, we define the rank of

the following types of objects:

1. The rank of an application of Moessner’s sieve is the drop index,

often denoted k.

2. The rank of a Moessner triangle is the depth of the triangle minus

1, which is also equal to the drop index minus 1.

3. The rank of a seed tuple is the length of the seed tuple minus 2,

which is also equal to the rank of the resulting Moessner triangle.

(Pages 2, 3, 6, 11, 12, 35, 36, 40, 46, 58, 59, 68, 71, 72, 74–76, 88–91, 95,

99–108, 110, 114, 115, 118, 119)

rank decomposition Rank decomposition is the act of describing an entry of

a Moessner triangle with triangle index t and rank k, in terms of nearby

entries in the same Moessner triangle with triangle index t and rank

k − 1. (Pages 99, 105–108, 110)

rank-upgrading procedure Given a seed tuple of rank k, a rank upgrading

procedure returns the corresponding seed tuple of rank k + 1. (Pages

99, 100, 102, 103, 110)

recursion Recursion is the process of consuming inductively defined data by

decomposing it into its subparts, the inductive cases, until reaching an

atom, base case. For example, traversing an inductively defined list, l,

is done by decomposing the list into a head element, e, and a tail, l′,

followed by traversing the tail, l′, until reaching the empty list, []. In

this traversal, the empty list is the base case while the decomposition of

the list, l, into a head, e, and a tail, l′, is the inductive case. (Not used)

recursive See recursion. (Pages 17, 26, 35, 36, 43, 102, 127, 129–131)

remainder See polynomial division. (Pages 130, 131, 134, 135)
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result sequence The result sequence is the sequence resulting from apply-

ing Moessner’s sieve on an initial sequence. For example, the result

sequence of applying Moessner’s sieve of rank 2 on the initial sequence

of natural numbers,

1, 2, 3, . . . ,

yields the result sequence of squares,

12, 22, 32, . . . .

(Pages 1, 2, 6, 8, 9, 11, 12, 34, 35, 95, 114, 115, 121–123, 148)

result stream A result stream is the same as a result sequence, but within the

context of streams. (Pages 36, 40, 48)

rotated binomial coefficient The rotated binomial coefficient describes the

entries of the rotated Pascal’s triangle, indexed by its rows and columns

and containing the same elements as Pascal’s triangle. (Pages 3, 51, 58,

60–62, 64)

rotated Pascal’s triangle The rotated Pascal’s triangle is a left-aligned version

of Pascal’s triangle,

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

being indexed by its rows and columns, and having the same entries as

Pascal’s triangle. (Pages 3, 51, 58–60, 62, 64, 68, 73)

seed stream A seed stream is the same as an initial sequence, but within the

context of streams. (Pages 35, 40, 49)

seed tuple A seed tuple is one of the tuples used to create a Moessner triangle

with the dual of Moessner’s sieve. For example, in the following case,

0 0 0 0 0 0

1 1 1 1 1 1

0 1 2 3 4

0 1 3 6

0 1 4

0 1

0

the vertical seed tuple is (1, 0, 0, 0, 0, 0) while the horizontal seed tuple is

(0, 0, 0, 0, 0, 0). Since the horizontal seed tuple is mostly 0s throughout
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the examples of this dissertation, we often use seed tuple as short for

the vertical seed tuple. The rank of a seed tuple is the length of the seed

tuple minus 2, which is also equal to the rank of the resulting Moessner

triangle. (Pages 2, 3, 39–43, 45–49, 67, 74–76, 79–81, 87, 90, 91, 93, 94,

99–104, 106, 107, 110, 113–115, 117–119, 122–124, 148)

sequence A sequence is a possibly infinite linearly ordered collection whose

members are called elements. A sequence is ordered on the index values

of its members. The number of elements in a sequence is called the

length of the sequence. Two common sequences in this dissertation are

the sequence of positive natural numbers,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . ,

and the sequence consisting of a 1 followed by 0s,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . .

(Pages 2, 3, 6, 8–12, 34–36, 39, 48, 69, 91, 115, 123, 148)

sequence of partial sums A sequence of partial sums, {Sk}, defined over a

series and a natural number k, is the sum of the sequence {ai} from a0

to ak,

Sk =
k

∑
i=0

ai = a0 + a1 + a2 + · · ·+ ak−1 + ak.

(Not used)

sequence of successive powers The sequence of successive powers is a se-

quence of positive natural numbers raised to a fixed positive natural

number. For example, the sequence of successive powers for the value

3 is the sequence of cubes,

13, 23, 33, 43, . . . .

(Pages 1, 6, 8, 10)

series A series is the sum of the terms of a sequence. A series is finite if it

has a defined first and last term, otherwise it is infinite. Given a finite

sequence, {ai}, the series of the sequence is the sum,

n

∑
i=0

ai = a0 + a1 + a2 + · · ·+ an−2 + an−1 + an,

where ai, n ∈ N, and conversely, given an infinite sequence {ai}, the

series of the sequence is the sum,

∞

∑
i=0

ai = a0 + a1 + a2 + · · · ,

where ai ∈ N. (Not used)
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stream A stream is the computational representation of an infinite sequence.

As such, the set of all streams of natural numbers is defined as,

N
ω = {σ | σ : N → N},

where,

σ = (σ(0), σ(1), σ(2), . . . ).

The entry σ(0) is called the initial value of the stream, while the remain-

der of the stream is called the stream derivative, written,

σ′ = (σ(1), σ(2), σ(3), . . . ).

(Pages 3, 10, 12, 13, 17–19, 23, 27–36, 39, 40, 42, 43, 45, 46, 48, 49, 67, 68,

73, 75, 77, 78, 82, 83, 88, 91, 95, 118, 120)

stream calculus A stream calculus is a coinductive stream type together with

a set of selectors, constructors and operators which manipulate streams.

(Pages 3, 10, 12, 13, 19, 23, 27–29, 34, 36)

stream derivative See stream. (Pages 10, 18, 28–33, 72, 75, 76, 95)

stream of successive powers See sequence of successive powers. (Pages 3,

39, 40, 48, 49, 95)

Taylor polynomial A Taylor polynomial is a Taylor series with a finite num-

ber of terms,

Pn,k(x) =
n

∑
i=0

p(i)(k)

i!
(x − k)i,

where n, k ∈ N. If p is a polynomial, then Pn,k calculates the same

function as p for all values of k, and Pn,k is identical to p in the case

where k = 0 and n is equal to the degree of the polynomial p. (Pages

127, 133–138, 142)

Taylor series Given a polynomial, p, and a natural number, k, then p can be

represented as the power series centered at k,

∞

∑
i=0

p(i)(k)

i!
(x − k)i =

p(k)

0!
(x − k)0 +

p′(k)

1!
(x − k)1 +

p′′(k)

2!
(x − k)2 + · · · ,

whose coefficients are defined in terms of p’s derivatives at the point k.

Such a power series is called the Taylor series of p. (Pages 133, 134)

Taylor’s theorem Given a polynomial, p, and two natural numbers, n and k,

the k-th order Taylor polynomial, Pn,k, of p centered at k is,

Pn,k(x) =
n

∑
i=0

p(i)(k)

i!
(x − k)i.

Since p is a polynomial, Pn,k calculates the same values as p for all values

of k, and in the case where k = 0, Pn,k is the Maclaurin polynomial

identical to p. (Pages 133, 134, 142)
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triangle creation procedure Given two seed tuples, a triangle creation proce-

dure creates the corresponding Moessner triangle. In this dissertation,

we work with two triangle creation procedures, create_triangle_-

horizontally and create_triangle_vertically, which create a

Moessner triangle either row by row or column by column. (Pages

3, 39, 42–45, 49, 67, 74, 76, 78, 82, 84, 87, 93, 105, 107, 109, 140, 147)

tuple A tuple is an ordered set of elements with a fixed length n, and usually

written within parentheses, (a0, a1 . . . , an−2, an−1). (Pages 3, 40–42, 44,

47, 49, 78–80, 101, 102, 118–120, 123, 124, 141, 147)
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Appendix A

Coq Definitions

Fixpoint app {A : Type} (xs ys : list A) : list A :=

match xs with

| [] ⇒ ys
| x :: xs’ ⇒ x :: app xs’ ys
end.

Infix "++ " := app (right associativity, at level 60) : list_scope.

Fixpoint binomial_coefficient (n k : nat) : nat :=

match n, k with

| n, 0 ⇒ 1
| 0, S k’ ⇒ 0
| S n’, S k’ ⇒ binomial_coefficient n’ (S k’) +

binomial_coefficient n’ k’

end.

Notation "C( n , k )" := (binomial_coefficient n k).

CoInductive bisimilarity (σ τ : Stream nat) : Prop :=

bisimilar : σ (0) = τ (0) →
σ ′ ∼ τ ′→
σ ∼ τ

where "σ ∼ τ " := (bisimilarity σ τ ).

Definition bisimulation (R : relation (Stream nat)) : Prop :=

∀ (σ τ : Stream nat),

R σ τ → σ (0) = τ (0) ∧ R σ ′τ ′.

Notation block := (list polynomial).

Definition create_horner_block (n x : nat) (cs : polynomial) : block :=

match n with

| 0 ⇒ []
| S n’ ⇒ let cs’ := horner_poly_div cs x in

cs’ :: create_horner_block_acc n’ x cs’

end.
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Fixpoint create_horner_block_acc (n x : nat) (cs : polynomial) : block :=

match n with

| O ⇒ []
| S n’ ⇒ let cs’ := removelast (horner_poly_div cs x) in

cs’ :: create_horner_block_acc n’ x cs’

end.

Fixpoint create_triangle_horizontally (xs ys : tuple) : triangle :=

match ys with

| [] ⇒ []
| [y] ⇒ []
| y :: (_ :: _) as ys’ ⇒
let xs’ := make_tuple xs y

in xs’ :: (create_triangle_horizontally xs’ ys’)

end.

Fixpoint create_triangle_vertically (xs ys : tuple) : triangle :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: (_ :: _) as xs’ ⇒
let ys’ := make_tuple ys x

in ys’ :: (create_triangle_vertically xs’ ys’)

end.

Fixpoint create_triangles_vertically (n : nat) (xs ys : tuple)

: list triangle :=

match n with

| 0 ⇒ [create_triangle_vertically xs ys]
| S n’ ⇒
let ts := create_triangle_vertically xs ys

in ts :: (create_triangles_vertically n’ xs

(rev (cons 0 (hypotenuse ts))))

end.

CoFixpoint drop (i k : nat) (σ : Stream nat) : Stream nat :=

match i with

| 0 ⇒ (σ ′)(0) ::: drop (k - 2) k σ ′ ′

| S i’ ⇒ σ (0) ::: drop i’ k σ ′

end.

Inductive Entry : Type :=

| entry : nat → nat → nat → Entry.

Definition hd {A : Type} (d : A) (xs : list A) : A :=

match xs with

| [] ⇒ d
| x :: _ ⇒ x
end.
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Definition hd {A : Type} (σ : Stream A) :=

match σ with

| s ::: _ ⇒ s
end.

Notation "σ (0)" := (hd σ ) (at level 8, left associativity).

Definition horner_poly_div (cs : polynomial) (x : nat) : polynomial :=

match cs with

| [] ⇒ []
| c :: cs’ ⇒ c :: (horner_poly_div_acc cs’ x c)
end.

Fixpoint horner_poly_div_acc (cs’ : polynomial) (x a : nat) :

polynomial :=

match cs’ with

| [] ⇒ []
| c’ :: cs’’ ⇒
(c’ + (x ∗ a)) :: (horner_poly_div_acc cs’’ x (c’ + (x ∗ a)))

end.

Definition horner_poly_eval (cs : polynomial) (x : nat) : nat :=

horner_poly_eval_acc cs x 0.

Fixpoint horner_poly_eval_acc (cs : polynomial) (x a : nat) : nat :=

match cs with

| [] ⇒ a
| c :: cs’ ⇒ horner_poly_eval_acc cs’ x (c + x ∗ a)
end.

Fixpoint hypotenuse (ts : triangle) : tuple :=

match ts with

| [] ⇒ []
| t :: ts’ ⇒ (last t 0) :: (hypotenuse ts’)
end.

Fixpoint last {A : Type} (xs: list A) (d : A) : A :=

match xs with

| [] ⇒ d
| [x] ⇒ x
| x :: xs ⇒ last xs d
end.

Fixpoint length {A : Type} (xs : list A) : nat :=

match xs with

| [] ⇒ O
| _ :: xs’ ⇒ S (length xs’)
end.

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A → list A → list A.
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Notation " [ ] " := nil : list_scope.

Notation " [ x ] " := (cons x nil) : list_scope.

Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.

Infix "::" := cons (at level 60, right associativity) : list_scope.

Definition list_constant (n c : nat) : list nat :=

make_list n c (λ x : nat ⇒ x).

Fixpoint list_map (f : nat → nat) (xs : list nat) : list nat :=

match xs with

| [] ⇒ xs
| x :: xs’ ⇒ (f x) :: (list_map f xs’)
end.

Definition list_partial_sums (xs : list nat) : list nat :=

list_partial_sums_acc 0 xs.

Fixpoint list_partial_sums_acc (a : nat) (xs : list nat) : list nat :=

match xs with

| [] ⇒ []
| x :: xs’ ⇒ (x + a) :: (list_partial_sums_acc (x + a) xs’)
end.

Definition list_product (xs ys : list nat) : list nat :=

list_zip mult xs ys.

Infix "⊙ " := list_product (at level 40, left associativity).

Definition list_scalar_multiplication (k : nat)

(xs : list nat) : list nat :=

list_map (mult k) xs.

Notation "k ⊗ xs" := (list_scalar_multiplication k xs)
(at level 40, left associativity).

Definition list_successor (n i : nat) : list nat :=

make_list n i S.

Definition list_sum (xs ys : list nat) : list nat :=

list_zip plus xs ys.

Infix "⊕ " := list_sum (at level 50, left associativity).

Fixpoint list_zip (f : nat → nat → nat)

(xs ys : list nat) : list nat :=

match xs, ys with

| xs, [] ⇒ xs
| [], ys ⇒ ys
| x :: xs’, y :: ys’ ⇒ (f x y) :: (list_zip f xs’ ys’)
end.
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CoFixpoint long_stream (n r d c : nat) : Stream nat :=

(nth 0 (hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r)))

(0 ::: (p_monomials 0 r 0 c))) ⊕
(Str_prefix (S (S (S r)))

(p_monomials 0 (S r) 0 d)))) [])) 1)

::: (long_stream (S n) r d c).

Fixpoint make_list (n i : nat) (f : nat → nat) : list nat :=

match n with

| 0 ⇒ []
| S n’ ⇒ i :: (make_list n’ (f i) f)
end.

CoFixpoint make_stream (f : nat → nat) (n : nat) : Stream nat :=

n ::: make_stream f (f n).

Fixpoint make_tuple (xs : tuple) (a : nat) : tuple :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: (_ :: _) as xs’ ⇒
let a’ := x + a

in a’ :: make_tuple xs’ a’

end.

CoFixpoint moessner_entries (r n k t : nat) : Stream nat :=

(moessner_entry r n k t) :::

(moessner_entries r n (S k) t).

Fixpoint moessner_entry (r n k t : nat) : nat :=

match n with

| 0 ⇒ match k with
| 0 ⇒ 1
| S k’ ⇒ 0
end

| S n’ ⇒ match k with
| 0 ⇒ monomial t r (S n’) +

moessner_entry r n’ 0 t

| S k’ ⇒ moessner_entry r n’ (S k’) t +
moessner_entry r n’ k’ t

end

end.

179



CoFixpoint moessner_stream (n r : nat) : Stream nat :=

(nth 0 (hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials 0 r 0)))

[])) 1)

::: (moessner_stream (S n) r).

Definition monomial (t r n : nat) : nat :=

C(r, n) ∗ (t ^ n).

CoFixpoint monomials (t r n : nat) : Stream nat :=

(monomial t r n) ::: (monomials t r (S n)).

Fixpoint monomials_list (t r n : nat) : list nat :=

match n with

| 0 ⇒ [monomial t r 0]
| S n’ ⇒ (monomial t r (S n’)) :: (monomials_list t r n’)
end.

CoFixpoint monomials_sum (t r n a : nat) : Stream nat :=

let a’ := (monomial t r n) + a in

a’ ::: (monomials_sum t r (S n) a’).

Fixpoint nth {A : Type} (n : nat) (xs: list A) (d : A) : A :=

match n, xs with

| O, x :: xs’ ⇒ x
| O, [] ⇒ d
| S n’, [] ⇒ d
| S n’, x :: xs ⇒ nth n’ xs’ d
end.

CoFixpoint p_moessner_stream (n r d : nat) : Stream nat :=

(nth 0 (hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials 0 r 0 d)))

[])) 1)

::: (p_moessner_stream (S n) r d).

Definition p_monomial (x n k d : nat) : nat :=

d ∗ C(n,k) ∗ x ^ k.

CoFixpoint p_monomials (t r n d : nat) : Stream nat :=

(p_monomial t r n d) ::: (p_monomials t r (S n) d).
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Inductive Pascal : Entry → Prop :=

| pascal_base_n_0 : ∀ (n : nat), (Pascal (entry n 0 1))
| pascal_base_n_n : ∀ (n : nat), 0 < n → (Pascal (entry n n 1))

| pascal_base_n_lt_k : ∀ (n k : nat), n < k → (Pascal (entry n k 0))

| pascal_inductive_S_n’ : ∀ (n’ k’ v’’ v’ v : nat),
v = v’’ + v’ →
(Pascal (entry n’ k’ v’’)) →
(Pascal (entry n’ (S k’) v’)) →
(Pascal (entry (S n’) (S k’) v)).

Notation polynomial := (list nat).

Fixpoint removelast {A : Type} (xs : list A) : list A :=

match xs with

| [] ⇒ []
| [x] ⇒ []
| x :: xs ⇒ x :: removelast xs
end.

Fixpoint repeat_make_tuple (ys : tuple) (a n : nat) : tuple :=

match n with

| 0 ⇒ ys
| S n’ ⇒ repeat_make_tuple (make_tuple ys a) a n’
end.

Fixpoint rev {A : Type} (xs : list A) : list A :=

match xs with

| [] ⇒ []
| x :: xs’ ⇒ rev xs’ ++ [x]
end.

Definition rotated_binomial_coefficient (r c : nat) : nat :=

C(c + r, c).

Notation "R( r , c )" := (rotated_binomial_coefficient r c).

CoFixpoint rotated_moessner_entries (n r c t : nat) : Stream nat :=

(rotated_moessner_entry n r c t) :::

(rotated_moessner_entries n (S r) c t).

Definition rotated_moessner_entry (n r c t : nat) : nat :=

moessner_entry n (c + r) c t.

Inductive Rotated_Pascal : Entry → Prop :=

| rotated_pascal_base_r_0 :

∀ (r : nat), (Rotated_Pascal (entry r 0 1))
| rotated_pascal_base_0_c :

∀ (c : nat), 0 < c → (Rotated_Pascal (entry 0 c 1))

| rotated_pascal_induction_r_c :

∀ (r’ c’ v’’ v’ v : nat),
v = v’’ + v’ →
(Rotated_Pascal (entry (S r’) c’ v’’)) →
(Rotated_Pascal (entry r’ (S c’) v’)) →
(Rotated_Pascal (entry (S r’) (S c’) v)).
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Fixpoint sieve (i k n : nat) (σ : Stream nat) : Stream nat :=

match n with

| 0 ⇒ sieve_step i k σ

| S n’ ⇒ sieve_step i k (sieve (S i) (S k) n’ σ )

end.

Definition sieve_step (i k : nat) (σ : Stream nat) :=

stream_partial_sums (drop i k σ ).

CoInductive Stream (A : Type) : Type :=

Cons : A → Stream A → Stream A.

Notation "s ::: σ " := (Cons s σ ) (at level 60, right associativity).

Definition stream_constant (c : nat) : Stream nat :=

make_stream (λ x : nat ⇒ x) c.
Notation "# c" := (stream_constant c) (at level 4, left associativity).

CoFixpoint stream_map (f : nat → nat)

(σ : Stream nat) : Stream nat :=

f σ (0) ::: stream_map f σ ′.

Definition stream_partial_sums (σ : Stream nat) : Stream nat :=

stream_partial_sums_acc 0 σ .

CoFixpoint stream_partial_sums_acc (a : nat)

(σ : Stream nat) : Stream nat :=

σ (0) + a ::: stream_partial_sums_acc (σ (0) + a) σ ′.

Definition stream_product (σ τ : Stream nat) : Stream nat :=

stream_zip mult σ τ .

Infix "⊙ " := stream_product (at level 40, left associativity).

Definition stream_scalar_multiplication (k : nat)

(σ : Stream nat) : Stream nat :=

stream_map (mult k) σ .

Notation "k ⊗ σ " := (stream_scalar_multiplication k σ )

(at level 40, left associativity).

Definition stream_successor (i : nat) : Stream nat :=

make_stream S i.

Definition stream_sum (σ τ : Stream nat) : Stream nat :=

stream_zip plus σ τ .

Infix "⊕ " := stream_sum (at level 50, left associativity).

CoFixpoint stream_zip (f : nat → nat → nat)

(σ τ : Stream nat) : Stream nat :=

f σ (0) τ (0) ::: stream_zip f σ ′τ ′.

Definition Str_nth {A : Type} (n : nat) (σ : Stream A) : A :=

(Str_nth_tl n σ )(0).
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Fixpoint Str_nth_tl {A : Type} (n : nat) (σ : Stream A) : Stream A :=

match n with

| O ⇒ σ

| S n’ ⇒ Str_nth_tl n’ σ ′

end.

Fixpoint Str_prefix (n : nat) (σ : Stream nat) : list nat :=

match n with

| 0 ⇒ []
| S n’ ⇒ σ (0) :: (Str_prefix n’ σ ′)

end.

CoFixpoint successive_powers (b e : nat) : Stream nat :=

(S b) ^ e ::: successive_powers (S b) e.

Definition tl {A : Type} (xs : list A) : list A :=

match xs with

| [] ⇒ []
| _ :: xs’ ⇒ xs’
end.

Definition tl {A : Type} (σ : Stream A) :=

match σ with

| _ ::: σ ’ ⇒ σ ’

end.

Notation "σ ′" := (tl σ ) (at level 8, left associativity).

Notation tuple := (list nat).

Notation triangle := (list tuple).

Definition upgrade_seed_tuple (t : nat) (xs : tuple) : tuple :=

upgrade_seed_tuple_aux t 0 xs.

Fixpoint upgrade_seed_tuple_aux (t a : nat) (xs : tuple) : tuple :=

match xs with

| [] ⇒ [a]
| x :: xs’ ⇒ (S t) ∗ x + a :: upgrade_seed_tuple_aux t x xs’
end.
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Appendix B

Coq Proofs

Corollary binomial_coefficient_eq_rotated_binomial_coefficient :

∀ (n k : nat),
k ≤ n →
C(n, k) = R(n - k, k).

Lemma binomial_coefficient_implies_Pascal :

∀ (n k v : nat),
v = C(n, k) → Pascal (entry n k v).

Theorem binomial_coefficient_is_symmetric :

∀ (n k : nat),
k ≤ n →
C(n, k) = C(n, n - k).

Lemma binomial_coefficient_n_eq_k_implies_1 :

∀ (n : nat), C(n, n) = 1.

Lemma binomial_coefficient_n_lt_k_implies_0 :

∀ (n k : nat), n < k → C(n, k) = 0.

Theorem Binomial_theorem :

∀ (t n : nat),
(S t) ^ n = Str_nth (S n) (stream_partial_sums (monomials t n 0)).

Theorem bisimilarity_iff_Str_nth :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ (∀ (n : nat), Str_nth n σ = Str_nth n τ ).

Theorem bisimilarity_iff_Str_nth_tl :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ (∀ (n : nat), Str_nth_tl n σ ∼ Str_nth_tl n τ ).

Theorem bisimilarity_iff_Str_prefix :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ (∀ (n : nat), Str_prefix n σ = Str_prefix n τ ).
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Lemma bisimilarity_implies_Str_nth :

∀ (n : nat) (σ τ : Stream nat),

σ ∼ τ → Str_nth n σ = Str_nth n τ .

Lemma bisimilarity_implies_Str_nth_tl :

∀ (n : nat) (σ τ : Stream nat),

σ ∼ τ → Str_nth_tl n σ ∼ Str_nth_tl n τ .

Lemma bisimilarity_is_a_bisimulation :

bisimulation bisimilarity.

Theorem bisimilarity_is_reflexive :

∀ (σ : Stream nat),

σ ∼ σ .

Theorem bisimilarity_is_symmetric :

∀ (σ τ : Stream nat),

σ ∼ τ → τ ∼ σ .

Theorem bisimilarity_is_transitive :

∀ (σ τ ρ : Stream nat),

σ ∼ τ → τ ∼ ρ → σ ∼ ρ .

Lemma bisimulation_implies_bisimilarity :

∀ (R : relation (Stream nat)),
bisimulation R → ∀ (σ τ : Stream nat), R σ τ → σ ∼ τ .

Theorem bisimulation_principle :

∀ (σ τ : Stream nat),

σ ∼ τ ↔ ∃ (R : relation (Stream nat)), bisimulation R ∧ R σ τ .

Corollary bottom_element_of_nth_triangle_is_power :

∀ (n r : nat),
nth 0

(hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials 0 r 0)))

[]))

1 = (S n) ^ r.
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Corollary bottom_element_of_nth_triangle_is_power_p_monomials_list_sum :

∀ (n r d c : nat),
nth 0

(hypotenuse

(nth n

(create_triangles_vertically

n

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r)))

(0 ::: (p_monomials 0 r 0 c))) ⊕
(Str_prefix (S (S (S r)))

(p_monomials 0 (S r) 0 d)))) [])) 1 =

(c ∗ (S n) ^ r) + (d ∗ (S n) ^ (S r)).

Theorem correctness_of_repeat_make_tuple :

∀ (j : nat) (ys : tuple),
(repeat_make_tuple ys 0 (S j)) =

(nth j (create_triangle_vertically

(tuple_constant (length ys) 0)

ys)

[]).

Theorem correctness_of_rotated_moessner_entry :

∀ (i j r t : nat),
j ≤ S r →
S i ≤ S r - j →
(nth i

(nth j

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0)))

[])

0) =

rotated_moessner_entry r i j t.

Theorem correctness_of_upgrade_seed_tuple :

∀ (n t : nat),
upgrade_seed_tuple t (rev (Str_prefix (S n) (monomials (S t) n 0))) =

rev (Str_prefix (S (S n)) (monomials (S t) (S n) 0)).

Theorem correctness_of_upgrade_seed_tuple_aux :

∀ (n t : nat),
(S t) ∗ (moessner_entry n n 0 t)

:: upgrade_seed_tuple_aux t (moessner_entry n n 0 t)

(Str_prefix n (moessner_entries n n 1 t)) =

Str_prefix (S (S n)) (moessner_entries (S n) (S n) 0 t).

Lemma correctness_of_upgrade_seed_tuple_aux_list :

∀ (n r t : nat),
upgrade_seed_tuple_aux

t (monomial (S t) r (S n)) (monomials_list (S t) r n) =

monomials_list (S t) (S r) (S n).
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Theorem create_horner_block_acc_eq_create_triangle_vertically :

∀ (r : nat) (σ : Stream nat),

hypotenuse (create_horner_block_acc

r 1 (Str_prefix (S r) σ )) =

hypotenuse (create_triangle_vertically

(tuple_constant (S r) 0) (Str_prefix (S r) σ )).

Theorem create_horner_block_eq_create_horner_block_acc :

∀ (n x : nat) (cs : polynomial),
create_horner_block n x cs =

create_horner_block_acc n x (cs ++ [0]).

Corollary create_triangle_vertically_decompose_by_rank :

∀ (i j r t : nat),
j ≤ r → S i ≤ r - j →
(nth (S i) (nth j

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (monomials t (S r) 0))) []) 0) =

t ∗ (nth i (nth j
(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0) +

(nth (S i) (nth j

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0).

Lemma create_triangle_vertically_horizontal_seed_tuple_padding :

∀ (r : nat) (σ : Stream nat),

hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S r) σ )) =

(hypotenuse

(create_triangle_vertically

(tuple_constant (S r) 0)

(Str_prefix (S r) σ ))) ++ [0].

Corollary create_triangle_vertically_rank_decompose_Pascal_like_c_eq_0 :

∀ (i r t : nat),
i < (S r) →
(nth (S i) (nth 0

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (monomials t (S r) 0))) []) 0) =

(S t) ∗ (nth i (nth 0
(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0) +

monomial t r (S i).
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Corollary create_triangle_vertically_rank_decompose_Pascal_like_c_gt_0 :

∀ (i j r t : nat),
j ≤ r → S i ≤ r - j →
(nth (S i) (nth (S j)

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (monomials t (S r) 0))) []) 0) =

(S t) ∗ (nth i (nth (S j)
(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0) +

(nth (S i) (nth j

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0))) []) 0).

Lemma decompose_Stream :

∀ (σ : Stream nat),

σ = σ (0) ::: σ ′.

Lemma equivalence_of_list_partial_sums_acc_and_make_tuple :

∀ (xs : tuple) (a : nat),
make_tuple xs a =

removelast (list_partial_sums_acc a xs).

Corollary equivalence_of_list_partial_sums_and_make_tuple :

∀ (xs : tuple),
make_tuple xs 0 =

removelast (list_partial_sums xs).

Theorem equivalence_of_make_tuple_and_list_partial_sums_acc :

∀ (xs : tuple) (a : nat),
make_tuple xs a =

removelast (list_partial_sums_acc a xs).

Theorem equivalence_of_make_tuple_and_sieve_step_gen :

∀ (l i k a : nat) (σ : Stream nat),

l ≤ i →
make_tuple (Str_prefix (S l) σ ) a =

Str_prefix l ((sieve_step i k σ ) ⊕ #a).

Corollary equivalence_of_make_tuple_and_sieve_step :

∀ (l : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l) σ ) 0 =

Str_prefix l ((sieve_step l (S l) σ )).

Theorem equivalence_of_make_tuple_and_stream_partial_sums_acc :

∀ (l’ a : nat) (σ : Stream nat),

make_tuple (Str_prefix (S l’) σ ) a =

Str_prefix l’ (stream_partial_sums_acc a σ ).
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Theorem equivalence_of_repeat_make_tuple_and_sieve :

∀ (i n : nat) (σ : Stream nat),

n ≤ i →
repeat_make_tuple (Str_prefix (S i) σ ) 0 (S n) =

Str_prefix (i - n) (sieve i (S i) n σ ).

Corollary equivalence_of_sieve_and_create_triangle_horizontally :

∀ (n i : nat) (σ : Stream nat),

n ≤ i →
Str_prefix (i - n) (sieve i (S i) n σ ) =

nth n (create_triangle_horizontally

(Str_prefix (S i) σ )

(tuple_constant

(length (Str_prefix (S i) σ )) 0)) [].

Theorem equivalence_of_vertical_and_horizontal_triangle_indices :

∀ (i j : nat) (xs ys : tuple),
(length xs) = (length ys) →
(nth i (nth j (create_triangle_horizontally xs ys) []) 0) =

(nth j (nth i (create_triangle_vertically xs ys) []) 0).

Theorem equivalence_of_vertical_and_horizontal_triangle_swap :

∀ (xs ys : tuple),
(create_triangle_horizontally xs ys) =

(create_triangle_vertically ys xs).

Theorem horner_poly_eval_acc_eq_horner_poly_div_acc :

∀ (cs’ : polynomial) (c x a : nat),
horner_poly_eval_acc (c :: cs’) x a =

last (horner_poly_div_acc cs’ x (c + x ∗ a)) (c + x ∗ a).

Theorem horner_poly_eval_eq_horner_poly_div :

∀ (cs : polynomial) (x : nat),
horner_poly_eval cs x =

last (horner_poly_div cs x) 0.

Theorem hypotenuse_create_triangle_vertically :

∀ (r t’ : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t’ r 0))) =

(rev (Str_prefix (S r) (monomials (S t’) r 0))).
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Theorem hypotenuse_create_triangle_vertically_list_sum :

∀ (r : nat) (σ τ : Stream nat),

hypotenuse

(create_triangle_vertically

(tuple_constant r 0)

((Str_prefix r σ ) ⊕
(Str_prefix r τ ))) =

(hypotenuse

(create_triangle_vertically

(tuple_constant r 0)

(Str_prefix r σ ))) ⊕
(hypotenuse

(create_triangle_vertically

(tuple_constant r 0)

(Str_prefix r τ ))).

Theorem hypotenuse_create_triangle_vertically_monomials :

∀ (n r t : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S n)) 0)

(Str_prefix (S (S n)) (monomials t r 0))) =

(Str_prefix (S n) (moessner_entries r n 0 t)).

Corollary hypotenuse_create_triangle_vertically_p_monomials :

∀ (r t d : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials t r 0 d))) =

(rev (Str_prefix (S r) (p_monomials (S t) r 0 d))).

Corollary hypotenuse_create_triangle_vertically_p_monomials_list_sum :

∀ (r t d c : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r))) (0 ::: (p_monomials t r 0 c))) ⊕
(Str_prefix (S (S (S r))) (p_monomials t (S r) 0 d)))) =

(hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (0 ::: (p_monomials t r 0 c))))) ⊕
(hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

(Str_prefix (S (S (S r))) (p_monomials t (S r) 0 d)))).
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Lemma hypotenuse_create_triangle_vertically_remove_padding :

∀ (r : nat) (σ : Stream nat),

hypotenuse (create_triangle_vertically

(tuple_constant (S r) 0)

(Str_prefix (S r) (0 ::: σ ))) =

hypotenuse (create_triangle_vertically

(tuple_constant (S r) 0)

(Str_prefix r σ )).

Theorem hypotenuse_create_triangle_vertically_rotated_moessner_entries :

∀ (n r c t : nat),
hypotenuse

(create_triangle_vertically

(tuple_constant (S n) 0)

(Str_prefix (S n) (rotated_moessner_entries r 0 c t))) =

Str_prefix n (moessner_entries r (c + n) (S c) t).

Lemma length_of_list_sum :

∀ (xs ys : list nat),
length (xs ⊕ ys) = max (length xs) (length ys).

Lemma list_partial_sums_acc_eq_horner_poly_div_acc :

∀ (cs : polynomial) (a : nat),
list_partial_sums_acc a cs =

horner_poly_div_acc cs 1 a.

Lemma list_partial_sums_eq_horner_poly_div :

∀ (cs : polynomial),
list_partial_sums cs =

horner_poly_div cs 1.

Theorem Long_s_theorem :

∀ (b e d c : nat),
long_stream b e d c ∼
(c ⊗ (successive_powers b e)) ⊕ (d ⊗ (successive_powers b (S e))).

Theorem Long_s_weak_theorem :

∀ (b e d : nat),
p_moessner_stream b e d ∼ d ⊗ successive_powers b e.

Corollary make_tuple_monomials_eq_monomials_sum :

∀ (l t r n a : nat),
make_tuple (Str_prefix (S l) (monomials t r n)) a =

Str_prefix l (monomials_sum t r n a).

Corollary make_tuple_monomials_eq_rotated_moessner_entries :

∀ (l’ n’ t : nat),
make_tuple (Str_prefix (S l’) (monomials t n’ 0)) 0 =

Str_prefix l’ (rotated_moessner_entries n’ 0 0 t).
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Corollary make_tuple_rotated_moessner_entries :

∀ (l’ n’ c’ t : nat),
make_tuple (Str_prefix

(S l’) (rotated_moessner_entries n’ 0 c’ t)) 0 =

Str_prefix l’ (rotated_moessner_entries n’ 0 (S c’) t).

Theorem moessner_entry_eq_binomial_coefficient :

∀ (n k r : nat),
moessner_entry r n k 0 = C(n, k).

Corollary moessner_entry_eq_monomial :

∀ (n k t : nat),
k ≤ n →
moessner_entry n n (n - k) t =

monomial (S t) n k.

Lemma moessner_entry_n_eq_k_implies_1 :

∀ (n r t : nat),
moessner_entry r n n t = 1.

Lemma moessner_entry_n_lt_k_implies_0 :

∀ (r n k t : nat),
n < k →
moessner_entry r n k t = 0.

Theorem moessner_entry_Pascal_s_rule :

∀ (n’ r k’ t : nat),
moessner_entry r (S n’) (S k’) t =

moessner_entry r n’ (S k’) t +

moessner_entry r n’ k’ t.

Corollary moessner_entry_rank_decompose_by_row :

∀ (r c n t : nat),
moessner_entry (S n) (c + S r) c t =

t ∗ moessner_entry n (c + r) c t +
moessner_entry n (c + S r) c t.

Corollary moessner_entry_rank_decompose_Pascal_like_c_eq_0 :

∀ (r n t : nat),
moessner_entry (S n) (S r) 0 t =

S t ∗ moessner_entry n r 0 t +
monomial t n (S r).

Corollary moessner_entry_rank_decompose_Pascal_like_c_gt_0 :

∀ (r c n t : nat),
moessner_entry (S n) (S c + S r) (S c) t =

(S t) ∗ moessner_entry n (S c + r) (S c) t +
moessner_entry n (c + S r) c t.

Theorem Moessner_s_theorem :

∀ (b e : nat),
moessner_stream b e ∼ successive_powers b e.
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Theorem monomial_decompose_rank :

∀ (t r’ n’ : nat),
monomial t (S r’) (S n’) =

monomial t r’ (S n’) + t ∗ monomial t r’ n’.

Lemma monomial_r_eq_n_implies_power :

∀ (t r : nat),
monomial t r r = t ^ r.

Lemma monomials_list_eq_rev_Str_prefix_monomials :

∀ (n r t : nat),
monomials_list t r n =

rev (Str_prefix (S n) (monomials t r 0)).

Lemma monomials_list_eq_Str_prefix_moessner_entries :

∀ (l n t’ : nat),
l ≤ n →
Str_prefix (S l) (moessner_entries n n (n - l) t’) =

monomials_list (S t’) n l.

Lemma nth_make_tuple_list_sum :

∀ (n r i j : nat) (σ τ : Stream nat),

nth n (make_tuple (Str_prefix r σ ) i) 0 +

nth n (make_tuple (Str_prefix r τ ) j) 0 =

nth n ((make_tuple (Str_prefix r σ ) i) ⊕
(make_tuple (Str_prefix r τ ) j)) 0.

Lemma nth_rev_eq_last :

∀ (xs : list nat) (d : nat),
nth 0 (rev xs) d =

last xs d.

Theorem nth_triangle_create_triangles_vertically :

∀ (n r t : nat),
nth n

(create_triangles_vertically

n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials t r 0)))

[] =

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (monomials (n + t) r 0))).
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Theorem nth_triangle_create_triangles_vertically_p_monomials :

∀ (n r t d : nat),
nth n

(create_triangles_vertically n

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials t r 0 d)))

[] =

(create_triangle_vertically

(tuple_constant (S (S r)) 0)

(Str_prefix (S (S r)) (p_monomials (n + t) r 0 d))).

Theorem nth_triangle_create_triangles_vertically_p_monomials_list_sum :

∀ (n r t d c : nat),
nth n

(create_triangles_vertically n

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r))) (0 ::: (p_monomials t r 0 c))) ⊕
(Str_prefix (S (S (S r))) (p_monomials t (S r) 0 d)))) [] =

create_triangle_vertically

(tuple_constant (S (S (S r))) 0)

((Str_prefix (S (S (S r))) (0 ::: (p_monomials (n + t) r 0 c))) ⊕
(Str_prefix (S (S (S r))) (p_monomials (n + t) (S r) 0 d))).

Corollary partial_sums_rotated_moessner_entries_bisim_next_column :

∀ (n c’ t : nat),
(stream_partial_sums (rotated_moessner_entries n 0 c’ t)) ∼
(rotated_moessner_entries n 0 (S c’) t).

Theorem Pascal_iff_binomial_coefficient :

∀ (n k v : nat),
Pascal (entry n k v) ↔ v = C(n, k).

Lemma Pascal_implies_binomial_coefficient :

∀ (n k v : nat),
Pascal (entry n k v) → v = C(n, k).

Corollary Pascal_implies_Rotated_Pascal :

∀ (n k v : nat),
Pascal (entry (n + k) k v) →
Rotated_Pascal (entry n k v).

Theorem Pascal_is_symmetric :

∀ (n k v : nat),
k ≤ n →
(Pascal (entry n k v) ↔
Pascal (entry n (n - k) v)).

Theorem Pascal_s_rule’ :

∀ (n’ k’ : nat),
C(S n’, S k’) = C(n’, S k’) + C(n’, k’).
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Lemma removelast_horner_poly_div_acc :

∀ (cs : polynomial) (x a : nat),
removelast (horner_poly_div_acc (cs ++ [0]) x a) =

horner_poly_div_acc cs x a.

Corollary repeat_make_tuple_monomials_eq_moessner_entries :

∀ (c l n t : nat),
repeat_make_tuple

(Str_prefix (S c + l) (monomials t n 0)) 0 (S c) =

Str_prefix l (rotated_moessner_entries n 0 c t).

Lemma repeat_make_tuple_monomials_eq_moessner_entries_general :

∀ (k j n t : nat),
j ≤ k →
Str_prefix (k - j) (rotated_moessner_entries n 0 j t) =

repeat_make_tuple (Str_prefix (S k) (monomials t n 0)) 0 (S j).

Theorem repeat_make_tuple_rotated_moessner_entries :

∀ (c l n t : nat),
repeat_make_tuple

(Str_prefix (c + l) (rotated_moessner_entries n 0 0 t)) 0 c =

Str_prefix l (rotated_moessner_entries n 0 c t).

Lemma rev_Str_prefix_moessner_entries_eq_monomials :

∀ (r t’ : nat),
Str_prefix (S r) (moessner_entries r r 0 t’) =

rev (Str_prefix (S r) (monomials (S t’) r 0)).

Lemma rev_Str_prefix_monomials :

∀ (l n r t : nat),
rev (Str_prefix (S l) (monomials t r n)) =

monomial t r (n + l) :: rev (Str_prefix l (monomials t r n)).

Lemma rotated_binomial_coefficient_implies_Rotated_Pascal :

∀ (r c v : nat),
v = R(r, c) → Rotated_Pascal (entry r c v).

Theorem rotated_binomial_coefficient_is_symmetric :

∀ (r c : nat), R(r, c) = R(c, r).

Corollary rotated_moessner_entries_bisim_monomials_sum :

∀ (n t : nat),
monomials_sum t n 0 0 ∼
rotated_moessner_entries n 0 0 t.

Lemma rotated_moessner_entries_Pascal_s_rule :

∀ (n r’ c’ t : nat),
rotated_moessner_entries n (S r’) (S c’) t ∼
(rotated_moessner_entries n (S r’) c’ t) ⊕
(rotated_moessner_entries n r’ (S c’) t).
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Lemma rotated_moessner_entry_c_eq_0 :

∀ (r’ n t : nat),
rotated_moessner_entry n (S r’) 0 t =

monomial t n (S r’) + rotated_moessner_entry n r’ 0 t.

Lemma rotated_moessner_entry_constrained_negative_Pascal_s_rule :

∀ (n’ k’ t : nat),
S k’ ≤ n’ →
rotated_moessner_entry n’ k’ (n’ - k’) t +

rotated_moessner_entry n’ (S k’) (n’ - S k’) t =

rotated_moessner_entry n’ (S k’) (n’ - k’) t.

Theorem rotated_moessner_entry_eq_monomial :

∀ (n k t : nat),
k ≤ n →
rotated_moessner_entry n k (n - k) t =

monomial (S t) n k.

Corollary rotated_moessner_entry_eq_rotated_binomial_coefficient :

∀ (n r c : nat),
rotated_moessner_entry n r c 0 = R(r, c).

Lemma rotated_moessner_entry_Pascal_s_rule :

∀ (n r’ c’ t : nat),
rotated_moessner_entry n (S r’) (S c’) t =

rotated_moessner_entry n r’ (S c’) t +

rotated_moessner_entry n (S r’) c’ t.

Lemma rotated_moessner_entry_r_eq_0_implies_1 :

∀ (c n t : nat),
rotated_moessner_entry n 0 c t = 1.

Theorem rotated_moessner_entry_rank_decompose_by_row :

∀ (r c n t : nat),
rotated_moessner_entry (S n) (S r) c t =

t ∗ rotated_moessner_entry n r c t +
rotated_moessner_entry n (S r) c t.

Corollary rotated_moessner_entry_rank_decompose_Pascal_like_c_eq_0 :

∀ (r n t : nat),
rotated_moessner_entry (S n) (S r) 0 t =

(S t) ∗ rotated_moessner_entry n r 0 t +
monomial t n (S r).

Corollary rotated_moessner_entry_rank_decompose_Pascal_like_c_gt_0 :

∀ (r c n t : nat),
rotated_moessner_entry (S n) (S r) (S c) t =

(S t) ∗ rotated_moessner_entry n r (S c) t +
rotated_moessner_entry n (S r) c t.
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Theorem Rotated_Pascal_iff_Pascal :

∀ (n k v : nat),
Rotated_Pascal (entry n k v) ↔
Pascal (entry (n + k) k v).

Theorem Rotated_Pascal_iff_rotated_binomial_coefficient :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) ↔ v = R(r, c).

Corollary Rotated_Pascal_implies_Pascal :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) →
Pascal (entry (r + c) c v).

Lemma Rotated_Pascal_implies_rotated_binomial_coefficient :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) → v = R(r, c).

Theorem Rotated_Pascal_is_symmetric :

∀ (r c v : nat),
Rotated_Pascal (entry r c v) ↔
Rotated_Pascal (entry c r v).

Theorem rotated_Pascal_s_rule’ :

∀ (r’ c’ : nat),
R(S r’, S c’) = R(S r’, c’) + R(r’, S c’).

Lemma shift_make_tuple_create_triangle_vertically :

∀ (j’ : nat) (ys : tuple),
make_tuple

(nth j’

(create_triangle_vertically

(tuple_constant (length ys) 0) ys) []) 0 =

nth (S j’)

(create_triangle_vertically

(tuple_constant (length ys) 0) ys) [].

Lemma shift_make_tuple_in_repeat_make_tuple :

∀ (ys : tuple) (n a : nat),
make_tuple (repeat_make_tuple ys a n) a =

repeat_make_tuple (make_tuple ys a) a n.

Lemma shift_start_index_monomials_sum :

∀ (i’ r n a t : nat),
(monomial t r n) + (Str_nth i’ (monomials_sum t r (S n) a)) =

(monomial t r (n + (S i’))) + (Str_nth i’ (monomials_sum t r n a)).

Lemma stream_partial_sums_acc_monomials_bisim_monomials_sum :

∀ (t r n a : nat),
stream_partial_sums_acc a (monomials t r n) ∼
monomials_sum t r n a.
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Corollary stream_partial_sums_monomials_bisim_monomials_sum :

∀ (t r n : nat),
stream_partial_sums (monomials t r n) ∼
monomials_sum t r n 0.

Lemma Str_nth_implies_bisimilarity :

∀ (σ τ : Stream nat),

(∀ (n : nat), Str_nth n σ = Str_nth n τ ) → σ ∼ τ .

Lemma Str_nth_moessner_entries :

∀ (i r n k t : nat),
Str_nth i (moessner_entries r n k t) =

moessner_entry r n (i + k) t.

Theorem Str_nth_monomials_sum_eq_rotated_moessner_entry :

∀ (r t n a : nat),
Str_nth r (monomials_sum t n 0 a) =

(rotated_moessner_entry n r 0 t) + a.

Lemma Str_nth_monomials_sum_stream_derivative :

∀ (i n t l a : nat),
Str_nth i (monomials_sum t l n a)′ =

Str_nth i ((monomials_sum t l (S n) a) ⊕ #(monomial t l n)).

Theorem Str_nth_partial_sums_rotated_moessner_entries :

∀ (i n c’ t : nat),
Str_nth i (stream_partial_sums

(rotated_moessner_entries n 0 c’ t)) =

Str_nth i (rotated_moessner_entries n 0 (S c’) t).

Lemma Str_nth_rotated_moessner_entries :

∀ (i n r c t : nat),
Str_nth i (rotated_moessner_entries n r c t) =

rotated_moessner_entry n (r + i) c t.

Lemma Str_nth_rotated_moessner_entries_over_r :

∀ (i n r’ c’ t : nat),
Str_nth i (rotated_moessner_entries n (S r’) (S c’) t) =

Str_nth i (stream_partial_sums_acc

(rotated_moessner_entry n r’ (S c’) t)

(rotated_moessner_entries n (S r’) c’ t)).

Lemma Str_nth_tl_implies_bisimilarity :

∀ (σ τ : Stream nat),

(∀ (n : nat), Str_nth_tl n σ ∼ Str_nth_tl n τ ) → σ ∼ τ .

Lemma Str_prefix_drop_gen :

∀ (l i k : nat) (σ : Stream nat),

l ≤ i →
Str_prefix l (drop i k σ ) =

Str_prefix l σ .
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Lemma Str_prefix_sieve :

∀ (n l i : nat) (σ : Stream nat),

l ≤ i →
Str_prefix l (sieve (S i) (S (S i)) n σ ) =

Str_prefix l (sieve (S (S i)) (S (S (S i))) n σ ).

Lemma tl_nth_tl :

∀ (n : nat) (σ : Stream nat),

(Str_nth_tl n σ )′ = Str_nth_tl n σ ′.

Lemma unfold_rotated_binomial_coefficient_base_case_0_c :

∀ (c : nat),
0 < c → R(0, c) = 1.

Lemma unfold_rotated_binomial_coefficient_base_case_r_0 :

∀ (r : nat),
R(r, 0) = 1.

Corollary upgrade_seed_tuple_create_triangle_vertically :

∀ (n t : nat),
upgrade_seed_tuple

t (hypotenuse

(create_triangle_vertically

(tuple_constant (S (S n)) 0)

(Str_prefix (S (S n)) (monomials t n 0)))) =

hypotenuse

(create_triangle_vertically

(tuple_constant (S (S (S n))) 0)

(Str_prefix (S (S (S n))) (monomials t (S n) 0))).
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Dear Chairperson,

I am enthusiastically nominating Peter Urbak’s MS dissertation to be

considered for the "bedste speciale i datalogi 2014".

Urbak presents new results about Moessner’s sieve, a mathematical pearl

which is used to engineer multiplication-free circuits to generate

successive powers.  Urbak’s results were developed and formalized with

the Coq proof assistant.  The dissertation itself is comprehensively and

clearly written (each of Chapters 5 to 11 includes a dependency graph for

the proofs of that chapter) and it pedagogically includes a technical

glossary.  Its style is limpid.

Proof assistants are starting to change the world, and Peter Urbak’s MS

thesis is a quite striking illustration of that: not only has he covered

an impressive ground (even more so considering that he is a single

author), but all of his proofs are mechanically verified, down to the

humblest lemma.  And yet he presents new results as well.

Sincerely yours,

-- Olivier Danvy

Here is the statement of Urbak’s external censor:

> Date: Sun, 6 Jul 2014 22:23:23 +0200

> From: Rene Rydhof Hansen <rrh@cs.aau.dk>

> To: Olivier Danvy <danvy@cs.au.dk>

> 

> Nomination letter in support of Peter Urbak’s Master’s Thesis

> =============================================================

> 

> I hereby support the nomination of Peter Urbak’s master’s thesis as

> "thesis of the year". The thesis was handed in at the Department of

> Computer Science, Aarhus University in June 2014, and defended

> successfully on July 2, 2014 where I had the pleasure of being

> external evaluator (censor).

> 

> Peter Urbaks master’s thesis is a well-written exploration of the use

> of the Coq proof assistant for finding and proving novel mathematical

> results related to Moessner’s sieve. The thesis work shows a high

> degree of insight into both mathematics and computer science. In

> particular, I was pleasantly surprised by the stated goal of developing

> a proof that would be true to the spirit of Moessner’s theorem, i.e.,

> avoiding the highly abstract constructions that characterise previous

> work in this area. This novel approach has yielded new insights into

> the computational nature of Moessner’s sieve (and the many

> generalisations of the original work).

> 

> During the defense Peter Urbak demonstrated mastery of his chosen

> topic and answered all questions satisfactorily, including questions

> that went well beyond the scope of his thesis.

> 

> Consequently, Peter Urbak was awarded the grade of 12 for his

> excellent thesis and concomitant presentation. I strongly support

> the nomination of Peter Urbak’s thesis as "thesis of the year".

> 

> 

> /Rene Rydhof Hansen (Aalborg University)

Here is Peter Urbak’s e-mail address:

  Peter Urbak <peter@dragonwasrobot.com>
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