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Binary nucleation kinetics. I. Self-consistent size distribution

Gerald Wilemski® and Barbara E. Wyslouzil”

Lawrence Livermore National Laboratory, Livermore, California 94551-9900;

Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280;
and Physical Sciences Inc., Andover, Massachusetts 01810-1077

(Received 4 October 1994; accepted 30 March 1995

Using the principle of detailed balance, we derive a new self-consistency requirement, termed the
kinetic product rule, relating the evaporation coefficients and equilibrium cluster distribution for a
binary system. We use this result to demonstrate and resolve an inconsistency for an idealized
Kelvin model of nucleation in a simple binary mixture. We next examine several common forms for
the equilibrium distribution of binary clusters based on the capillarity approximation and ideal vapor
behavior. We point out fundamental deficiencies for each expression. We also show that each
distribution yields evaporation coefficients that formally satisfy the new kinetic product rule but are
physically unsatisfactory because they depend on the monomer vapor concentrations. We then
propose a new form of the binary distribution function that is free of the deficiencies of the previous
functions except for its reliance on the capillarity approximation. This new self-consistent classical
(SCQO size distribution for binary clusters has the following properties: It satisfies the law of mass
action; it reduces to an SCC unary distribution for clusters of a single component; and it produces
physically acceptable evaporation rate coefficients that also satisfy the new kinetic product rule.
Since it is possible to construct other examples of similarly well-behaved distributions, our result is
not unique in this respect, but it does give reasonable predictions. As an illustrative example, we
calculate binary nucleation rates and vapor activities for the ethanol-hexanol system at 260 K using
the new SCC distribution and compare them to experimental results. The theoretical rates are
uniformly higher than the experimental values over the entire vapor composition range. Although
the predicted activities are lower, we find good agreement between the measured and theoretical
slope of the critical vapor activity curve at a constant nucleation rate bct03s ™2 © 1995
American Institute of Physics.

I. INTRODUCTION ing the kinetic and equilibrium aspects of the theory. Both
aspects are related by the need to evaluate the evaporation

Recent work on the subject of binary and multicompo-rate coefficients using the principle of detailed balance and
nent nucleation has covered a wide range of topicsthe equilibrium cluster size distribution. The difficulties in-
numerical~® and analyticdi® solutions for steady state and volving the binary equilibrium distribution are related to is-
transient rates, self-consistent distribution functibdgnsity  sues of self-consistency for distributions in unary
functional techniques for determining binary cluster free ensystem&’'8 but are more complex. First, an acceptable bi-
ergies of formatiorf, models for the cluster compositidt?  nary equilibrium distribution should obey the law of mass
accurate measurements of binary nucleation rates coveringtion. Beyond satisfying this obvious and fundamental re-
many orders of magnitude; **rigorous means for determin- quirement, a binary distribution should also display appropri-
ing critical cluster compositions from measured rafes!  ate limiting behavior as one component vanishes. From a
and binary condensation measurements in supersonic nozsgrely formal standpoint, this is not an issue, since general
expansions? With the availability of high quality experi- statistical mechanical formulas for binary cluster concentra-
mental results covering a wide range of conditions, it is fi-tions produce formally consistent results for these limits.
nally possible to critically assess the accuracy of competingormal results, however, are not very useful for doing calcu-
theoretical rate expressions. However, in contrast to moghtions. Calculations always involve a model for determining
theories of unary nucleation, all theoretical binary rate equathe cluster free energy, so the issue reduces to what limiting
tions involve significant mathematical approximations inpehavior should apply to the model. For models treating mo-
their development. Thus, in order to judge each theoreticakecular interactions based either directly or indirectly on sta-
rate expression fairly, it is important to understand how theistical mechanic§,the proper limiting behavior is guaran-
predicted rates are affected by these approximations. Aleed to emerge by doing the calculations correctly.
present this can be done only by comparing the predictionginfortunately, these models are currently impossible to ap-
of the different rate expressions with exact numerical soluply to most substances of interest, and the only recourse is to
tions of the population balance equations governing binarynore phenomenological approaches, usually based on the
nucleation kinetics. capillarity approximation.

In our efforts to numerically solve these equatichsie What physical considerations can help define the limit-
found it necessary to resolve several inconsistencies involing behavior of these models? Based on the asymptotic be-
havior of very large clusters, it seems reasonable to expect
apresent address: Lawrence Livermore National Laboratory. continuous behavior as one component is eliminated. In this
Ypresent address: Worcester Polytechnic Institute. case, the binary distribution should pass smoothly into a
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unary distribution of the same general form. For very smallll. MASS ACTION AND LIMITING CONSISTENCY
clusters this argument has no physical justification. Imposin . . - o
g ks J posing The law of mass action requires théi, ), the equilib-

this type of limiting behavior on the binary distribution for . . .
: . A . rium concentration of clusters containingnonomers of type
small cluster sizes is equivalent to making a postulate for, . zo
3 i . .. _Aandj monomers of typd3, be expressible in the form
mathematical convenience. It is directly analogous to insist-

ing that a unary distribution vary smoothly for the smallest ~ N(i,j)=NiNLK(i,j), 1

cIuste_rs_ sizgs. Lacking a more fundamental alternative, hov‘(ivhereNV is the number density of monomers of species
ever, itis this p_rocedure that W'" be f_ollowed h_ere._ (=A or B) in the vapor, and the equilibrium “constank is,

In constructing a self-consistent binary distribution func-;, general, a function df, j, and temperature, but it does not
tion, our primary goal is to avoid introducing any unphysical yepend orN,, Ng, or pressure when the vapor is regarded
behavior into the reversgor evaporation rate coefficients as ideal. The term “limiting consistency” was recently intro-
required by the kinetics equations. Since these are detegtuced in discussing the limiting behavior of unary
mined using the binary distribution function and the prin- distributions!’ A unary distribution function satisfies limit-
ciple of detailed balance, the distribution function must sating consistency if it equals the monomer concentration when
isfy the minimum standards just set forth. For the theory tot is evaluated for a single monomer unit. Although there are
be kinetically consistent, two other conditions must be satisn0 fundamental theoretical reasons for requiring this type of
fied: The evaporation rate coefficients should be uniquelyimiting consistency, when appropriately implemented it can
determined for each cluster composition, and they should ndfProve the predicted temperature dependence of the nucle-

exhibit unphysical dependence on the monomer vapor COﬁa_tion rate. Here, we shall refer to this requirement as type |
limiting consistency, since binary distributions of the sort we

centrations or total pressure. At present, no binary distribu- o ’ . o
. ) o o are considering should also satisfy a second kind of limiting
tion function based on the capillarity approximation meets : . ) N
. consistency, which we will call type Il. Type Il limiting con-

all of the_ above requirements. _ . sistency requires that a binary distribution reduce to an ap-
_ Inthis paper, we propose a new form of the binary equi-qnriate unary distribution function when eittier0 orj=0,
librium cluster size distribution that obeys the mass actior, i this can be done without satisfying type | limiting con-
law, reduces to appropriate forms for the unary distributionssijstency. For example, a binary distribution could reduce to a
and yields a unique and physically well-behaved evaporatiofynary distribution of either the Frenk&br Courtney* form,
rate coefficient for each cluster composition. Our new funcneither of which satisfies type | limiting consistericy.
tion is developed for the vapor-to-liquid transition in an ideal From the pioneering work of Ref€sand as discussed in
vapor, but the result can be readily generalized to otheAppendix A, we know that any binary distribution function
physical systems. Our new distribution is also based on thbased on the capillarity approximation can be written in the
classical capillarity approximation because this model stillform
provides the most practical means to make routine rate pre- Na \i[ Ng |l —Q%ij)
dictions. Our distribution is amad hocconstruction, but, as N(i’j):NO(N”(x )> (Nw(x )) exp( T ) 2
discussed in Appendix A, it has a form that is acceptable ALTA BL7B B
from the standpoint of statistical mechanics. Our other maiwhere N’ (x,) is the equilibrium number density of mono-
result, which we call the kinetic product rule, is more generalmers of species in a saturated vapor over a bulk solution
and does not depend on either ideal vapor behavior or thehose composition will be denoted by either of the mole
classical capillarity approximation, although it is limited to fractionsx, or xg,
kine_tic mechanisms in which clusters change only by the xg=1—xa=j/(i+]), 3)
addition and removal of monomers.

The paper proceeds as follows. In Sec. I, we test severdP! the average cluster composition. One should keep in

binary distribution functions for adherence to the mass actiofind that the actual composition used to determine the val-
law and for proper reduction to unary distributions. Using4€S 0Na(Xa) andNg(xs) may differ from the average clus-
detailed balancing in Sec. Ill, we develop a general seh‘-ter composition begqu;e of §u.rfac.e. enrlchrﬁéﬁﬁ )
consistency requirement, our kinetic product rule, that is aMoreo_vgr, we have) (."J) = o(i,)s(i.)), vv_here o(i])
ands(i,j) are, respectively, the surface tension and surface

necessary, but not sufficient, condition for ensuring the aC ea of the clusterkg, is the Boltzmann constan, is the

ceptability of any set of evaporation rate coefficients. We, hsolute temperature, am is a “normalization” factor. If

then apply this requirement to an idealized Kelvin modell\IO were solely a function of, j, and T, Eq. (2) would

introduced by Temkin and Shevefévand to the classical clearly satisfy the law of mass action for ideal vapors. How-

capillarity model to expose inconsistencies that render thesgyer, the most commonly used form fbk, developed by
approaches unsatisfactory. Next we propose a modified bRejss?? is

nary distribution function that overcomes these inconsisten-

cies. Finally, in Sec. IV, we illustrate the quantitative effect No=Na+Ng, )

of the new function on predicted nucleation behavior bywhich violates the mass action law, as was pointed out some
comparing theoretical rates and activities with experimentatime ago®® A related difficulty with Eq.(4) is its implication
values for the ethanol—hexanol syst&m. that the concentrations of pu#e clusters,N(i,0), will de-
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pend linearly on the concentration Bfmonomers and vice achieve a similar improvement in the predicted temperature

versa, as was first noted by Ka&fzThus, the most commonly dependence of the binary rate. Equati¢h® and(12) serve

used form of the binary distribution function does not satisfyto outline the form of the general result we seek, but to finish

either type of limiting consistency. our reasoning we need to consider the binary kinetics equa-
Kulmala, Laaksonen, and Gershictecently made the tions and address an inconsistency in their formulation. We

first attempt to impose both types of limiting consistency ontackle this in Sec. Il

the binary distribution, and their proposed distribution func-

tion (written in our notation is

N(i,j)=[(1=pj)Na+ (1= J9;)Ng] Ill. BINARY KINETICS, DETAILED BALANCE, AND
: : SELF-CONSISTENCY
NA 1=Xa NB =X
X| —% > A. General considerations
Na(Xa) Ng(Xg)

. The binary kinetics equations are generalizations of the
Q.)) =2 one-component equations and were first proposed by Reiss

ex [1-(i+]) "% ©) o :
kgT for the case in which growth and decay involves only mono-
mer addition or evaporation. The net rates at which binary

For either pure component, this function does, in fact, reduc%lusters of compositiofi . j) become clusters of composition
to the self-consistent classicé8CC form?’:28 P ) P

(i+1,j) or (i,j +1), respectively, are
N,(9)=N7(N,/N7)%exd - ©,(g**-1)], (6)

Ja(L ) =LA NAf(L]) —Ea(i+1, PF(I+1,]), (13
where®,=0,5,(1)/(ksT) ando, andN;, are, respectively, the . . . - -
surface tensViZVn ankdB equilibrium monomer vapor concentra- Jo(i,)) =Tg(i,))Ngf(i,]) = Bg(i,j + DI(i,j+1), (14
tion of a pure liquid of typev. Nevertheless, Eq5) must be  wheref is a nonequilibrium cluster concentration, dngi, j)
considered unacceptable because it violates the law of massid E,(i,j) are, respectively, the forward and reverse rate
action for binary clusters. Because this distribution functioncoefficients for the growth and decay of a cluster of compo-
cannot be written in the form of Eq1), it is impossible, in  sition (i,j) via the addition or evaporation of a monomer of
principle, to derive it from fundamentally sound statistical speciesy. In this paper, a specific form fdr ,(i,j) is not
mechanics. This point is reinforced by the results in Appenneeded, so we defer this choice to our following papate

dix A. only need to remember that(i,j) is determined by colli-
Suppose we now evaluate E@) for each pure cluster sional cross-sections and mean molecular velocities, so it
distribution. We then find does not depend on eithéd, or N;. Likewise, for ideal
—05(i.0) vapor mixtures, the evaporation coefficients will not depend
N(i,0)=No(i,0)(No/N%)’ exp(L» (7)  onNy, Ng, or the total pressure.
ksT Now apply detailed balancing to Eq&l3) and (14) to
. —03(0,) ob'Fa?n the following relations between successive values of
N(0,j)=Ng(0,j)(Ng/Ng)’ exp(kB—T), (8  N(,j):

where we have explicitly displayed the dependencilpdn
i andj but left the T dependence implicit. We have also I'g(i,j)NgN(i,j)=Eg(i,j +1)N(i,j+1). (16
assumed that the surface tension is independent of size f

oure clusters, i.e Yhese equations may be iterated to obtain the following ex-

pressions relating the binary equilibrium distribution func-

Q5(1,0)=0(i,0)s(i,0) =kg TO 5 ¥°, (9) tion to the two unary distributions:
s O :2/3 : —1i
“a(0, 1) =kaTOB 75 B0 N =N T AR a7
If we now demand that Eqg7) and (8) satisfy type | =1 Balki])
limiting consistency by equaling the SCC form of ), T (i k—1)
- i . B\'s
we then conclude that N(I,J):NJBN(I,O)H R (18
. - k=1 EB(I vk)
No(1.0)=N, exp(O,). ay They may also be used to express the unary distributions in
No(0,j)=Ng exp(Og). (12 similar fashion:
The similarity of Egs.(11) and (12) to the self-consistent _ L TA(1-1,0)
correction factor found for the unary case is a deliberate N(|,O)=N'A|_H1 TEA.0) (19
consequence of using E). Although the SCC distribution - A
has no more fundamental justification than any otfiéfit o rg(0,1-1)
yields a better temperature dependence for the nucleation N(O,J')ZNJBI[l TEg0.1) (20

rate than do other forms of classical nucleation theory except
for the Kelvin modelt’?° By incorporating the form of the provided the following quantities are all understood to equal
unary SCC correction into the binary distribution, we hope tounity (in their appropriate uni)s N(0,0), I',(0,0),
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1130 G. Wilemski and B. E. Wyslouzil: Binary nucleation kinetics. |

I'z(0,0), EA(1,0), andEg(0,1). Replacing the unary distri- are degenerate, arigh(1,1)=Eg(1,1) andI"5(0,1)=1"g(1,0)
butions in Eqs(17) and(18) with the latter two expressions, for obvious physical reasons: When a mixed dimer breaks
we find up, it loses both am\ and aB; similarly, the collision fre-
quency of amA with a B is the same as that ofBawith anA.
Tak—1,j) ¢ Tg(0,1-1)

(i,j)=NiN H (21) (We realize that dimer formation is actually a three body
AR Ea(klj) =1 Eg(0,1) process, but this aspect is typically neglected in treating
and nucleation kineticg.With these considerations, we see that
Eqgs.(24) and(25) are formally identical, but we haven't yet
Ig(i,k—1) ' CA(1—1,0 specified whak(1,1) is, nor have we established which mod-
N(i.j) =N NAH Eo(i k) |1;[1 (.0 (22 els for N(i,j) lead to consistent values fdE, and Eg

through Eqgs(15) and (16).

To avoid confusion, throughout this paper any product with  We will initially address this issue by reanalyzing an
an upper index of 0 should be interpreted as equal to unityidealized Kelvin model forE, and Ej first introduced by

Since the products of kinetic coefficients are indepen-Temkin and SheveleY, whose results were later employed
dent ofN, andNg, these two equations verify that the usual by Kozisek and Demd in numerically solving the binary
binary rate equations are formally consistent with the law ofkinetics equations. The simplicity of this model permits us to
mass action. However, these results have more than just fosnswer directly the questions we are asking without concern
mal significance since they provide a stringent test of thgor the complications that arise in treating more realistic
internal consistency of the theory when specific expressiongases.
are substituted for the kinetic coefficients. By equating Egs.
(21) and(22), we can frame this test in the form of a product

rule,
[ Tak—1,) j T'5(0,1-1) Temkin gnd 'Shevellég originally gpplied the }(elvin
H : model to an idealized binary system with the following prop-
k=1 Ea(kj) =1 Eg(0,1) erties: constant surface tension, constant and equal partial
i . molar volumes of the two components, and ideal solution
H I'a(l-1.0 FB("I_(_l) (23 behavior for the equilibrium partial pressures of the mix-
i=1 Ea(l,0) k=1 Eg(i,k) tures. Use of the Kelvin equation to evaluate the evaporation
rate coefficients leads to the following two general expres-

B. ldealized Kelvin model

that must be satisfied by the kinetic coefficients. Alterna-

tively, but perhaps easier to appreciate, the test can be posglfms

in terms of the equivalent pairs of equations, Ed¥) and . ) . 20(i,j)va

(18) or Egs.(21) and (22). For a given set of kinetic coeffi- Eali,))=Ta(i—1, J)NA(XA)eXF{ W) (26)

cients, self-consistency demands that each of the paired

equations must yield identical results (i, j). . . w 20(i,j)vg
From the standpoint of equilibrium thermodynamics this Eg(i.))=Ts(i.] _1)NB(XB)eXr< rkgT )

requirement is obvious: IN(i,j) is proportional to the free

energy of cluster formation, and the free energy is a thermo-

dynamic state function independent of the path. The paths

used in formulating Eq917)—(23) are not unique, but they

are convenient for evaluating the consistency of the kinetic

(27)

wherev, anduvg are the respective partial molecular vol-
umes of specieA andB, andr is the droplet radius. With the
restrictions of the Temkin—Shevelev model, these equations
simplify to

coefficients used in the theory. This connection with equilib-  E(i,j)=Ta(i—1, j)XaNx exd (i +j) Y], (28
rium thermodynamics can be formally strengthened by real- o o " oy
izing that Eqs.(15) and(16) also provide kinetic definitions Eg(i,j)=Tg(i,j—1)xgNg exf «(i+j) 7], (29)

of equilibrium constants for the exchange;BndB mono-  wherex=20/3, and no subscripts are needed. If we use these
mers, respectively, between clusters of adjacent composiwo expressions to evaluate Eq&7) and(18), and use the

tions. We briefly discuss this point in Appendix B. following unary distribution functiotf for the Kelvin model,
We will close this section by considering the special case

) . : ) g g
of the mixed dimer. For the mixed dimer, Eq21) and(22) | N _ 13
[or Egs.(15) and(16)] simplify to the following expressions: N.(Q)=N, N exp T« le J Y (30
I'A(0,1) to consistently evaluatdl(i,0) andN(0, j), we obtain the
N(LD=NaNsg 77 @9 following results forN(i,j):
I'g(1,0 Na| [ Ng M+
N(LD)=NeNag 7 NERTR (25) N(i,j)= NA(N NZ T
To properly assess these expressions, we must appreciate that it
there is only a single kinetic path for the formation of a Xexpg —«k |21 |~¥-1 (3D

mixed dimer. Thus the two, apparently different, rate equa-
tions, Eq.(13) with i=0,j=1 and Eq.(14) withi=1, j=0, from Egs.(17) and(28), and
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NG =N %)i(% i+ Nas=[NA(1/2N5(1/2)]"%= 3(NaNg) Y2 (35
’ BINA) (Ng/ itj! From Egs.(33) and (34), we then find the following result
i+j for N(1,D:
X ex _K(E |l/3—1” (32 N. N
F{ =1 N(1,1)=2(N,°§N§)1’2N—i N—E exp — k/2Y3), (36)
A B

from Eqgs.(18) and (29). . . . .
BecauseN; and N are generally different, we have whlch does not appear to violate zm; pl)/r;ysmal or chemical
found two conflicting expressions fok(i,j), and this discor- Principles. Although, the prefactdN,Ng)™= works fine for

dance must reflect some fundamental inadequacy in the coff?€ Mixed dimer, it does not suffice for any other case. How-

struction of the evaporation coefficients. Temkin and ShevE€Ve": the form of this term suggests that a general prefactor
3(Ng)P, wherea+b=1 to preserve proper

)
i

. (37

elev do not indicate in their paper that they were aware of th@f the type Na) ;
difficulty that we have just exposed. In fact, their result for imensionality, would be satisfactory. To ensure that the
N(i,j) differs from either Eq(31) or (32) and amounts to unary distributions are properly rec_o_vered, the exponants
replacing the leading factor of eith®E: [in Eq. (31)] or N andb must_ be functlo_ns of composmon SU(_:h treat 1 and
[in Eq. (32)] with (N+ Ng)exp(— ), which violates the law _b=(_)_wh§n1=0 and vice versa when=0. W|thout further_
of mass action and both types of limiting consistency. HOWJustlf|gat_|on, we therefore propose the following expression
ever, it does possess some of the symmetry that a fully safor N(i.i):
isfactory distribution function must have. We also note that Ny i Ng
the more general analysis of the nucleation rate by Temkin  N(i,j)=(Nz)*A(Ng)*e W) (W
and Shevelev is not invalidated by this deficiency; only their A B
results that depend specifically on the prefactor are affected. i+

There is one trivial way to reconcile the correct, but Xex;{—x(z I1’3—1>
inconsistent, solutions for the Temkin—Shevelev model. This =1
possibility is based on the argument that the mixture proper-  This expression reproduces the results of E§4) and
ties assumed by Temkin and Shevelev are so restrictive th@ge) and reduces properly to E¢BO) for the unary distribu-
they also imply thaN, = Ng, thus making Eqg31) and(32)  tion when eithei =0 orj=0. It will not, of course, reproduce
identical. However, this expedient clearly fails in every otherexactly the expressions féi, andEg in Egs.(28) and(29),
case, and a more general solution is needed. At the outsetiit this is desirable since those expressions were responsible
seems fair to point out that we do not have a rigorous derifor the inconsistent results in Eqe1) and (32). The new
vation of our final result. We can supply only a heuristic self-consistent expressions are
argument to generate it, but our final result is at least consis-

tent with the general functional form obtained from statisti- Ea(i,j))=TaG—1, j)XaNZ N_oc el
cal mechanics in Appendix A. To illustrate our thinking we A=A XAl Nz
first consider the equilibrium concentration of mixed dimers. 1/
From detailed balance for the equilibrium of monomers xexd x(i+])" ] (38)
and mixed dimers we know that and
T'asNaNg=E(1,)N(1,1), 33 Ny | Xa/0+1=1)
peliale =E(L DN %9 EB<i,j>=rB<i,J—1>xBN§<N—§)

wherel' ,g=I"4(0,1)=1"g(1,0). Even with this latter equal-
ity, we see that Eq928) and(29) yield different results for xexd «(i+j) . (39
E(1,2). In order to write a satisfactory expression f,1), . ) )

it is helpful to recognize that the inequality &,(1,1) and These expressions differ from those of Temkin and
Eg(1,1) for this model stems from approximating a mixed Snevelev only by the factors exponentiated wihandx, ,
dimer as a 50—50 bulk solution. This practically guarantee?u,t these factors are decisive in prowdln'g self-.c0n5|stency to
that the evaporation coefficients will differ since the equilib- thiS model. For small, nonzero values iofindj, the new -
fium number densitie@r vapor pressurgsgor a 50—50 mix- expressions will differ considerably from_the o_Id, but_thelr
ture are almost never equal, even for ideal solutions. Now tdUnctional dependence on thermodynamic variables is now

correct this deficiency we write an equation that is analogou8eStUmably sounder, at least qualitatively. For large values of

to Egs.(28) and(29) i andj, the new expressions will differ very slightly from the
' old, but the accumulated product of these small differences is
E(1,1) =T ogN7xg exp kI23), (34) now enough to ensure that the product rules, Ebg—(23),

are satisfied.
but whereN 5 represents an effective monomer number den-, _ o
sity that accounts in some symmetric way for the ianuenceC' General equilibrium distribution
of both A andB on the mixed dimer breakup rate. A simple Now we consider how to generalize these results to less
and acceptable expression fiifig results from taking the restrictive mixture models. We present our discussion in
harmonic mean of the product of the individual equilibrium terms of Eq.(2), the distribution function based on the usual

number densities of an ideal 50-50 mixture, form of the capillarity approximation, since it already con-
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1132 G. Wilemski and B. E. Wyslouzil: Binary nucleation kinetics. |

tains all of the elements needed to treat realistic solution 1 s Q51,1
models. We proceed by temporarily assuming that the nor-  E'(1,1)=-I'agNa(2 )Ng(z )expg — —<— /. (44)
malization factom\, is independent of andj and by pursu- 0 5

ing an apparently circular argument that follows closely the , 1 - 035(2,0)
steps used in analyzing the idealized Kelvin model. Ea(2,0= NOAFA(l'O)(NA) PTGt ) (45)
Thus, we first use Eq$2), (15), and(16) for all i and]j L ' 0502
to obtain the following expressions for the evaporation coef- / _ oy 2 p( ' )
. Eg(0,2= —Tg(0,)(N . 4
ficients: 8(0.2= 5 —T's(0.D(Ng)" ex KgT (46)
0 _ - Nx(xa) ' " Ng(xg) When these expressions are used to replace the corre-
Ea(i,])=Ta(i—1, j)NA(Xa) NZ (X NE(x) sponding faultyE® values, the kinetic product rule is satis-

fied. This means that the amended set of evaporation coeffi-
Q3%i,j)—Q%i—-1,j) cients could be used as a basis for a self-consistent kinetics
Xex;{ keT ) (40) scheme. Type Il limiting consistency can be recovered, if
_ _ desired, simply by lettingdNo=Ngy o=Ng g, but not if the
0 o . Na(xa) '/ Ng(xg)| 't Reiss value folNy, Eg. (4), is used. This value is unaccept-
Eg(i,j)=Tg(i,j —1)Ng(Xs) N | | NE able for use in these coefficients not only for the reasons
AVRA B\"B . . .
given in Sec. Il, but also because it forces some of the evapo-
Q%i,j)—Q%i,j—1) ration coefficients given by Eq$42)—(46) to depend orN,
xex;{ kT ) 4D and Ng. This is physically incorrect. Thus, the price for us-
N ) ing Egs.(2) and (4) and achieving consistency with the ki-
wherex’ andx’ refer to compositions evaluated with one lesspetic product rule is a set of evaporation coefficients that is
A and B monomer, respectively, than the unprimed valuespatially unphysical. Although the evaporation coefficients
We use the superscript zero @& and Eg to indicate that  gerived from the Kulmala, Laaksonen, and Gershick
these results were derived using a constgt Note that  istriputiorf formally satisfy the kinetic product rule they
using the Reiss form fol,, Eq. (4), gives identical results. 5i5q pay the price of being unphysical by dependingh\gn
Although these expressions appear physically reasong,q Ng .
able, they do not satisfy the kinetic product rule, E2Q). It is also important to appreciate that a numerical solu-
This basic inconsistency _result_s from two deficiencies ofjon of the full set of binary kinetics equations using Egs.
Egs. (40) and(41): They fail to give the correct valus$or  (40) and(41) at every composition will lead to steady state
this mode for the two pure dimer evaporation coeffiCients rates that differ significantly from those predicted using the
and they do not produce a unique result for the mixed dimegandard Reiss formula for the nucleation rate. Moreover,
evaporation coefficient, even whed's(0,1)=T'g(1,0)  this disparity has nothing to do with the saddle point ap-
=D'pg. The reason for these difficulties becomes apparengoximation used to derive the formula of RelésThe rea-
when we directly examine the detailed balance equationggp js that, besides giving a nonunique valuel(t, 1), Egs.
Egs.(15 and(16), fo'r the compositions in question. In these (40) and (41) also give the SCC values for the pure dimer
cases, the expressions fBi(1,1), Eg(1,1), EA(2,0), and  eyaporation rates, but these are not the correct values to use
Eg(0,2) involve the monomer densitieN,, or Ng, disguised  \yith the Reiss theory, as seen from E45) and (46). In
as the factordN(1,0) or N(0,1), respectively. The use of EQ. peir vapor-to-liquid modeling, Kdgek and Demd used
(2) with constant\, for these two monomer concentrations is Egs. (40) and (41), but there is no indication that they cor-
physically incorrect and leads to the difficultigs just no.te_d. rected for the problems just noted. Thus, they cannot fairly
Suppose we now evaluate the evaporation coefficientsompare their numerical results with the analytical results
more carefully using a slightly more general model in whichysing the Reiss distribution, and their conclusions based on
we allow N, for each unary distribution to differ from the gych comparisons need to be reevaluated.
value used for the binary distribution. Note that this means  The modified set of evaporation coefficients represented
we are temporarily sacrificing type Il limiting consistency. by Eqgs.(40)—(46) works with any values of the constants
Then Eqs(40) and(42) still hold for most values of andj, N N ,, andN, . If we follow the arguments of Weakliem
but several modifications must be noted. First,ifedl and 54 Reisd® we see that these constants can be interpreted as

j>1 we find reference cluster concentrations in any arbitrary standard
 Nog_o . . state. Reimposing type Il limiting consistency in this case in
Ea(L, )= N EAL D), (42)  equivalent to using the same standard state for each type of
0 cluster, which is perfectly acceptable, even desirable. Be-
and forj=1 andi>1 we also have yond this we have no fundamental guidelines to help us
No. A evaluate these constants. Moreover, even if we somehow se-
Eg(i,1)= N’o Eg(i D). (43 lect “reasonable” values for them, we do not expect to find

much, if any, improvement in the predicted temperature de-
Here the new values are denoted by prinfes,and E3 pendence of the binary nucleation rate. This is because the
are still given by Eqs(40) and(41), andNy 5 andNg g are  rates will only differ by the factoNy/(Ns+ Ng) from those
unary normalizing factors such as, but not necessarily, thosef the standard Reiss theory. Thus, we will adopt a different
in Egs.(11) and(12). For the special dimeric cases we find ad hocapproach and invent an expression gy that is an
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analogue of the unary SCC result. We have two motives fof17)—(23), are to be satisfied. For largendj, either the new
doing this. One is formal: to illustrate some sort of depen-or old evaporation coefficients revert to a close approxima-
dence or andj as demonstrated in Appendix A. The other is tion to the Kelvin forms, Eqs(26) and(27), but in contrast
pragmatic: the unary SCC model appears, along with théo Egs.(40) and (41) the new expressions yield a unique
Kelvin model, to predict a better temperature dependence faesult forE(1,1):

the nucleation rate than other versions of classical theory

based on the simple capillarity approximatidrt’ We hope E(LD=T NA(3 )Ng(3) p(QS(l,l) _ (BA10g)
and expect that an appropriate binary SCC model will show ™’ AB (N,°§N°,§)1’2 kgT 2 '
a comparable degree of improvement. (52

We proceed by naively using Eqg0) and(41) to evalu- The idealized Kelvin model, which we treated earlier in
ate the kinetic product rule, E@3). Note that this is equiva-  gec 1)1 B, has little practical value, but there is pedagogic
lent to evaluating the intermediate formulas, EGS) and  jyierest in comparing our Kelvin results with those derived
(18), with the unary SCC distribution functions, defined by ¢rom our general expressions for the same idealized solution
Eq. (6), because the unary SCC evaporation coefficients argqgel. Thus, if we specialize E62) to this case, we obtain

given precisely by Eq940) and(41). Moreover, we already 5y, expression that closely resembles the results we proposed

know that the unary SCC distribution function and evaporagyjier in Eqs(34) and(35). If we similarly evaluateN(1,1)
tion coefficients are fully consistent. The result of this pro-

. > > MY by specializing Eq(49), we find an expression that is closely
cedure is that the kinetic product rule can only be satisfied it ated to our earlier result in E(36). The general formula
No(i,0)=Ng(0,j), (470 for N(i ,_j) obtain_eq from Eq(49) f(_)r this ide_alized solution
o ) model is very similar to our earlier result in E@7): Nu-
but the latter two normalizing factors were previously de-merical factors in the prefactor differ slightly due to differ-
fined in Eqs.(11) and(12), and they are obviously different gnces petween factorials and power laws; numerical differ-
from each other. o _ ences in the argument of the exponential term also occur, and
This contradiction resembles the situation previously enynese are identical to those found between the SCC and
countered for the idealized Kelvin model. By reasoningkelvin results in the unary cadé.

analogously to that case, we resolve this difficulty by pro-  Finally, by neglecting the monomeric surface free energy

posing the following composition dependence . terms, we obtain a binary distribution function that is analo-
No(i,j)=[No(i,0 [ No(0, j)]e. (49) gous to the Courtnéy distribution for unary systems:
Thus, the final form of our proposed equilibrium distribution CON NV XA N ) B Na |'[_Ng |’
N(i,j)=(Na)"A(Ng)™8| == =
follows from Egs.(2) and (48), Na(Xa) ) | Ng(Xg)
N(i,j)=(Nx)*A(Ng)*e Oa+ x50 —Q3i,j
(i,])=(Na)*A(Ng)"® exp(Xa®a+XgOp) Xex;{ k(TJ)>' (53
B

Na \'[ Ng |' [—0%])
X(NX(XA)) (N§(XB)) ex;{ kB—T) (49 This distribution will not yield the correct monomer limiting
values, and so it should not be used for the compositions
This form preserves the proper dimensionalityN¢f,j),  (1,0) and(0,2), but it is fully consistent in all other respects.
satisfies the law of mass action, and yields proper expresfhe evaporation coefficients corresponding to this distribu-
sions forN(i,j) in all appropriate limiting cases. Moreover, tion can be obtained from Eqé50) and (51) by neglecting
when the evaporation coefficients are evaluated from Edghe factors containing), and©g, provided care is taken to

(15) and(16), the following expressions are found: eliminate additional ® factors that occur inE,(1,1),
Ng ) Xe/(+i-1) [ Xg 7 EA(2,0), EB(l,l), andEg(0,2). _ _
EA(ivj):(_oo) exg——— (05— 0,) Eg(i,j), These are just two examples of many possible binary
Na [1+1-1 ] distribution functions that agree in form with the general
(50 result obtained in Appendix A. As demonstrated by Weak-
N xpl(i+j—1) [ x4 T liem and Reis¥ for the case of unary distributions, each of
Eg(i ’j):(N_‘;) exp i+j——1(®A_®B) Eg(i J)- these binary distributions is the product of treating the trans-

lational degrees of freedom of the cluster in an uncontrolled,
(5D and presumably deficient, manner. Until a correct molecular

These expressions appear to be physically well behaved, atieeory is available to provide better guidance, we will have

fully self-consistent, and are now valid for all valuesi@nd to rely on pragmatic considerations to provide some empiri-

j in contrast with Eqs(40) and(41). The factors exponenti- cal justification for these treatments.

ated withx, or xg account for these improvements. The first

facFor is responsible for ensuring type Il limiting con5|§tencylv_ ILLUSTRATIVE NUMERICAL RESULTS

while the second factor, involving th® factors, provides

type | limiting consistency. As for the Kelvin model, these Changes to the equilibrium distribution will directly af-

factors deviate significantly from unity for small, nonzero fect the numerical values of theoretically predicted nucle-

values ofi andj, they approach unity for large valuesiadnd  ation rates in both binary and unary nucleation. To illustrate

j, and they are always essential if the product rules, Eqghe magnitude of this effect we compared various theoretical
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predictions with the recent experimental results of Strey and (a) Rates calculated with SCC binary distribution.
Viisanert? for binary nucleation at 260 K in the ethanol— 10" e
hexanol system. Although binary nucleation rate measure- ] l' [ '/ y o
ments exist for more complex mixtures, for example, y=0 0.59 0.793 0.887 0.958
(]
o g

T T T T T

alcohol—water systent$ we chose the ethanol—hexanol data 10°
for the following reasong1) Ethanol and hexanol form ideal
liquid mixtures;(2) the surface tensions of the pure compo-
nents are nearly identical, thus, surface enrichment effects
are negligible;(3) all of the experiments were conducted
using essentially ideal, dilute gas mixturé$ the nucleation
rates were measured at constant temperature. Within the
framework of classical nucleation theory, comparisons with
these rate data are straightforward and are not complicated 10
by the effects of surface enrichment on the structure of the
cluster. Please note, however, that these simplifications are a
matter of convenience, not necessity. Rate calculations with
our SCC binary cluster distribution are not precluded for
nonideal mixtures, since the formalism does not rely on lig-
uid mixture ideality, and the effects of cluster structure could
be handled as in Refs. 9 and 10, for example. Eliminating
these two effects from our illustrative calculations focuses
attention solely on the new factors present in our SCC dis-
tribution function. 10°
Theoretical nucleation rates or activities were calculated
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(b) Rates calculated with Reiss binary distribution.
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from rate expressions due to Stauffeand Reis$? Saddle ‘“;

point compositions and free energies were computed using = 10® = Do E
the corrected classical theory as described in Refs. 12 and 23 & i 3 3
with values of the physical constants from Ref. 12. The tran- § . i

sition to unary nucleation was handled similarly to earlier g 1 E b E
work,2> with a modified definition of the rate that is fully 2 E Pao 8

described elsewher8.Figures 1a) and Xb) compare the 106
experimental data with nucleation rates predicted using
Stauffer’s rate formula with our SCC distribution, E¢9),
and the Reiss distribution. The rates are plotted versus the 10° ; TR 20 25
mean valuea of the individual vapor species activitieag
and a,,, wherea=(aZ+a?)"? and the separate data sets Mean activity, a
correspond to constant values of the activity fraction
y=ay/(ag+ay). We have plotted only half of the experi-
mental data to avoid confusion. Although the Reiss distribu- ) )
on gives a beter it 10 the cxperimental data JOr0.8, it 5, e 4 200 05 S0areenane yer poed s
severely underpredicts the rates fer-1. Our proposed dis- a=(a2+a?) 2 The open squares are the data of Strey and ViiséReh
tribution, on the other hand, consistently overpredicts thel2). The solid lines are the nucleation rates calculated at the indicated ac-
rates somewhat, but it does a better JOQ/asl tivity fractions,y:e‘lH/(aE-‘k aﬂ), qsing Stagffer’s nucIeati(_Jn ra_te exprgss_ion
. .. and (a) our SCC binary distribution function db) the Reiss binary distri-

Figure 2 presents the same data as an activity plot for thg ;o1 function.
constant rate of)=10" cm 3s L. The activities predicted
using our SCC distribution parallel the experimental points
quite well, aIt_hough they. are _sorpevyhat lower. The resultsv_ SUMMARY AND CONCLUSIONS
calculated using the Reiss distribution do not follow the
trend of the data as well, although the absolute fit is better at Using the principle of detailed balance, we derived a
the higher ethanol activities. We do not expect our SCC dishew kinetic self-consistency requirement relating the evapo-
tribution to always improve the agreement between binaryation coefficients and equilibrium cluster distribution for a
nucleation experiments and theory because it still relies obinary system. We first used this result to demonstrate and
the capillarity approximation rather than on a more realisticresolve an inconsistency in the results for an idealized Kelvin
cluster model. Nevertheless, for cases where SCC theomyodel of a simple binary mixture. We then examined several
does a better job of predicting the unary rates, this distribuforms of the binary equilibrium distribution based on the
tion provides a reasonable binary analogue. Our distributiorcapillarity approximation. We showed that although each dis-
should also do a better job of predicting the temperaturdribution yields sets of evaporation coefficients that are for-
dependence of binary nucleation rates in the same way thatally consistent with the kinetic product rules, E¢$7)—
the SCC theory does for unary systefiis. (23), all or some of these coefficients are physically

T
[m]

T T T

[=2
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using these models because it is easy to overlook or intro-

S A A AR AL AL ARAML AR duce inconsistencies that can markedly affect predicted be-
\ ] havior.
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A Liaae iy ,!‘u o] APPENDIX A: STATISTICAL MECHANICAL
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DEFINITION OF THE EQUILIBRIUM SIZE
DISTRIBUTION

Here, we present the general form of the cluster size
distribution expected on the basis of statistical mechanics
and show how to relate it to distributions based on the cap-

FIG. 2. Activities of ethanol and hexanol required to produce a nucleatiori”arity approximation. The result is not névbut we repeat
rate of J=10" cm 3s ! at 260 K. The solid squares are logarithmically : : - . .
interpolated from the tabulated data of Strey and Viisa(RRef. 12. The it using more explicit notation to emphas,lze Its Important
bottom line(long dasheswas calculated using the Stauffer rate expression features and to make some connections with the recent work
and our SCC binary cluster distribution. The upper lines use the Reiss binargf Weakliem and Reis& on unary systems.
cluster distribution and either the Stauffeplid) or the Reisgshort dashes As usual. we regard clusters of different composition as

ions for th leati te. ' . . )
expressions for the nucieation rate components of an ideal gas. Then the chemical potential of a

cluster of compositioni(j) can formally be written as

ethanol activity, ag

unacceptable because they are functions of the monomer va- #(i,j)=ksT IN[A(i,j)*N(i,j)/q(i,j)], (A1)

por concentrations. As examples of acceptable results, W&here A(i,j) is the thermal de Broglie wavelength of the
then proposed several new forms for the binary distributions|yster, determined by the cluster mass and temperature, and
function and evaporation coefficients based on the capillarityq(i,j) is the internal partition function of the cluster. The
approximation that satisfy the degrees of self-consistency ingntire contribution of the cluster’s translational motion to
vestigated here. Finally, we compared experimental binary, iy is accounted for by the termgT IN[A(i,j)3N(i,j) -
nucleation rates and vapor activities with theoretical Va|Ue§'hus,q(i ,i) involves only degrees of freedom relative to the

predicted using our binary SCC distribution in combinationcenter of mass of the clustdr.The equilibrium condition
with Stauffer’s rate formula. While we neither expected norpetween the vapor phase molecules and the clusters is

found perfect agreement, we did note improvement in the o )
predicted slope of the critical vapor activity curve at constant p(i,j)=ipatjue, (A2)

nucleation rate, and we anticipgte that. the predicted tempergyhere 1, is the chemical potential of speciesn the vapor
ture dependence of the rate will also improve. phase. If the vapor is an ideal gas mixture, so that the chemi-

Although the considerations presented here may appeaf| potentials have the form,=uS+kgT InN,, Eqgs. (A1)
tedious, they are necessary to make consistent comparisoggd (A2) give

between analytical and numerical results when evaluating the o 0 o
accuracy of analytical rate expressidfidVe must be sure N(i.j)=(N,)'(Ng)! q(i,j) ex‘{'MAﬂMB) (A3)
that the ingredients used in obtaining numerical solutions are ' A BUAGL))® kgT ’

fuI_Iy _compat|ble with al! applicable physical and chemlcz_il where the standard states have been taken as one per unit
principles such as detailed balance, symmetry, mass actiof)y me

and_ limiting beha_wor. We must be. espeuglly careful t9 The essence of the capillarity approximation in this for-
verify that the entire set of evaporation coefficients used INalism i :

. ) . - Mmalism is to write
the numerical solution corresponds precisely to the equilib-
rium distribution on which the analytical results are based, or ~ —kgT In q(i,j)=iua(i,j)+jugi.j)
any comparisons will be meaningless. These considerations . .
will automatically be satisfied when more fundamental theo- FO3(1.J) —kgT I Qregl1,). (A4)
retical treatmenfs*>3?are properly employed to evaluate the where u™(i,j)=u%+kgT In N%(x,) is the chemical poten-
binary distribution function and evaporation coefficients.tial of speciesv in a mixture of compositioni(j), and
However, until these advanced methodologies become roug(i,]) is the formal replacement partition function that ac-
tinely applicable, we have to be content with more intuitive,counts for any misapportionment of translational and internal
phenomenological models relying on macroscopic thermodyfree energy among the other terms of E44). After substi-
namic concepts. Consequently, we must be vigilant whenuting Eq. (A4) into Eq. (A3) and using the definitions for
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u(i,j), one can write the cluster concentration in a formequations provide several different but equivalent definitions
that does not depend on any choice of standard state: of K(i,j). Neither set of equations is likely to be of much

Gedin)) [ Na i Ng |l — Q%)) practical use at presem\ priori I_<n0w|edge of the evapora-
NG, j)=———3 ( - ) ( - ) ex% . tion coefficients is usually lacking, and the usual procedure
A(i,)” \Na(Xa) | | Ng(Xs) keT is to work withN(i,j) based on the capillarity approximation
(A5) and evaluatd, andEg using Eqs(15) and(16). The stan-
If we compare this result with Eq2), we see thaN, can be  dard state free energy differences needed to evaligtend
identified as Kg or K(i,j) are also generally unavailable, although they
o can, in principle, be determined from statistical mechanics. If
O:M_ (A6)  they were available, one could work “backwards” to deter-
AGiL)) mine the evaporation coefficients directly without ever both-
Because of the nature @f,, (Ref. 33 and A, we see ering_ to determineN(i_,j), although this would obviously be
thatN, can, in general, depend onj, T, and other molecu- Possible too. All of this should be well known, and we men-
lar parameters but not on pressure or actual vapor specié@n it mainly to reemphasize this connection between ther-
concentrations. If we had simply mimicked the argumentmodynamics and kinetics in the near-equilibrium limit.
used by Weakliem and Rei&Sinstead of Eq(A6) we could
have found\Ny= N, WhereN,; is a gas phase number den-
sity a.rbltrarlly C.hosen as the Stand.ard state for the .CIUSteEA. L. Greer, P. V. Evans, R. G. Hamerton, D. K. Shangguan, and K. F.
chemical potential. The latter result is acceptable, but it does keiton, J. Cryst. Growtieg, 38 (1990.
not give us the general form of the result proposedNgin 27. Kozisek and P. Demo, J. Cryst. Growi82, 491 (1993.
Sec. Il C. It should be clear, however, that we are not claim- °K. Nishioka and K. Fujita, J. Chem. Phys00, 532 (1994).

; Sy . 4G. Shi and J. H. Seinfeld, J. Chem. Ph$8, 9033(1990.
ing to have evaluateqrep(l ,J); we have merely replaced it. 5V. Yu. Zitserman and L. M. Berezhkovskii, J. Coll. Interface Sel0, 373
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