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PHYSICAL REVIEW 8 VOLUME 48, NUMBER 13 1 OCTOBER 1993-I

Energy-projected effective-medium theory of long-range hopping on energetically disordered lattices

P. E. Parris and B. D. Bookout
Department of Physics and the Electronic Materials Institute, The University of Missouri Ro—lla, Rolla, Missouri 65401

(Received 2 April 1993; revised manuscript received 9 June 1993)

We introduce energy-projected equations of motion to treat the diffusive transport of charge carriers
that undergo long-range (i.e., greater than nearest-neighbor) hopping among the sites of an energetically
disordered lattice. This approach leads naturally to an energy-projected effective-medium theory for
treating such systems. Exact expressions for the diffusion constant associated with the energy-projected
effective medium theory are obtained. Using the formalism in conjunction with what is normally a rath-
er poor approximation, i.e., the virtual-crystal approximation, we are able to obtain the exact diffusion
constant for the long-range symmetric-random-well problem. Effective-medium calculations and numer-
ical simulations are presented for nearest-neighbor and long-range hopping on a disordered binary lat-
tice.

I. INTRODUCTION II. DEVELOPMENT OF THE ENERGY-PROJECTED
EFFECTIVE MEDIUM

In a recent paper' we described the application of an
energy-projected effective-medium theory (EPEMT) to
the problem of nearest-neighbor hopping transport on a
binary lattice, i.e., one consisting of sites randomly occu-
pied by ions associated with two different site energies.
In this paper we extend the approach of our earlier paper
in two ways: (a) to include the possibility of long-range
(i.e., greater than nearest-neighbor) hops and (b) to allow
an arbitrary distribution of random site energies. Our ap-
proach is inAuenced by previous treatments, which
have sought to construct a translationally invariant
effective medium that reproduces the configuration-
averaged transport coe%cients of the actual disordered
system of interest. When applied to systems having sites
of different energy, approaches of this type suffer a major
drawback: all sites in the lattice become equivalent after
averaging and the efFective-medium jump rate between
two sites becomes artificially symmetric with respect to
forward and backward jumps. This symmetry, which is
artificially imposed by the averaging process, must be
broken if detailed information about the contributions to
diffusion from different energy states is to be understood.
We demonstrate how this average symmetry may be bro-
ken through the use of a projected average that takes into
account the energy of the states involved in each transi-
tion. The rest of the paper is laid out as follows. In Sec.
II, we introduce the basic model and the corresponding
equations of motion. These are transformed to a set of
energy-projected variables, which are then formally aver-
aged to obtain a set of dynamical effective-medium equa-
tions. These effective-medium equations are solved in the
Appendix to obtain an exact expression for the diffusion
constant in terms of effective-medium hopping rates. In
Sec. III we discuss applications that demonstrate how
very simple approximations to the effective-medium rates
can give very good results when used in conjunction with
the energy-projection method.

A. Equations of motion

The starting point of our calculation is the long-range
hopping transport equation

dI'„
X ( ~nn+ s n, +s ~n + s, n Pn )

dt

appropriate to an energetically disordered solid, in which
P„(t) is the probability at time t of finding the carrier at
the site associated with lattice vector n=(n„. . . , nd ).
The quantity 8' „=8'(~m —n~;e, e„) denotes the hop-
ping rate from site n to site I, which is assumed to de-
pend upon the randomly distributed energies c and c,„
of the two sites involved in the transition as well as the
distance ~m —n~ (measured in lattice spacings) between
them. The summation runs over the set I s I of vectors
connecting all sites in the lattice. Due to the different
ionic constituents in the system, the site energies are as-
sumed to be independently distributed random variables
drawn from the same distribution g(s). For simplicity of
notation, we assume initially that the distribution of site
energies is discrete so that the site energies are drawn
from a set Is a=1, . . . , XI corresponding to the
different ionic species in the crystal. A given energy c
occurs at random with a probability x equal to the mo-
lar concentration of that species, with the sum of the x
adding up to unity. The hopping rates that appear in the
set of equations (1) depend upon the random energies,
and so are themselves random variables drawn from a set
I

W~ I, in which (using a and P to distinguish energy la-
bels) W~ =8'(~s~;e&, e ) describes the microscopic rate
at which hops proceed to a site of energy c& separated by
a distance s from a site of energy c .

At this point we also make the physical assumption
that the microscopic hopping rates connecting sites of
different energy obey a well-defined detailed balance rela-
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tion that causes the system to approach a unique
thermal distribution, independent of its initial condition.
If we denote by fo(s ) the long-time relative site proba-
bility to find the carrier at a given site of energy c. , then
the detailed balance condition ensuring equilibration to
this state can be written as follows:

Wp fo(E )= W, ~fo(Ep) .

In what follows we do not specify what this distribution
is, leaving open the possibility of applying the method to
both classical (Boltzmann) and quantum-mechanical
(Bose-Einstein or Fermi-Dirac) distributions.

B. Transformation to energy-projected variables

As we have noted, the actual configuration of hopping
rates, and thus, the probabilities which appear in (I), de-
pend upon the exact configuration of the lattice. It is
convenient to specify a particular configuration by means
of a complete set IP] of indicator variables defined so
that

1 if site n is of type a,pa—
0 otherwise .

These variables can also be used to define a projection
P„(t)=P„(t)g of the probability P„(t) onto those
configurations having an ion of type a at site n. (Alterna-
tively, the quantity P„represents the joint probability
that the carrier is at site n and that site n is of species a.)

Through straightforward manipulations, we obtain an ex-
act rewriting of the equations of motion (I) in terms of
these new variables. After performing a Laplace trans-
form over time,

P„(z)—= f dt P„(t)exp( zt), — (4)

in which P„(z) denotes the Laplace transform at frequen-
cy z of the probability P„(t ), we obtain

zp„(z) —P„(0)=+[co, (z)p„+, (z) —co, (z)p„(z)],
s,P

(6)

for the configuration-averaged (but now projected) proba-
bilities p„(z)= (P„(z)). We will refer to the p„(z) as
effective-medium probabilities, and take the point of view
that these (Laplace-transformed) equations of motion
define the effective medium that we seek. These new
equations now evolve under the action of (frequency-
dependent) effective-medium hopping rates [co,~(z) ]
which connect sites of each type on the energy-projected
lattice. Note that Eq. (6) is equivalent to a nonlocal
integro-differential equation (or generalized master equa-
tion) in the time domain governed by memory kernels
co~ (t). This form for the averaged equations has been
shown under rather general conditions to be an exact
consequence of the averaging process (which can be
viewed as a linear projection) and of the linearity of the
original nonaveraged master equation. Thus, although at
this point we have not specified exactly what the effective
medium rates are, we have made no actual approxima-
tions.

The problem reduces at this point to (a) the determina-
tion of the effective-medium hopping rates co, ~(z), and (b)
the calculation of the diffusion constant as a function of
these effective-medium rates. The first step, typically, is
the hard part of the problem and is, in most theories, the
point to which approximation schemes are usually ad-
dressed. In what follows we demonstrate that better
(sometimes exact) results can be obtained using lower or-
der approximations on these new projected equations
than would be obtained without projection. In spite of
the complexity introduced into the equations by the ener-
gy projection, the second step (calculating the diffusion
constant D as a function of the effective-medium rates)
can be done exactly. The details of this calculation are
presented in the Appendix, where we derive the following
simple expression:

zP„(z)—P„(0)= g W'„~ +,PP+, (z) —8 ~+, „P„(z),
s, P

D=gD p

for the effective-medium diffusion constant, where

(7)

in which we have introduced W„~+, —=W, ~P. It is to be
emphasized that in obtaining these projected equations,
which formally resemble the equations for a system with
multiple states per site, no approximations have been
made. Note that by giving the site probabilities an ener-

gy index, we have formally increased the number of vari-
ables in the problem by a factor of N, the number of ionic
species in the crystal. However, in any particular
configuration many of the projected probabilities are
identically equal to zero. This increased complexity has
the advantage that when the solutions to these equations
are averaged, a structure is obtained which retains the
distinction between different kinds of sites.

C. EB'ective-medium equations

Configuration averaging over the disorder will lead to a
translationally Invariant set of equations,

In these expressions, we have dropped the dependence on
z in referring to the zero-frequency limit, so that
co, ~=co, ~(0). Thus, the diffusion constant depends only
on the steady-state (z =0) limit of the rates co, ~(z), as
might be expected. The quantity p appearing in (7)
represents the steady-state or equilibrium population,
normalized to one particle, for all sites of energy c, i.e.,

p —= lim g (P„(t))=Z 'x fo(s ),
t —+ oo

n

where Z =g x fo(E ). The right-hand side of (9) fol-
lows from the assumption of a unique equilibrium distri-
bution, and shows that the p 's are, in principle, calcul-
able a priori from a knowledge of the concentrations and
site energies of the constituent ions. From the diffusion
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constant, through Einstein's relation, one can then obtain
the conductivity. Thus, once the hopping rates co, p ap-
pearing in the energy-projected effective-medium equa-
tions are specified, the asymptotic transport properties
follow directly from Eqs. (7)—(9).

III. APPLICATIONS

in which

Zp

gZ

xp
(12)

A. Symmetric well model —exact results

2dD = g s WPpp,
s, p

(10)

where, with the symmetry of this problem, we are able to
explicitly evaluate the populations pp as a function of the
hopping rates, i.e.,

We now discuss the more dificult problem of evaluat-
ing and/or approximating the effective medium rates co, p.

Treatments which do not employ energy projection often
proceed by defining a reference system about which to ex-
pand, and performing perturbation theory on the Green's
function, treating the deviation of the actual system as a
perturbation. This leads to various decoupling schemes,
which vary in complexity from the simple virtual-crystal
approximation (VCA) to the self-consistent coherent-
potential approximation (CPA). In the VCA, the
effective-medium hopping rates are approximated by the
configuration-averaged values of the rates that actually
occur in the disordered system. The resulting description
is often qualitatively inaccurate. In the CPA, the
effective medium itself is formally chosen as the reference
system, the effect of fluctuations about the effective medi-
um being required to vanish upon averaging.

In the energy-projected effective-medium approxima-
tion, excellent results can often be obtained using the sim-
plest approximation (i.e., the VCA) to the energy-
projected equations. Consider, for example, the sym-
metric random well model (sometimes called the ran-
dom trapping model), in which the hopping rate
8, P= 8'~ between two sites is allowed to depend upon
the distance between the two sites and upon the energy of
the site (or well) from which a particular hop occurs, but
is independent of the energy of the site to which the par-
ticle is hopping. The physical picture behind this model
is that of a set of wells of random depth separated by tall
barriers of uniform height. Thus, after obtaining the en-
ergy to leave the initial well, the particle is able, in princi-
ple, to make jumps to any other site in the crystal with a
hopping probability that depends only upon the distance.
This is a natural extension of the nearest-neighbor sym-
metric well problem treated elsewhere, and is in the
class of systems to which the projection approach
developed above applies. To treat the random well model
within the VCA, we let the effective-medium rates m, p

appearing in (7) be approximated by the averages of the
corresponding rates appearing in the unaveraged Eq. (5).
For the random trapping model this entails the approxi-
mation co,~=( W„~+, ) =WP(P) =x WP, which when
applied to Eqs. (7)—(9) results in the expression

This has previously been shown to be the exact diffusion
constant for this model. ' In this form it is easy to see
that the diffusion constant vanishes in the random trap-
ping model for any finite concentration of infinitely deep
wells (i.e., traps, for which all exit rates W, vanish). Ap-
plication of the VCA to the unprojected equations (1), by
contrast, leads to very poor results that fail to predict this
vanishing of the diffusion constant in the deep trap limit.

B. Long-range hopping on binary disordered lattices

We now consider applications of the EPEMT
developed in Sec. II to the hopping conductivity of binary
lattices, i.e., those possessing two types of sites indepen-
dently distributed according to the site energy distribu-
tion function,

For convenience, we assume that E&) cz. In analyzing
this system we adopt a similar approach to that taken in
Ref. 1, which focused only on the nearest-neighbor case
and on the trapping-to-percolation crossover that occurs
in that system. The results presented below illustrate the
effect that long-range hopping produces on this transi-
tion. The basic idea is to use the approximation of the
last section (i.e., the VCA),

co (0):—( W ) =W (P) =x W (a&P) (14)

to approximate the effective-medium rates connecting
sites of different energy. For states of the same energy,
we choose the effective-medium rates co, so that they
reproduce the conductivity of the isolated sublattice cor-
responding to sites of energy E . In other words, co, is
chosen so that for each concentration x it reproduces the
conductivity of the system when all rates except thyrse be-
tween states of the same type a are set equal to zero. In
all cases the distance dependence of the rates is kept the
same as in the original system. In Ref. 1, nearest-
neighbor rates were computed using an analytical ap-
proximation which describes diffusion on a site percolat-
ing lattice. In this paper we are interested in going
beyond the nearest-neighbor case, and so we have used
numerically generated data to obtain both the nearest-
neighbor and long-range effective-medium rates coupling
sites of the same energy. The details of the numerical
procedure, which was briefly described in Ref. 1, will ap-
pear in a forthcoming publication. ' ' "

In Fig. 1 we show logarithmic plots of the diffusion
constant D, normalized to unity at x = 1, as a function of
the concentration x of the lower energy sites. In all cases
we have taken 8'» = W22 = Wz, , which implies that the
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&0O medium equations, the approach is tno restricted to a
binary system, so that more general site energy distribu-
tion functions can be used. Also it i t '

h f, i is s raig t orward to
use different len th ~g dependences for rates connecting sites
of different types.

'to
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APPENDIX: SOLUTION OF THE
EFFECTIVE-MEDIUM EQUATIONS

X

FIG. 1. Logarithmic plots of the normalized diffusion con-
stant D as a function of the concentration x of lower energy
sites, showing eff'ects of long-range hopping on the trapping-to-
percolation transition. Solid curves are the result of the long-
range EPEMT, while solid circles are from the corresponding
numerical simulations. Curves shown are for values of the in-
verse hopping length g =2, 10, 18, and 26. The nearest-
neighbor EPEMT curve is shown as a dashed line, and the
nearest-neighbor simulation data are shown as open circles.

intrinsic conductivity of the two pure systems is the
same. The rate 8'&z out of the low-energy sites, however,
is reduced due to detailed balance considerations. In all
curves presented, we have taken 8' = W X 10 . I&2 2i
all the solid curves, the length dependence of the rates
takes the form W~ = Wl lsl;Err, E )= Wtr. exp( —qlsl)
where the parameter g determines the effective range of
hopping. Solid curves are shown for values of q =2 10
188, and 26. The nearest-neighbor curve is shown as a
dashed line. Results from a direct numerical simulation
of the binary system for the same values of q are shown
as solid circles. Numerical results for the nearest-
neighbor case are shown as open circles.

As can be seen, the effective-medium curves reproduce
the simulation results quite we11 except in the region
where the conductivity minimum occurs. This minimum
represents a transition between two essentially different
conduction mechanisms. At small x, diffusion is "trap
imited" with carriers spending a great deal of time in the

isolated lower energy sites. At higher concentrations, it
becomes easier to simply hop directly among the lower
energy sites themselves, at which point conduction in-
creases with the concentration of those sites. The transi-
tion is sharpest in the nearest-neighbor case, although the
effective-medium theory clearly overestimates the sharp-
ness of the transition. (The apparent cusp observed for
g=2 is actually rounded in the simulations when a fine
enough resolution in the concentration is used. )

One advantage of the effective-medium approach is
that a given family of long-range percolation curves gen-
erated numerically (or analytically) for a set of length-
dependent parameters can be used to efficiently calculate
the effective-medium curves for a wide variety of energet-
ic configurations of the constituent ions. As we have in-
dicated in the formal development of the effective-

In this Appendix we solve the energy-projected
e ective-medium equations and obtain an exact expres-
sion for the diffusion constant in terms of the efFective-
medium rates. To this end, we introduce a Fourier repre-
sentation of the averaged probabilities with

pk (z) = g e ' "p„(z), (A 1)

defining the Fourier transform of p„(z) at wave vector
k=(k„. . . , kd ). The Fourier transform of Eq. (5) is

zp„(z) —P„(0)= g I „~(z)pP(z),
P

in which I „~(z)=g, e ' 'co, ~(z) —5 &g, coP(z). The
formal solution to (A2) can be written as follows:

pk(z)= g Gk (z)Pr, (0)
P

(A3)

= —lim gz V'„p~(z),
z~O
k~O

= —lim gz Uk[6k~(z)PP(0)] .
z~O p
k~O

(A4)

It turns out that we can restrict the derivatives in the last
line of (A4) to 6„,because only the singular part of 6 at

~ ~

a
=0 survives m the zero-frequency (z =0) limit. To

show this we need to evaluate the derivatives of Gk and
Pk(0). Using the notation P for the vector with com-
ponents Pg(0), 6 for the operator with elements Gk~(z),
and 1 for the operator with elements I P(z), the required
derivatives can be written as follows:

in terms of the Green's function Gk(z)=(z —I k)
which is diagonal in k but is an X X2V matrix in the ener-

gy indices.
The diffusion constant D characterizes the asymptotic

growth of the mean-square displacement of a transport
particle as a function of time. This quantity is readily ob-
tained from the solution given in (A3). A standard Tau-
berian theorem, along with (Al) implies that

d
2dD —= lim ( n (t) ) = lim g z n p (z)t~ oo dt z —+0

n, a
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=[V„GjG ' —G[V„rj,
which implies that

VkG=G[VkI jG .

(A6)

(A7)

It is then straightforward to extend this using the chain
rule to obtain the result

V„G=G I V„I +2(V„1 ) G(V„l")j G . (A8)

All terms in (A5) and (A8) involving the quantity V'kI,
including Vk G itself, vanish in the zero wave-vector limit
due to the translational invariance of the effective medi-
um. To see this, note that limk OVk

= ig, s—co, . For
centrosymmetric lattices, in which the negative of a lat-
tice vector is also a lattice vector, the summand is odd in-
sofar as the quantity co, ~=~ ~, depends only on the mag-
nitude of s. Thus, lima oVa I k

=0= lima oVa Gk.
Hence we find that

limz2V2k(GP) = limz [(V'kG)P+G(VkP)] .
z~o z~o
k~O k~o

(A9)

z [VkGP]=z [(V'kG)P+2(VkG) (VkP)+G(VkP)] .

(A5)

Note also that by definition GG '=1. Thus,

V'k I GG '
j =0= j Vk G j 6 '+G [Vk G

Combining these results we can reexpress (A4) in the
form

2dD = —lim g z GI, ~(Vkl ) )GpP&~(0),
a, P, y, 6

k~0

p13= lim g—(Pg(t)) = lim (PP(t) ) = limzpg(z),
g —+ oo

n g —+ oo z~o
k~o k~o

= lim g zGg (z)PP (0)=lim gzg~ g P„(0) .
z~O z~oa a nk~o

(A12)

For the particular localized initial condition
P„(0)=5„5 r, Eq. (A12) leads to the identity
p&=lim, ~g~~ which, because of the assumed unique-
ness of the equilibrium distribution, is independent of y.
Performing this limit on the two factors containing the
elements of the matrix g appearing in Eq. (Al 1) we obtain

= lim g zg ~ g s2cors zg@ g p~(0)
a, P, y, g S n

(A 1 1)

where we have introduced g ~=lima oGa~.
Let p& denote the equilibrium population of states of

energy c& corresponding to an arbitrary initial condition
for one particle, i.e.,

The last term on the right in (A9) will vanish in the zero-
frequency limit, because 2dD = g s co, ~(0)pp,

a, P, s
(A13)

limz G =limz (z —I ) '=0 .
z~o z~o

(A 10) which is the desired expression.
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