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The Kelvin equation and self-consistent nucleation theory
Gerald Wilemskia)
Lawrence Livermore National Laboratory, Livermore California 94551-9900
and Physical Sciences Inc., Andover, Massachusetts 01810-1077

~Received 4 October 1994; accepted 30 March 1995!

Issues of self-consistency are reviewed for several unary equilibrium size distributions based on the
capillarity approximation. Some apparent difficulties of interpretation are resolved. In terms of the
kinetic approach to nucleation theory, the influence of self-consistency on the nucleation rate is
shown to arise entirely from differences in the dimer evaporation rates for nearly all versions of
classical theory. The nucleation rate behavior of the Kelvin model is explored. In this model, the
Kelvin equation is used to prescribe all cluster evaporation rates. Nucleation rates predicted by the
Kelvin model are quantitatively similar to those of the self-consistent classical~SCC! theory, but not
to other simple versions of the classical theory. This behavior arises entirely from the relatively close
coincidence of the SCC and Kelvin dimer evaporation rates. This means that, for the
distribution-based versions of classical theory, the SCC model is the closest analogue of the Kelvin
model. Because the Kelvin equation is fundamentally inadequate for very small clusters, the close
relationship between the Kelvin and SCC formulations indicates that both are equally lacking in
fundamental justification. The Kelvin model may, however, have some pragmatic utility, and a
simple analytical rate expression is also derived for it to simplify the calculation of nucleation rates
for this model. ©1995 American Institute of Physics.

I. INTRODUCTION

Accurate evaluation of the decay or evaporation rates of
small clusters has long stood in the way of a satisfactory
treatment of the kinetics of new phase formation. Since the
work of Zeldovich1 and Frenkel,2,3 the usual approach has
been to rely on the principle of detailed balance to express
these decay coefficients as ratios of either true or constrained
equilibrium cluster concentrations for adjacent cluster sizes.
These equilibrium concentrations are obtained using a blend
of statistical and thermodynamic arguments that, almost in-
variably, rely substantially on the capillarity approximation
to express the reversible work of cluster formation as the
sum of volume and surface contributions. There have been
numerous attempts to improve on the capillarity approxima-
tion, and the associated difficulties and controversies are well
documented.4,5 These will not be addressed here. This paper
deals, instead, with vapor phase nucleation theory based on
the Kelvin equation6,7 and its relationship with recent theo-
retical developments8–10 that use the capillarity approxima-
tion in a certain self-consistent form.

The Kelvin equation describes the equilibrium vapor
pressure for a curved liquid surface relative to that of a flat
interface. It has long held a position of great importance in
nucleation theory since, in its most familiar and approximate
form,6 it relates the radius of the critical nucleus to the su-
persaturation. The Kelvin equation can also be used to deter-
mine evaporation rates for droplets of noncritical size. Katz7

has recently done this and has shown numerically that nucle-
ation rates calculated for this Kelvin model are relatively
close to those found using the self-consistent classical~SCC!
theory.8–10 One of the principal aims of this work is to
deepen the connection between these two approaches. An-
other is to make the Kelvin model more computationally

accessible. A final goal is to provide some historical perspec-
tive on the use of the Kelvin equation in nucleation theory.

Despite its physical appeal, the Kelvin model has not
received much attention in recent years. Besides the work of
Katz,7 there appear to be only a few papers in the last ten
years that are concerned with it. Temkin and Shevelev11 and
Koz̆ı́s̆ek and Demo12 applied it to nucleation of a highly
idealized binary mixture. Yang and Qiu13 developed a kinetic
approach to nucleation using a parametric form for the clus-
ter evaporation rates suggested by the Kelvin equation. They
also reviewed the original Kelvin model, referring to it as the
classical result, which is not quite correct since the similar
Kelvin ~Ref. 7! and SCC~Refs. 9 and 10! results differ
greatly from those of the traditional classical rate theory due
to Frenkel~Refs. 2 and 3!.

This lack of attention to the Kelvin model is somewhat
surprising because this model dominated the early thinking
of Farkas,14 Becker and Do¨ring,15 and Volmer,16 who all used
it to evaluate the droplet evaporation rates without relying on
any equilibrium distribution. Actually, Farkas14 began his pa-
per by using the Kelvin equation for cluster evaporation rates
along with the principle of detailed balance to derive an ap-
proximate form for the constrained equilibrium distribution,
the opposite of what is usually done nowadays. Apparently,
he did this so he could interpret his final result for the nucle-
ation rate in support of Volmer and Weber17 concerning the
proportionality of the rate to the equilibrium concentration of
critical clusters. In deriving this equilibrium distribution,
Farkas introduced the first kinetic mechanism for nucleation,
which he attributed to Szilard as cited in Ref. 14. Farkas then
used these now-familiar kinetics equations for cluster growth
via monomer addition and removal to obtain approximate
expressions for the steady state cluster concentrations and
nucleation rate. However, all of his final results involve un-
determined constants because he was unwilling to use thea!Present address: Lawrence Livermore National Laboratory.
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Kelvin equation, or anything else, to determine evaporation
rates for the smallest clusters.

Starting with Farkas’ kinetics equations and following a
purely kinetic approach, Becker and Do¨ring15 elegantly ex-
pressed the steady state nucleation rate solely in terms of
impingement and evaporation rates. Perhaps feeling less in-
hibited than Farkas, they used the Kelvin equation to evalu-
ate the evaporation rates for all cluster sizes to obtain the first
predictive rate expression. Volmer16 also used the kinetic ap-
proach of Becker and Do¨ring with a slightly modified defi-
nition of the evaporation rate. Although Volmer’s method for
evaluating the rate expression differed from Becker’s and
Döring’s, his final result was very close to theirs. An amaz-
ing aspect of these results is that neither of them is the cor-
rect answer for the Kelvin model, as we shall see later. To-
day, although they still offer rich insights, these early
developments are largely forgotten and ignored. This is prob-
ably due to the work of Zeldovich1 and Frenkel3 in the 1940s
which induced a shift in emphasis to an approach based on
equilibrium statistical mechanics. Aside from brief exposi-
tions by Kuhrt,18 Barnard,19 Dunning,20,21 and Frank and
Tosi,22 the kinetic approach of Becker, Do¨ring, and Volmer
received little further attention until 1977 when it was inde-
pendently reinvented by Katz and Wiedersich23 and subse-
quently generalized by Katz and Spaepen24 and Katz and
Donohue.25

In the course of this presentation, both the kinetic and
constrained equilibrium formulations of nucleation theory
will be employed. The latter approach will be introduced first
in reviewing the most familiar constrained equilibrium dis-
tribution functions based on the capillarity approximation. To
keep terminology manageable, these functions will be re-
ferred to as equilibrium distributions or simply as distribu-
tions. These distributions vary in their degree of self-
consistency, and the terms ‘‘mass action consistency’’ and
‘‘limiting consistency’’ will be used to classify their behav-
ior. Mass action consistency obviously characterizes distribu-
tion functions satisfying the law of mass action. Limiting
consistency is satisfied if ag-mer distribution function re-
duces to the monomer concentration when it is evaluated for
g51. In general, a distribution may satisfy either type of
consistency, both types, or neither. Some issues of self-
consistency have already received prior attention,5,7,10,26–28

but the brief review given here will highlight some previ-
ously unappreciated points that can be understood better
from the kinetic viewpoint. Weakliem and Reiss28 have re-
cently given a thorough critique of the status of mass action
consistency and its effect on the classical nucleation rate, but
they did not explicitly address the effects of limiting consis-
tency. The latter are explored in this paper, not to provide
support for them, but rather because they are involved in
understanding how the Kelvin model relates to the other
classical models. Because limiting consistency is not a fun-
damental property, its justification, if any, derives from prag-
matic considerations.5

Following a review of consistency issues and equilib-
rium distributions, the principal effects of self-consistency on
the nucleation kinetics are discussed from the kinetic ap-
proach. This leads naturally to a discussion of the Kelvin

model and its relationship to the SCC approach. After a brief
comparison of numerical results for the Kelvin and SCC ap-
proaches and some historical comments, the paper closes
with a summary of the main conclusions reached here.

II. CONSISTENCY OF EQUILIBRIUM DISTRIBUTIONS

A. Mass action consistency

The most familiar expression for the equilibrium con-
centrationNg of clusters containingg monomers is due to
Frenkel.2,3 The Frenkel~F! distribution employs the capillar-
ity approximation and takes the form

Ng
F5N1 exp~2Qg2/31g ln S!. ~1!

Here the supersaturation ratioS is defined asN1/N1
s , N1 is

the monomer concentration in the vapor,N1
s is the monomer

concentration in a saturated vapor at equilibrium,
Q5~ss1!/~kBT), wheres is the surface tension,s1 the sur-
face area of a monomer,kB is the Boltzmann constant, andT
is the temperature. This expression clearly fails to satisfy the
law of mass action which requires that

Ng5~N1!
gKg~T!, ~2!

whereKg(T) can depend ong andT but not onN1 or the
total pressurep if the gas phase behaves ideally.

The failure of the Frenkel distribution to satisfy mass
action appears to have been first noted and corrected by
Courtney.29 Subsequently, Dufour and Defay30 and Blander
and Katz31 independently addressed this issue. While the ar-
guments of these authors differ, the final corrected result is
the same and will be referred to here as the Courtney~C!
distribution. It can be written as

Ng
C5N1

s exp~2Qg2/31g ln S!. ~3!

Comparing Eqs.~2! and ~3!, we see that

Kg~T!5~N1
s!12g exp~2Qg2/3! ~4!

which is only a function ofg and T and, therefore, is an
acceptable expression.

Weakliem and Reiss28 have recently shown that Court-
ney’s result is only one of many that can be written and, thus,
does not provide a unique correction for the result of Frenkel
even in the restricted framework of classical nucleation
theory. The particular form one obtains depends on the stan-
dard state pressure~or concentration! one uses for the cluster
chemical potential and on how one mistreats the contribution
of the translational degrees of freedom to the cluster free
energy. Thus, although mass action consistency is fundamen-
tally necessary, it alone is not a sufficient basis for deciding
which distribution is fundamentally superior to the others.

B. Limiting consistency

While the Courtney distribution satisfies the law of mass
action, several authors have noted, either explicitly or im-
plicitly, that it does not return the identityN15N1 for g51.
This failure to achieve limiting consistency is obviously a
consequence of the capillarity approximation and the specific
form,Qg2/3, chosen for the surface free energy of theg-mer.
Unlike mass action consistency, however, limiting consis-
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tency is not a fundamental property that must be satisfied by
a distribution. It is primarily a mathematical convenience to
have a single formula that is ‘‘valid’’ for all values ofg. One
can, and should, legitimately redefine the distribution to
equal the monomer density when the function used for other
values ofg fails to return the proper value atg51. The point
is that distributions based on the capillarity approximation
are not expected to accurately describe the concentrations of
very smallg-mers, much less the monomer density. Although
the physical inapplicability of the capillarity approximation
for small values ofg is widely recognized, there is undeni-
able appeal in ‘‘one-size-fits-all’’ formulas, particularly when
they are motivated by the idea of a size-dependent surface
tension. It is, thus, not surprising that there have been a num-
ber of attempts to adapt this simple formalism to all cluster
sizes.

Dufour and Defay30 were apparently the first to act on
this idea. Their approach was to implicitly regard the surface
tension as size dependent such that, in effect,Q~1!50.
Goodrich32 made the first explicit implementation of limiting
consistency by reducing the surface free energy of ag-mer
by the formal surface free energy of a monomer. A similar
modification was later made independently by Ziabicki and
Jarecki.33,34 This approach was subsequently employed by
Shizgal and Barrett8 in extending Goodrich’s work. Most re-
cently, it was reinvented by Gershick and Chiu,9 who empha-
sized its significant quantitative effect on the nucleation rate.
This modification corresponds to replacingg2/3 with g2/321
in Eq. ~3! to obtain

Ng
SCC5N1

s exp@2Q~g2/321!1g ln S#. ~5!

Following Gershick,10 Eq. ~5! will be referred to as the self-
consistent classical distribution. In work that preceded the
more recent developments, Draine and Salpeter35 had already
employed a variant of this approach, ultimately using as their
working equation:

Ng
DS5N1

s exp@2Q~g21!2/31g ln S#. ~6!

As Katz7 has already noted with respect to Eq.~5!, each of
these modifications can be regarded as making the surface
tension~or Q! in Eq. ~3! an explicit function of size,Q~g!.
Draine and Salpeter35 actually noted thatQ should depend
on g, but in their calculations they treated it as a constant
whose value was intended to be characteristic of a critically
sized cluster and not of a planar surface.

C. Effects of self-consistency on nucleation rate

The changes imposed on the Frenkel distribution to
achieve limiting or mass action consistency affect the calcu-
lated nucleation rate. These effects were first noted by
Courtney29 for mass action consistency and by Gershick and
Chiu9,10 for limiting consistency. An easy way to appreciate
these effects is by considering the exact solution for the
steady state nucleation rateJ,36

J5S (
g51

G
1

absgNg
D 21

, ~7!

whereb is the collision frequency of monomers withg-mers
per unit area,a is the sticking probability,sg5s1g

2/3 is the
surface area of ag-mer, andG is much larger than the critical
size but otherwise arbitrary. Since theg51 term is almost
always negligible, and since the ratio of any pair of distribu-
tion functions considered here~except the Draine–Salpeter
distribution! is some constant independent ofg, it follows
that the ratio of the respective nucleation rates is the same
constant. Thus, the ratio of the Courtney and Frenkel rate
expressions is

JC

JF
'
Ng
C

Ng
F 5

1

S
, ~8!

which is Courtney’s result. When the SCC distribution, Eq.
~5!, is used to evaluate the rate, the Gershick–Chiu result,

JSCC

JF
'
Ng
SCC

Ng
F 5

eQ

S
, ~9!

is found. The effect of the Draine–Salpeter distribution is a
bit harder to ascertain since the ratioNg

DS/Ng
F depends ong.

However, if consideration is restricted to large values of the
critical sizeg* , and the classical value ofQ is used in Eq.
~6!, contrary to the intent of Draine and Salpeter, we may
obtain the approximate result

JDS

JF
'
Ng*
DS

Ng*
F 'S1/~6g* !, ~10!

where the classical~Kelvin! expression, lnS5(2Q/3)
3g*21/3, has also been used to simplify the result. I have
verified numerically that this correction factor is accurate to
within a few percent and is always close to unity, provided
g*.10. Thus, it is rather remarkable that the Draine–
Salpeter distribution, which fulfills both mass action and lim-
iting consistency, should reproduce almost perfectly the rate
predictions of the Frenkel distribution, which satisfies neither
condition.

In contrast with the modest correction in Eq.~8! and the
negligible correction in Eq.~10!, the self-consistency correc-
tion in Eq. ~9! can be large.9 In commenting on it, Gershick
has drawn attention to an apparent paradox that ‘‘the self-
consistency correction does not affect the forward or back-
ward rates, yet it changes the nucleation rate!’’10 He offers
no resolution of this paradox, but appeals to the results37 of
numerical calculations with time-dependent population bal-
ance equations to support it. Actually, this paradox is the
result of imprecision in terminology and of an oversight of a
key property of the evaporation coefficients. To appreciate
this, let us proceed by reviewing some key kinetic concepts.

The net rate~cm23 s21! of formation of g-mers from
~g21!-mers is usually written as

Jg5absg21ng212Egng , ~11!

whereng is the nonequilibrium number density ofg-mers,
andEg is the frequency with which ag-mer loses a mono-
mer, i.e., the evaporation rate of ag-mer. From Eq.~11!, the
detailed balance prescription forEg is

1121Gerald Wilemski: Self-consistent nucleation theory
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Eg5a
c̄

4
sg21N1

Ng21

Ng
, ~12!

where the mean molecular speed of monomers,c̄, appears
after substituting the usual kinetic theory expression for
b @5~c̄/4)N1#. For an ideal mixture of vapor and clusters,Eg

should be a function of temperature only. The dependence on
the monomer concentrationN1 is only apparent, since it is
canceled by compensating factors inNg21 andNg leaving
only temperature dependent terms.

It is not true that theforward rate is unaffected by the
self-consistency correction. What is unaffected is theforward
rate coefficient, which equalsa~c̄/4)sg21. The forward rate
is the product of this rate coefficient, the monomer concen-
tration, andng . Becauseng is directly affected by the self-
consistency correction, the forward rate is similarly affected.
The same reasoning applies to thebackward rate, Egng , re-
gardless of whether or notEg , thebackward rate coefficient,
is affected by the self-consistency correction. This terminol-
ogy is consistent with usage in the field of chemical kinetics,
yet it is commonly neglected in discussions of nucleation
kinetics too numerous to cite here.

It is easy to show howng is affected by the self-
consistency correction for steady state nucleation. In this
case,ng can be expressed exactly in terms of theNg as

36

ng
Ng

5J(
i5g

G
1

absiNi
5(

i5g

G
1

siNi
Y(

j51

G
1

sj Nj
. ~13!

The right-hand side of Eq.~13! is nearly unaffected by self-
consistency corrections, thus any change inNg is immedi-
ately reflected inng and, therefore, in the separate forward
and backward rates. Despite the transparency of this demon-
stration, it does not provide a satisfactory explanation for the
effect in kinetic terms.

III. KINETIC INTERPRETATION

The effect of the self-consistency correction can be un-
derstood better by considering the steady state solutions of
Eq. ~11! for ng andJ expressed solely in terms of the forward
and backward rate coefficients. The original
Becker–Do¨ring15 solution for J, which was independently
rediscovered by Katz and Spaepen24 using a different argu-
ment, can be written as

J5abs1N1 YS 11(
j52

G

)
k52

j
Ek

absk
D . ~14!

It is straightforward to extend the kinetic approach to express
the steady state cluster concentrations solely in terms of ki-
netic quantities. The result is

ng5
J

absg
S 11 (

j5g11

G

)
k5g11

j
Ek

absk
D , ~15!

which seems not to have been published previously.
From the ingredients of Eqs.~14! and~15!, it is clear that

only the behavior of theEk can affect the steady state values
of ng andJ for the various models under consideration. Ger-
shick’s conclusion10 that the evaporation coefficients are un-

affected by the choice of distribution function used to evalu-
ate them is not completely valid. Let us first consider just the
Frenkel~Refs. 2 and 3!, Courtney~Ref. 29!, and SCC~Refs.
8–10! distribution functions. These functions are given by
Eqs. ~1!, ~3!, and ~5!, and all yield the same result forEg

when substituted into Eq.~12! except wheng52. When Eq.
~12! is explicitly written out for this special case, one finds

E25a~ c̄/4!s1N1
2/N2 , ~16!

whereN1 should not be mistakenly evaluated using either
Eq. ~1! or ~3!. It is apparent thatE2 , in contrast with all other
Eg , depends directly on the functional form chosen forN2 .
The first consequence of Eq.~16! is that the Frenkel form for
E2 is unphysical because it depends onN1 . Next, any
changes introduced in the formula forNg to ensure mass
action or limiting consistency will immediately be reflected
in E2 . These changes, in turn, directly affect the values ofng
andJ as given by Eqs.~14! and ~15! since each term in the
denominator ofJ, save the initial, is multiplied byE2 . Thus,
in the kinetic approach, the changes contained in Eq.~3! or
~5! affect the dimer break-up rate which alters the dimer
concentration. Through Eq.~11!, this then affects the trimer
concentration and so on up the ladder of cluster sizes. The
model of Draine and Salpeter,35 which Gershick10 did not
consider, is more equitable in its influence since the values of
all Eg are affected to some extent with the biggest effect
found for the smaller values ofg. In this case, however, these
changes must be mutually compensating since, as we have
already seen, the steady state rates hardly differ from the
Frenkel values.

Similar behavior is found when the rate and cluster con-
centrations are computed by solving the time-dependent
population balance equations,

dng
dt

5Jg2Jg11 . ~17!

The different values ofE2 , based on Eqs.~1!, ~3!, and ~5!,
directly affect the dimer concentration which, because of its
presence inJ3 , then affects the trimer concentration and so
on. In this way the influence of eachE2 is leveraged all the
way up the sequence of cluster sizes through the birth and
death equations. If this were not so, it would be impossible
for the time-dependent cluster population equations to evolve
numerically into the different steady state solutions appropri-
ate for each version of nucleation theory. Thus, Courtney’s38

pioneering numerical solutions reflect the use of Eq.~3!,
while Abraham39 used Eq.~1!. Neither of these authors be-
gan the solution atg52. Rather, the model specific informa-
tion was inserted by holding the concentration of a larger, but
subcritical, cluster size at an equilibrium value determined
by the indicated distribution function. Despite this, the net
effect is the same because the steady state concentrations of
the smaller subcritical clusters are always very close to the
equilibrium values. The recent results of Girshicket al.37

agree with the steady state rates of SCC theory simply be-
cause Eq.~5!, rather than Eq.~1! or ~3!, was used to evaluate
E2 . There is no paradox.
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IV. THE KELVIN MODEL

A. Relationship to SCC theory

Another variant of classical theory, termed the Kelvin
solution by Katz,7 merits discussion because of its close re-
lationship to the SCC theory. The Kelvin solution is found by
using the Kelvin equation for the vapor pressure of a spheri-
cal drop to evaluate theEg . This approach has considerable
physical appeal despite the obvious inadequacy of the Kelvin
equation for the smallest cluster sizes. Katz7 has found that
nucleation rates calculated with the Kelvin solution are very
close to the values found using SCC theory.

The relationship between these two approaches can be
appreciated better by considering the equilibrium distribution
for the Kelvin ~K! solution. This is found by solving Eq.~11!
with

Eg
K5a~ c̄/4!sg21N1

s exp~k/g1/3!, ~18!

wherek52Q/3. The two rightmost factors in this equation
are just the monomer density in equilibrium with a spherical
drop containingg monomers as given by the Kelvin equa-
tion. Starting atg52, one simply iterates Eq.~11! with Jg50
andng5Ng to obtain the following exact result:

Ng
K5N1

s~N1 /N1
s!g expF2kS (

j51

g

j21/321D G . ~19!

Note that this distribution function automatically satisfies
both mass action and limiting consistency, although the latter
property merely results from the mathematical trick of add-
ing and subtracting unity to and from the original sum that
began atj52. The steady state rate and cluster size distribu-
tion for the Kelvin model are easily found by combining Eq.
~19! with Eqs. ~7! and ~13! or Eq. ~18! with Eqs. ~14! and
~15!. The result for the rate is

JK5abs1N1 YF11 (
g52

G

g22/3S12g expS k(
j52

g

j21/3D G .
(20)

This expression differs slightly from the result reported by
Katz7 due to a typographical error in his formula and to his
different choice of surface area in evaluating the backward
rate coefficient.40

The sum in Eq.~19! is very well approximated by no
fewer than the first three terms of the Euler–Maclaurin sum-
mation formula,

(
j52

g

j21/35 3
2 ~g2/321!2 1

2 ~12g21/3!

1 1
36 ~12g24/3!. ~21!

With this simplification, the equilibrium Kelvin distribution
function is seen to equal the SCC form, Eq.~5!, multiplied
by an additionalg-dependent factor. Thus, the ratio of steady
state rates for the SCC and Kelvin theory should be well
approximated by the following equation:

JK

JSCC
5
Ng*
K

Ng*
SCC5exp$ 1

3 Q@~12g*21/3!2 1
18 ~12g*24/3!#% .

~22!

The same result can be found by evaluating Eq.~20! in the
usual manner.9

The form of the correction factor indicates that the
Kelvin rate always exceeds the SCC value, but unlessQ and
g* are very large, this factor should be of modest size. For
example, withg*510 and 100,JK/JSCC ranges from 25 to
130 whenQ520 but only from 5 to 11 whenQ510. To
explore this point further I performed exact numerical calcu-
lations of nonane nucleation rates based on Eq.~7! or ~14!
using the simple, efficient algorithm described in the Appen-
dix. The physical properties of nonane were treated in the
manner described by Kalikmanov and van Dongen.27 The
results, shown in Fig. 1 support the behavior indicated by Eq.
~22! in contrast to the results of Katz7 which showed that
JSCC.JK at high temperature. My results also establish that
Eq. ~22! overpredicts the exact Kelvin rate by no more than
4% with the worst agreement found at low temperatures
~large Q! and high nucleation rates, 1016–1022 cm23 s21

~smallg* !. Thus, an accurate prediction for the Kelvin theory
can be readily obtained from Eq.~22! and the easily com-
puted value ofJSCC.9

Now we may ask why the SCC theory, rather than the
Frenkel3 or Courtney29 versions of classical theory, gives re-
sults that are closest to the Kelvin solution. The answer is
simply that the SCC expression forE2 is a better approxima-
tion to the Kelvin result forg52 than are either of the earlier
two classical versions. In simplest terms, 22/321 is a much
better approximation to~2/3!221/3 than is 22/3. ~Recall that
the Frenkel version ofE2 also depends on the monomer par-
tial pressure, which is unphysical.! Since the Frenkel, Court-
ney, and SCC distributions give identical values for all other

FIG. 1. Comparison of exact nucleation rates for the Kelvin~K! and self-
consistent classical~SCC! models as a function of supersaturation for
nonane at four different temperatures.
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Eg , it is only the differences inE2 that matter. This close
correspondence between the Kelvin and SCC approaches
should not be misconstrued as fundamental support for the
SCC distribution. Because the Kelvin equation is fundamen-
tally inadequate for very small clusters, the agreement be-
tween the Kelvin and SCC formulations merely indicates
that both are equally unsatisfactory.

B. Assessment of some earlier results

As already mentioned, Becker and Do¨ring15 derived a
general expression for the steady state nucleation rate based
solely on kinetic considerations. In evaluating their expres-
sion for the vapor-to-liquid transition, they actually em-
ployed the Kelvin equation to evaluate the evaporation coef-
ficients. Why then is the familiar rate expression often
attributed to Becker and Do¨ring not, in fact, the expression
for JK given here? The answer is that Becker and Do¨ring
made a seemingly harmless simplification of their result by
arguing that~3g*22/322g* 21! was small compared with
one. As a result, they approximated as unity a factor that,
expressed in conventional notation, equals exp~Q!/S! Thus,
Becker and Do¨ring should have obtained an expression close
to the self-consistent classical rate,JSCC. Due to the other
mathematical approximations they used, they would not have
found the remaining correction factors shown in Eq.~22!, but
this is a matter of lesser importance. When Volmer rederived
the Becker–Do¨ring theory in his famous book,16 it was still
cast solely in kinetic terms with no use of equilibrium distri-
butions. Volmer used a different method to evaluate the rate
expression, but his results were nearly identical41 to those of
Becker and Do¨ring. Thus, he too found a multiplicative
factor,42 equivalent to exp~Q!/S, which he then approximated
as exp~l!, wherel is the molecular heat of evaporation. In
contrast to Becker and Do¨ring, Volmer recognized that this
factor was large, but he argued that it would be nearly com-
pensated by a very small factor, missing from the theory, that
accounted for the low probability of ‘‘triple collisions’’
needed to form stable dimers. Rather than modify the theory
to assess the effect of the latter process, he simply removed
the large factor from the final rate equation. He thereby ob-
tained the expression that is usually regarded as the classical
result for the nucleation rate. This result is also often attrib-
uted to Frenkel, who derived it later using the constrained
equilibrium formalism without the need to argue away any
large factors since none occurred in his approach. Somewhat
later, Barnard19 carefully reviewed the theories of Frenkel
and Becker and Do¨ring, noted the importance of the terms
that equal exp~Q!/S in the latter approach, and showed that
they reduced the predicted critical supersaturations for water
by about 10%. Reductions in the theoretical critical super-
saturations for water and other substances would have wors-
ened the agreement then found43 with the experimental data
of Volmer and Flood,44 and Barnard’s observations appar-
ently were not considered further.

Another interesting aspect of the use of the Kelvin equa-
tion in nucleation theory involves the work of Goodrich.32

Although Goodrich made the first explicit effort to address
the problem of limiting consistency, he did not fully define
the SCC distribution, Eq.~5!, as did Ziabicki,34 Shizgal and

Barrett,8 and Gershick and Chiu9 much later. Obviously, he
could not then have used it to evaluateJ. Instead, he also
used the Kelvin expression, Eq.~18!, for the evaporation rate
to derive the steady state rate from a higher order approxi-
mation of the continuous birth and death equations. The form
of his expression does not lend itself to direct comparison
with the exact result, but his calculated rates were signifi-
cantly higher than those of standard classical nucleation
theory, i.e.,J based on Eq.~1!, the Frenkel distribution. He
attributed this behavior to his improved approximation
scheme, although it is clear from Katz’ results7 and mine that
most, if not all, of the increase inJ that he found must be due
to the use of the Kelvin equation.

V. SUMMARY AND CONCLUSIONS

In unary homogeneous nucleation theory, equilibrium
cluster size distributions based on the capillarity approxima-
tion vary in their degree of self-consistency. The Frenkel
distribution does not obey the law of mass action, nor does it
satisfy limiting consistency, i.e., return the monomer concen-
tration when evaluated for a single monomer. The Courtney
distribution also fails to satisfy limiting consistency, but it
does follow the law of mass action. The Draine–Salpeter,
SCC, and Kelvin distributions satisfy both types of self-
consistency. The self-consistency factors that convert one
distribution into another affect the individual forward and
reverse rates of cluster formation, as well as the overall rate
of nucleation. Since the forward ratecoefficientsare unaf-
fected by the self-consistency corrections, all such effects
arise directly from differences in the reverse or evaporation
rate coefficients. From a kinetic perspective, the Frenkel,
Courtney, and SCC versions of classical theory differ only in
their dimer evaporation coefficients, since all other evapora-
tion coefficients are identical in these theories. This remark is
also true for any alternative version of classical theory one
might care to ‘‘derive’’ using the arguments of Weakliem and
Reiss.28 The behavior of the Draine–Salpeter and Kelvin
models is more complicated because their evaporation coef-
ficients differ from each other and from the other classical
values for all cluster sizes. Of course, the evaporation coef-
ficients based on each of the distributions asymptotically ap-
proach the Kelvin value, Eq.~18!, for large cluster sizes,28

and they remain moderately close to the Kelvin value down
to relatively small cluster sizes. This behavior is preordained
because the Kelvin equation originates from the same ther-
modynamic considerations as those used to derive the clas-
sical free energy of cluster formation. Despite this common
foundation for the evaporation rate coefficients in these vari-
ous versions of classical theory, only the SCC~Refs. 8–10!
model gives results that are quantitatively similar to those of
the Kelvin model, and these results differ substantially from
those of the Frenkel and Courtney models.

As noted by Weakliem and Reiss,28 however, each of
these classical models fails to properly account for the trans-
lational free energy of the clusters. From this perspective,
none of these models is fundamentally superior to another.
Weakliem and Reiss have also shown that there are an un-
limited number of possible self-consistency correction fac-
tors for the nucleation rate besides the most familiar 1/Sand
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exp~Q!/S. Without a correct molecular theory as a guide,
there is no fundamental justification to prefer one particular
distribution and, thus, correction factor over another. One
can compare theory with experimental results as a pragmatic
basis for a preference, but inevitably no single distribution is
adequate for all substances or even for a single substance
over a wide temperature range.

Nevertheless, it is clearly a fundamental requirement that
any distribution should, at a minimum, obey the law of mass
action. The same cannot be said for limiting consistency.
There is no fundamental reason why a cluster size distribu-
tion must be a simple functional form applicable to every
size. Cluster beam experiments and accurate Monte Carlo
calculations show that certain special sizes exist for which
cluster stability is enhanced compared to neighboring sizes.45

This suggests that an exact theory would not be characterized
by the type of smoothly varying size distributions and free
energy functions used in our current simple theories. Thus,
although imposing limiting consistency on a distribution may
favorably improve the predicted nucleation rates, this should
not be interpreted as evidence for a fundamental improve-
ment in the theory.

Because limiting consistency emerges quasi naturally in
the Kelvin model, it is tempting to think that the quantitative
similarity of the Kelvin and SCC models provides some fun-
damental support for the concept. To dispel this view, we
need only to recall that all of the ‘‘improvement’’ in this case
stems from the relatively close agreement of the SCC and
Kelvin dimer evaporation rates. Given the questionable ap-
plicability of the Kelvin equation to dimers and other small
clusters, we see that it is erroneous to regard the SCC theory
as fundamentally improved. Despite this last objection, the
SCC and Kelvin approaches do appear to provide the best
predicted temperature dependence of the nucleation rate for
the simpler capillarity-based nucleation theories.7 Neverthe-
less, the predicted temperature dependence is still far from
satisfactory, and quantitative improvement in the magnitudes
of the predicted rates is not always found.9
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APPENDIX: EXACT NUMERICAL COMPUTATION OF
THE STEADY STATE RATE

This algorithm for calculatingJ is simple, efficient and
accurate. Since it seems not to have been discussed previ-
ously, it may be worthwhile to describe it. It relies on rewrit-
ing the sum in Eq.~7! as a nested product of terms,

s1N1(
g51

G
1

sgNg
511R2@11R3~11•••

1RG21~11RG!••• !#, ~A1!

where

Rg5sg21Ng21 /~sgNg!. ~A2!

Then, using the recursion relation

Fg21511RgFg ~A3!

and beginning with

FG51, ~A4!

the Fg are successively computed in descending order. The
steady state rateJ is then related toF1 by the expression

J5
abs1N1

F1
. ~A5!

An added benefit of this approach is that the steady state
cluster distributionng is also easily found fromFg without
any additional computational work:

ng5
N1s1Fg

sgF1
. ~A6!

The kinetic version ofRg is obtained by replacing the
ratio, Ng21/Ng , with the value found by applying the de-
tailed balance condition, Eq.~12!,

Rg5
Eg

absg
. ~A7!

With this expression forRg we see that Eq.~A1! is just an
expanded version of the~inverted! kinetic expression of
Becker and Do¨ring15 and Katz and Spaepen,24 Eq. ~14!. To
obtain the Kelvin solution, just use Eq.~18! for Eg . This
gives

Rg5
sg21

sg

1

S
expS k

g1/3D . ~A8!

This recursive procedure for evaluating the rate thus avoids
both the need to directly compute the sums appearing in Eq.
~7!, ~14!, or ~20! and the possible loss of precision accompa-
nying that procedure.
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