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The Kelvin equation and self-consistent nucleation theory

Gerald Wilemski®
Lawrence Livermore National Laboratory, Livermore California 94551-9900
and Physical Sciences Inc., Andover, Massachusetts 01810-1077

(Received 4 October 1994; accepted 30 March 1995

Issues of self-consistency are reviewed for several unary equilibrium size distributions based on the
capillarity approximation. Some apparent difficulties of interpretation are resolved. In terms of the
kinetic approach to nucleation theory, the influence of self-consistency on the nucleation rate is
shown to arise entirely from differences in the dimer evaporation rates for nearly all versions of
classical theory. The nucleation rate behavior of the Kelvin model is explored. In this model, the
Kelvin equation is used to prescribe all cluster evaporation rates. Nucleation rates predicted by the
Kelvin model are quantitatively similar to those of the self-consistent clagS€AD theory, but not

to other simple versions of the classical theory. This behavior arises entirely from the relatively close
coincidence of the SCC and Kelvin dimer evaporation rates. This means that, for the
distribution-based versions of classical theory, the SCC model is the closest analogue of the Kelvin
model. Because the Kelvin equation is fundamentally inadequate for very small clusters, the close
relationship between the Kelvin and SCC formulations indicates that both are equally lacking in
fundamental justification. The Kelvin model may, however, have some pragmatic utility, and a
simple analytical rate expression is also derived for it to simplify the calculation of nucleation rates
for this model. ©1995 American Institute of Physics.

I. INTRODUCTION accessible. A final goal is to provide some historical perspec-
luati f the d i '%ive on the use of the Kelvin equation in nucleation theory.
Accurate evaluation of the decay or evaporation rates o Despite its physical appeal, the Kelvin model has not

small clusters ha; Iong stood in the way of a Sat'.SfaCtorBfeceived much attention in recent years. Besides the work of
treatment of the kinetics of new phase formation. Since th?(atz7 there appear to be only a few papers in the last ten

; 3
work of Zeldovictt anq Frenke?, the' usual approach has ears that are concerned with it. Temkin and Shevéland
been to rely on the principle of detailed balance to expres%om

i

. : . . Zisek and Dem& applied it to nucleation of a highly
these decay coefficients as ratios of either true or constraine lized bi it Y, d Gideveloped a kineti
equilibrium cluster concentrations for adjacent cluster sizes. calized binary mixture. yang an eveloped a kinetic

These equilibrium concentrations are obtained using a blenﬁppro‘elCh to.nucleatlon using a parametric f_orm for Fhe clus-
of statistical and thermodynamic arguments that, almost int€" €vaporation rates suggested by the Kelvin equation. They
variably, rely substantially on the capillarity approximation &S0 reviewed the original Kelvin model, referring to it as the
to express the reversible work of cluster formation as theslassical result, which is not quite correct since the similar
sum of volume and surface contributions. There have bee€lVin (Ref. 7 and SCC(Refs. 9 and 1presults differ
numerous attempts to improve on the capillarity approximagreatly from those of the traditional classical rate theory due
tion, and the associated difficulties and controversies are welp Frenkel(Refs. 2 and B
documented:® These will not be addressed here. This paper ~ This lack of attention to the Kelvin model is somewhat
deals, instead, with vapor phase nucleation theory based dirprising because this model dominated the early thinking
the Kelvin equatiof’ and its relationship with recent theo- of Farkas,* Becker and Ddng,* and Volmer:® who all used
retical developments'®that use the capillarity approxima- it to evaluate the droplet evaporation rates without relying on
tion in a certain self-consistent form. any equilibrium distribution. Actually, Farkésbegan his pa-
The Kelvin equation describes the equilibrium vaporper by using the Kelvin equation for cluster evaporation rates
pressure for a curved liquid surface relative to that of a flaalong with the principle of detailed balance to derive an ap-
interface. It has long held a position of great importance inproximate form for the constrained equilibrium distribution,
nucleation theory since, in its most familiar and approximatethe opposite of what is usually done nowadays. Apparently,
form,° it relates the radius of the critical nucleus to the su-he did this so he could interpret his final result for the nucle-
persaturation. The Kelvin equation can also be used to deteation rate in support of Volmer and We%concerning the
mine evaporation rates for droplets of noncritical size. Katz proportionality of the rate to the equilibrium concentration of
has recently done this and has shown numerically that nucleritical clusters. In deriving this equilibrium distribution,
ation rates calculated for this Kelvin model are relatively Farkas introduced the first kinetic mechanism for nucleation,
close to those found using the self-consistent class®@0)  which he attributed to Szilard as cited in Ref. 14. Farkas then
theory®~% One of the principal aims of this work is t0 ysed these now-familiar kinetics equations for cluster growth
deepen the connection between these two approaches. Al monomer addition and removal to obtain approximate
other is to make the Kelvin model more computationally expressions for the steady state cluster concentrations and
nucleation rate. However, all of his final results involve un-
dpresent address: Lawrence Livermore National Laboratory. determined constants because he was unwilling to use the
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1120 Gerald Wilemski: Self-consistent nucleation theory

Kelvin equation, or anything else, to determine evaporatiormodel and its relationship to the SCC approach. After a brief

rates for the smallest clusters. comparison of numerical results for the Kelvin and SCC ap-
Starting with Farkas’ kinetics equations and following aproaches and some historical comments, the paper closes

purely kinetic approach, Becker and a'® elegantly ex-  with a summary of the main conclusions reached here.

pressed the steady state nucleation rate solely in terms of

impingement and evaporation rates. Perhaps feeling less it CONSISTENCY OF EQUILIBRIUM DISTRIBUTIONS

hibited than Farl_<as, they used the Kelv!n equatlon_to eva!uA_ Mass action consistency

ate the evaporation rates for all cluster sizes to obtain the first

predictive rate expression. Volntéalso used the kinetic ap- The most familiar expression for the equilibrium con-

proach of Becker and Dimg with a slightly modified defi- centrationNg of clusters containingg monomers is due to

nition of the evaporation rate. Although Volmer’s method for Frenkel>® The FrenkelF) distribution employs the capillar-

evaluating the rate expression differed from Becker’s andty approximation and takes the form

Péring’s, his final result was very cIo;e to theirs. An amaz-  \F_— N, exp—0g?3+gIn S). 1)

ing aspect of these results is that neither of them is the cor- g

rect answer for the Kelvin model, as we shall see later. ToHere the supersaturation ratiis defined aiN,/N3, N, is

day, although they still offer rich insights, these earlythe monomer concentration in the vaphi, is the monomer

developments are largely forgotten and ignored. This is probconcentration in a saturated vapor at equilibrium,

ably due to the work of Zeldovidrand Frenkélin the 1940s  ©=(0s1)/(kgT), whereo is the surface tensiors; the sur-

which induced a shift in emphasis to an approach based ofce area of a monomekg is the Boltzmann constant, afd

equilibrium statistical mechanics. Aside from brief exposi-is the temperature. This expression clearly fails to satisfy the

tions by Kuhrt!® Barnard®® Dunning?®?' and Frank and law of mass action which requires that

Tosi,_22 the_ kinetic approach of Be_cker,"lﬂog, anq Volm_er Ng=(N1)9K4(T), 2

received little further attention until 1977 when it was inde-

pendently reinvented by Katz and Wieder&thnd subse- WhereKq(T) can depend oig and T but not onN, or the

quently generalized by Katz and Spaeffeand Katz and (ot@l pressurg if the gas phase behaves ideally.
Donohue® The failure of the Frenkel distribution to satisfy mass

f£ction appears to have been first noted and corrected by

9
constrained equilibrium formulations of nucleation theorycourme% Subsequently, Dufour and Defdyand Blander

l . . . .
will be employed. The latter approach will be introduced first2"d KatZ" independently addressed this issue. While the ar-
in reviewing the most familiar constrained equilibrium dis- guments of these authors differ, the final corrected result is

tribution functions based on the capillarity approximation, Toth€ same and will be referred to here as the Courii@y
keep terminology manageable, these functions will be reglstnbqun. It can be written as
ferred to as equilibrium distributions or simply as distribu- NgzNi exp(—92’3+g InS). 3)
tions. These distributions vary in their degree of self-
consistency, and the terms “mass action consistency” an
“limiting consistency” will be used to classify their behav- Kg(T)=(N3)* "9 exp — 0 g3 (4
ior. Mass action consistency obviously characterizes distribu- . . . .
tion functions satisfying the law of mass action. Limiting which is only a functlon ofg and T and, therefore, is an
consistency is satisfied if g-mer distribution function re- acceptable expression.

duces to the monomer concentration when it is evaluated forr]e ,\évfeaskll'l?g :r?ld gggci ?ﬁ;’ﬁ rﬁgrgg i)gogvvrﬁlttglr?;r?c?utﬁljs
g=1. In general, a distribution may satisfy either type of y y y ' '

consistency, both types, or neither. Some issues of Selfjoes not provide a unique correction for the result of Frenkel
Consistency’ have alrea d,y received brior atterfibip26-28  €ven in the restricted framework of classical nucleation

but the brief review given here will highlight some previ- theory. The particular form one obtains depends on the stan-

ously unappreciated points that can be understood bettéjrard state pressufer concentratiopone uses for the cluster

from the kinetic viewpoint. Weakliem and Reiéiave re- ¢themical potential and on how one mistreats the contribution

: - . of the translational degrees of freedom to the cluster free
cently given a thorough critique of the status of mass action

; : . ) energy. Thus, although mass action consistency is fundamen-
consistency and its effect on the classical nucleation rate, b 9y 9 Y

they did not explicitly address the effects of limiting consis-Ltla"y necessary, it alone is not a sufficient basis for deciding

. . ., which distribution is fundamentally superior to the others.
tency. The latter are explored in this paper, not to provide y sup

support for them, but rather because they are involved inB
understanding how the Kelvin model relates to the other™
classical models. Because limiting consistency is not a fun-  While the Courtney distribution satisfies the law of mass
damental property, its justification, if any, derives from prag-action, several authors have noted, either explicitly or im-
matic considerations. plicitly, that it does not return the identify, =N, for g=1.
Following a review of consistency issues and equilib-This failure to achieve limiting consistency is obviously a

rium distributions, the principal effects of self-consistency onconsequence of the capillarity approximation and the specific
the nucleation kinetics are discussed from the kinetic apform, ®g?’3, chosen for the surface free energy of tamer.

proach. This leads naturally to a discussion of the KelvinUnlike mass action consistency, however, limiting consis-

In the course of this presentation, both the kinetic an

(g:omparing Eqgs(2) and(3), we see that

Limiting consistency

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



Gerald Wilemski: Self-consistent nucleation theory 1121

tency is not a fundamental property that must be satisfied bwhereg is the collision frequency of monomers wigamers
a distribution. It is primarily a mathematical convenience toper unit areagp is the sticking probabilitysg=3192’3 is the
have a single formula that is “valid” for all values gf One  surface area of g-mer, andG is much larger than the critical
can, and should, legitimately redefine the distribution tosize but otherwise arbitrary. Since the=1 term is almost
equal the monomer density when the function used for othealways negligible, and since the ratio of any pair of distribu-
values ofg fails to return the proper value g&=1. The point  tion functions considered hefexcept the Draine—Salpeter
is that distributions based on the capillarity approximationdistribution is some constant independent gyf it follows
are not expected to accurately describe the concentrations tifat the ratio of the respective nucleation rates is the same
very smallg-mers, much less the monomer density. Althoughconstant. Thus, the ratio of the Courtney and Frenkel rate
the physical inapplicability of the capillarity approximation expressions is
for small values ofg is widely recognized, there is undeni-

. . § . C C
able appeal in “one-size-fits-all” formulas, particularly when ~ J° Ng 1
they are motivated by the idea of a size-dependent surface J_FNN_E_é’
tension. It is, thus, not surprising that there have been a num-
ber of attempts to adapt this simple formalism to all clustetwhich is Courtney’s result. When the SCC distribution, Eq.

8

sizes. (5), is used to evaluate the rate, the Gershick—Chiu result,
Dufour and DefasP were apparently the first to act on scc nSCC o

this idea. Their approach was to implicitly regard the surface 9~ - Ng_ _& 9

tension as size dependent such that, in effét])=0. J Ny S

Goodrich? made the first explicit implementation of limiting _ S

. . . u S F
by the formal surface free energy of a monomer. A similarbit harder to ascertain since the rati /N, depends om.
modification was later made independently by Ziabicki andHowever, if consideration is restricted to large values of the
Jarecki®®3* This approach was subsequently employed bycritical sizeg*, and the classical value @ is used in Eq.
Shizgal and Barreftiin extending Goodrich’s work. Most re- (6), contrary to the intent of Draine and Salpeter, we may
cently, it was reinvented by Gershick and Chiwho empha-  obtain the approximate result

sized its significant quantitative effect on the nucleation rate. DS

This modification corresponds to replacigd/® with g2/3—1 J_DS~ g* _ gli(6g*) (10)
in Eq. (3) to obtain JF g* ’
SCC_ /
Ng““=N3 ex —©(g**~1)+g In S]. () where the classical(Kelvin) expression, I18=(20/3)

xg* 13 has also been used to simplify the result. | have
erified numerically that this correction factor is accurate to

more recent developments, Draine and Salfeted already within a few percent and is always close to unity, provided

employed a variant of this approach, ultimately using as theif >10- Thus, it is rather remarkable that the Draine—
working equation: Salpeter distribution, which fulfills both mass action and lim-

iting consistency, should reproduce almost perfectly the rate
NE’S= N3 exd —O(g— 1)%/3+ glins]. (6) predictions of the Frenkel distribution, which satisfies neither

7 . condition.
ﬁ]i;atéor;ﬁc:gsggycg?ig Vrvét(\;'aﬁzze;ts t%gg?ﬂ;ge?ﬁ: :ljrfa%e In contrast with the modest correction in E§) and the
tension(or ©) in Eq. (3) an explicit function of size®(q). egligible correction in E¢10), the self-consistency correc-

i tion in Eq.(9) can be largé.In commenting on it, Gershick
Draine and Salpetet actually noted tha® should depend has drawn attention to an apparent paradox that “the self-

on g, but in their galculatlons they treated- |t.as a Con.Stamconsistency correction does not affect the forward or back-
whose value was intended to be characteristic of a criticall

sized cluster and not of a planar surface Xvard rates_, yet it (_:hanges the nucleation raté¥e offers

' no resolution of this paradox, but appeals to the reSutis
numerical calculations with time-dependent population bal-
ance equations to support it. Actually, this paradox is the
C. Effects of self-consistency on nucleation rate result of imprecision in terminology and of an oversight of a
The changes mposed on the Frenkel disvbuion 1) POV o e euaboraton coefeets, To aphecae
achieve limiting or mass action consistency affect the calcu- 'The neFt) rate(cm)g s of f?)rmation gf mers from pis.
lated nucleation rate. These effects were first noted b 9

Courtney® for mass action consistency and by Gershick anig_ 1)-mers is usually written as

Following Gershick® Eq. (5) will be referred to as the self-
consistent classical distribution. In work that preceded th

Chiu®1 for I|m|_t|ng con5|s_tenqy. An easy way to a_lppremate Jg=aBsy_ 1Ny 1~ Egng, (11)
these effects is by considering the exact solution for the
steady state nucleation ralg® whereng is the nonequilibrium number density gfmers,

G 1 andE, is the frequency with which g-mer loses a mono-
J:( 1 @ mer, i.e., the evaporation rate ofgamer. From Eq(11), the
g=1 aBsgNg/ ' detailed balance prescription fé& is

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



1122 Gerald Wilemski: Self-consistent nucleation theory

c Ng—1 affected by the choice of distribution function used to evalu-

Eg=a 7 551Ny (120 ate them is not completely valid. Let us first consider just the
9 _ Frenkel(Refs. 2 and B Courtney(Ref. 29, and SCORefs.

where the mean molecular speed of monomersappears g8_10 distribution functions. These functions are given by
after substituting the usual kinetic theory expression forEqS. (1), (3), and (5), and all yield the same result fd,
B[=(c/4)N1]. For an ideal mixture of vapor and clustes,  when substituted into E412) except wherg=2. When Eq.

should be a function of temperature only. The dependence 0112 is explicitly written out for this special case, one finds
the monomer concentratioN, is only apparent, since it is

canceled by compensating factorsNiy_, and N, leaving E,= a(Cl4)s;N%N,, (16)
only temperature dependent terms.

It is not true that theforward rateis unaffected by the \here N, should not be mistakenly evaluated using either

self-consistency correction. What is unaffected isftrevard Eq. (1) or (3). It is apparent tha,, in contrast with all other
rate coefficientwhich equalsa(c/4)sy_,. The forward rate ¢ , depends directly on the functional form chosen Ifbr.

is the product of this rate coefficient, the monomer concen-l-ﬁe first consequence of E(.6) is that the Frenkel form for
tration, andng. Becausen, is directly affected by the self- E, is unphysical because it depends dh. Next, any
consistency corre(_:tion, thg forward rate is similarly aﬁeCtedchanges introduced in the formula fok, to ensure mass
The same reasoning applies to teckward rate Egng, re-  4tion or limiting consistency will immediately be reflected

gardless of whether or né,, thebackward rate coefficient  j, g These changes, in turn, directly affect the values of

is affected by the self-consistency correction. This terminol445 55 given by Eqs(14) and (15) since each term in the

ogy .is .consistent with usage in j[he field of. chemical ki”eti,csdenominator ofl, save the initial, is multiplied b, . Thus,

ygt |t. is commonly neglec.ted in discussions of nucleatlonin the kinetic approach, the changes contained in(Bjor

kinetics too numerous to cite here. (5) affect the dimer break-up rate which alters the dimer
It is easy to show hown, is affected by the self- ncentration. Through Eql1), this then affects the trimer

consistency correction for steady state nucleation. In thigyncentration and so on up the ladder of cluster sizes. The

H 6
casen, can be expressed exactly in terms of tgas model of Draine and Salpet&t,which Gershick® did not
Ng G 1 c 1 S| consider, is more equitable in its influence since the values of
N_g:Ji:g aBsN =i:g m /121 W (13 all Ey are affected to some extent with the biggest effect

found for the smaller values @f In this case, however, these
The right-hand side of Eq13) is nearly unaffected by self- changes must be mutually compensating since, as we have
consistency corrections, thus any changeNinis immedi-  already seen, the steady state rates hardly differ from the
ately reflected img and, therefore, in the separate forward Frenkel values.

and backward rates. Despite the transparency of this demon- Similar behavior is found when the rate and cluster con-
stration, it does not provide a satisfactory explanation for thecentrations are computed by solving the time-dependent

effect in kinetic terms. population balance equations,
dng
I1l. KINETIC INTERPRETATION W=J9—Jg+1. (17)

The effect of the self-consistency correction can be un-
derstood better by considering the steady state solutions dfhe different values ok, based on Egg1), (3), and(5),
Eq. (12) for ny andJ expressed solely in terms of the forward directly affect the dimer concentration which, because of its
and backward rate coefficients. The original Presence ind3, then affects the trimer concentration and so
Becker—Daing'® solution for J, which was independently ©n. In this way the influence of eadhy is leveraged all the
rediscovered by Katz and Spaeptusing a different argu- Way up the sequence of cluster sizes through the birth and

ment, can be written as death equations. If this were not so, it would be impossible
6 for the time-dependent cluster population equations to evolve
Ex numerically into the different steady state solutions appropri-

J=apsiN, / l+]’22 e a,Bsk) ' 14 .te for each version of nucleation theory. Thus, Courtriy’s

. . o ioneering numerical solutions reflect the use of E3),
It is straightforward to extend the kinetic approach to expres hile Abrahani® used Eq.(1). Neither of these authors be-

the. steady state cluster concentrations solely in terms of k'gan the solution ag=2. Rather, the model specific informa-
netic quantities. The result is

tion was inserted by holding the concentration of a larger, but
( G j E, ) subcritical, cluster size at an equilibrium value determined

ng=aBS (15 by the indicated distribution function. Despite this, the net
g effect is the same because the steady state concentrations of
which seems not to have been published previously. the smaller subcritical clusters are always very close to the
From the ingredients of Eq&l4) and(15), it is clear that  equilibrium values. The recent results of Girshiekal?’
only the behavior of th&, can affect the steady state values agree with the steady state rates of SCC theory simply be-
of ny andJ for the various models under consideration. Ger-cause Eq(5), rather than Eqg(1) or (3), was used to evaluate

shick’s conclusiotf that the evaporation coefficients are un- E,. There is no paradox.

j=g+1 k=g+1 aBS

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995
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IV. THE KELVIN MODEL
A. Relationship to SCC theory

Another variant of classical theory, termed the Kelvin
solution by Katz, merits discussion because of its close re-
lationship to the SCC theory. The Kelvin solution is found by
using the Kelvin equation for the vapor pressure of a spheri-
cal drop to evaluate thE,. This approach has considerable
physical appeal despite the obvious inadequacy of the Kelvin
equation for the smallest cluster sizes. Katas found that
nucleation rates calculated with the Kelvin solution are very
close to the values found using SCC theory.

The relationship between these two approaches can be
appreciated better by considering the equilibrium distribution
for the Kelvin (K) solution. This is found by solving Eq11)
with

Nucleation rate, cms!

EX= 6/4)89_ N3 exp( kIg?), (18 Supersaturation

where k=20/3. The two rightmost factors in this equation i, 1. Comparison of exact nucleation rates for the Kel#i and self-
are just the monomer density in equilibrium with a sphericalconsistent classicalSCO models as a function of supersaturation for
drop containingg monomers as given by the Kelvin equa- nonane at four different temperatures.

tion. Starting ag=2, one simply iterates E¢11) with J,=0

andng=Ng to obtain the following exact result:

JK
(19 35T —§C‘c =expl  O[(1-g* %)~ f(1-g" )1}
22

g
=N§(N;/NS)9 ex;{—K(E j1’3—1) .
=1

Note that thIS. dlstrlbqthn functlop automatically satlsfles.l.he same result can be found by evaluating &) in the
both mass action and limiting consistency, although the Iatteﬂsual mannes.

property merely results from the mathematical trick of add- The form of the correction factor indicates that the

ing and subtracting unity to and from the original sum thatKerm rate always exceeds the SCC value, but un@ssid
began aj =2. The steady state rate and cluster size d|str|bug are very large, this factor should be of modest size. For

tion for the Kelvin model are easily found by combining Eg. K 1SCC
(19) with Eqs.(7) and (13 or Eq. (18 with Eqs.(14 and 3200 Bg S o
(15). The resuit for the rate is explore this point further | performed exact numerical calcu-

G g lations of nonane nucleation rates based on (Zgor (14)
JK=apBs;N, / 1+ E g 239 ex;{ KE i ” using the S|mp_le, eff|C|ent.aIgor|thm described in the Appen-
g=2 dix. The physical properties of nonane were treated in the

(20)  manner described by Kalikmanov and van Dongefihe
results, shown in Fig. 1 support the behavior indicated by Eq.

This expressmn differs slightly from the result reported by (22) in contrast to the results of Kdtavhich showed that

Katz' due to a typographical error in his formula and to his 35CC 3K 4t high temperature. My results also establish that
different choice of surface area in evaluating the backwardeq, (22) overpredicts the exact Kelvin rate by no more than
rate coefficient? 4% with the worst agreement found at low temperatures

The sum in Eq(19) is very well approximated by no (large ®) and high nucleation rates, f0-10?2 cm 3s™?
fewer than the first three terms of the Euler—Maclaurin sum{smallg*). Thus, an accurate prediction for the Kelvin theory

mation formula, can be readily obtained from E¢22) and the easily com-
. puted value ofJS¢C?®
2 i~18_3(g2P—1)— 1(1-g-13) Now we may ask why the SCC theory, rather than the

Frenkef or Courtney® versions of classical theory, gives re-
sults that are closest to the Kelvin solution. The answer is
+ &(1—g~%3). (22 simply that the SCC expression fBy is a better approxima-
tion to the Kelvin result fog=2 than are either of the earlier
With this simplification, the equilibrium Kelvin distribution two classical versions. In simplest term€”321 is a much
function is seen to equal the SCC form, Ef), multiplied  better approximation t¢2/3)2~ % than is 2 (Recall that
by an additionab-dependent factor. Thus, the ratio of steadythe Frenkel version dE, also depends on the monomer par-
state rates for the SCC and Kelvin theory should be weltial pressure, which is unphysicaSince the Frenkel, Court-
approximated by the following equation: ney, and SCC distributions give identical values for all other

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



1124 Gerald Wilemski: Self-consistent nucleation theory

Ey, it is only the differences irE, that matter. This close Barrett® and Gershick and Chiumuch later. Obviously, he
correspondence between the Kelvin and SCC approachesuld not then have used it to evaluatelnstead, he also
should not be misconstrued as fundamental support for thesed the Kelvin expression, E@.8), for the evaporation rate
SCC distribution. Because the Kelvin equation is fundamento derive the steady state rate from a higher order approxi-
tally inadequate for very small clusters, the agreement bemation of the continuous birth and death equations. The form
tween the Kelvin and SCC formulations merely indicatesof his expression does not lend itself to direct comparison

that both are equally unsatisfactory. with the exact result, but his calculated rates were signifi-
cantly higher than those of standard classical nucleation
B. Assessment of some earlier results theory, i.e.,J based on Eq(l1), the Frenkel distribution. He

As already mentioned, Becker and ' derived a attributed this behavior to his improved approximation

. y 7 .
general expression for the steady state nucleation rate basgaheme' although itis clear from Katz' resuléd mine that

solely on kinetic considerations. In evaluating their expres—mOSt’ if not all, of the increase ihthat he found must be due

sion for the vapor-to-liquid transition, they actually em- to the use of the Kelvin equation.
ployed the Kelvin equation to evaluate the evaporation coef-
ficients. Why then is the familiar rate expression oftenv' SUMMARY AND CONCLUSIONS
attributed to Becker and Dimg not, in fact, the expression In unary homogeneous nucleation theory, equilibrium
for JX given here? The answer is that Becker andifp  cluster size distributions based on the capillarity approxima-
made a seemingly harmless simplification of their result bytion vary in their degree of self-consistency. The Frenkel
arguing that(3g* ~?*-2g* ~!) was small compared with distribution does not obey the law of mass action, nor does it
one. As a result, they approximated as unity a factor thatsatisfy limiting consistency, i.e., return the monomer concen-
expressed in conventional notation, equals(8f8 Thus, tration when evaluated for a single monomer. The Courtney
Becker and Drng should have obtained an expression closalistribution also fails to satisfy limiting consistency, but it
to the self-consistent classical rate“C. Due to the other does follow the law of mass action. The Draine—Salpeter,
mathematical approximations they used, they would not hav8€CC, and Kelvin distributions satisfy both types of self-
found the remaining correction factors shown in E29), but  consistency. The self-consistency factors that convert one
this is a matter of lesser importance. When Volmer rederivedistribution into another affect the individual forward and
the Becker—Dang theory in his famous bool,it was still  reverse rates of cluster formation, as well as the overall rate
cast solely in kinetic terms with no use of equilibrium distri- of nucleation. Since the forward ratmefficientsare unaf-
butions. Volmer used a different method to evaluate the ratéected by the self-consistency corrections, all such effects
expression, but his results were nearly idenffctd those of ~ arise directly from differences in the reverse or evaporation
Becker and Ddng. Thus, he too found a multiplicative rate coefficients From a kinetic perspective, the Frenkel,
factor? equivalent to ex(®)/S, which he then approximated Courtney, and SCC versions of classical theory differ only in
as expr), whereh is the molecular heat of evaporation. In their dimer evaporation coefficients, since all other evapora-
contrast to Becker and Dimg, Volmer recognized that this tion coefficients are identical in these theories. This remark is
factor was large, but he argued that it would be nearly comalso true for any alternative version of classical theory one
pensated by a very small factor, missing from the theory, thamight care to “derive” using the arguments of Weakliem and
accounted for the low probability of “triple collisions” Reiss?® The behavior of the Draine—Salpeter and Kelvin
needed to form stable dimers. Rather than modify the theorynodels is more complicated because their evaporation coef-
to assess the effect of the latter process, he simply removditients differ from each other and from the other classical
the large factor from the final rate equation. He thereby obvalues for all cluster sizes. Of course, the evaporation coef-
tained the expression that is usually regarded as the classidatients based on each of the distributions asymptotically ap-
result for the nucleation rate. This result is also often attribproach the Kelvin value, Eq18), for large cluster size¥
uted to Frenkel, who derived it later using the constrainedand they remain moderately close to the Kelvin value down
equilibrium formalism without the need to argue away anyto relatively small cluster sizes. This behavior is preordained
large factors since none occurred in his approach. Somewhbecause the Kelvin equation originates from the same ther-
later, Barnartf carefully reviewed the theories of Frenkel modynamic considerations as those used to derive the clas-
and Becker and Dring, noted the importance of the terms sical free energy of cluster formation. Despite this common
that equal exf®)/S in the latter approach, and showed thatfoundation for the evaporation rate coefficients in these vari-
they reduced the predicted critical supersaturations for watesus versions of classical theory, only the S(Refs. 8—-10
by about 10%. Reductions in the theoretical critical supermodel gives results that are quantitatively similar to those of
saturations for water and other substances would have worthe Kelvin model, and these results differ substantially from
ened the agreement then fodhaith the experimental data those of the Frenkel and Courtney models.
of Volmer and Flood” and Barnard’s observations appar- As noted by Weakliem and Reié$however, each of
ently were not considered further. these classical models fails to properly account for the trans-
Another interesting aspect of the use of the Kelvin equaiational free energy of the clusters. From this perspective,
tion in nucleation theory involves the work of Goodrith. none of these models is fundamentally superior to another.
Although Goodrich made the first explicit effort to addressWeakliem and Reiss have also shown that there are an un-
the problem of limiting consistency, he did not fully define limited number of possible self-consistency correction fac-
the SCC distribution, Eq(5), as did Ziabicki** Shizgal and  tors for the nucleation rate besides the most famili&atd
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exp(®)/S. Without a correct molecular theory as a guide, S|

there is no fundamental justification to prefer one particular 31N12 ——=1+R,[1+Rg(1+---

distribution and, thus, correction factor over another. One 6=1 SgNg

can compare theory with experimental results as a pragmatic +Rs_1(1+Rg)-- )], (A1)

basis for a preference, but inevitably no single distribution is

adequate for all substances or even for a single substan¥der

over a wide temperature range. Ry=Sg-1Ng_1/(SgNg). (A2)
Nevertheless, it is clearly a fundamental requirement that ) , i

any distribution should, at a minimum, obey the law of massThen’ using the recursion relation

action. The same cannot be said for limiting consistency. F,_;=1+RyF, (A3)

There is no fundamental reason why a cluster size distribu- . .

tion must be a simple functional form applicable to everyand beginning with

size. Cluster beam experiments and accurate Monte Carlo Fg=1, (A4)

calculations show that certain special sizes exist for whicqhe F. are successively computed in descending order. The
cluster stability is enhanced compared to neighboring ézes. g . T
Y P 9 9 séeady state raté is then related td-, by the expression

This suggests that an exact theory would not be characterize
by the type of smoothly varying size distributions and free aBsiNg

energy functions used in our current simple theories. Thus, J= F—l (A5)
although imposing limiting consistency on a distribution may ] ] .

favorably improve the predicted nucleation rates, this should\n added benefit of this approach is that the steady state
not be interpreted as evidence for a fundamental improve€luster distributiomg is also easily found fronf without

e

ment in the theory. any additional computational work:
Because limiting consistency emerges quasi naturally in N;s;Fg
the Kelvin model, it is tempting to think that the quantitative ng=S—F1- (AB)
9

similarity of the Kelvin and SCC models provides some fun-
damental support for the concept. To dispel this view, we  The kinetic version oR; is obtained by replacing the
need only to recall that all of the “improvement” in this case ratio, Ng_;/Ng, with the value found by applying the de-
stems from the relatively close agreement of the SCC anthiled balance condition, E¢12),

Kelvin dimer evaporation rates. Given the questionable ap- E

plicability of the Kelvin equation to dimers and other small Ry= 9 (A7)
clusters, we see that it is erroneous to regard the SCC theory afSq
as fundamentally improved. Despite this last objection, thewith this expression foR; we see that Eq(A1) is just an
SCC and Kelvin approaches do appear to provide the besixpanded version of théinverted kinetic expression of
predicted temperature dependence of the nucleation rate f@ecker and Ddng*® and Katz and Spaepéh Eq. (14). To
the simpler capillarity-based nucleation theoridéeverthe-  obtain the Kelvin solution, just use E¢18) for Eg. This
less, the predicted temperature dependence is still far fromives

satisfactory, and quantitative improvement in the magnitudes

. . S, -1 1 K
of the predicted rates is not always fouhd. Rgzgs_ S exp< ng) (A8)
9
This recursive procedure for evaluating the rate thus avoids
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