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PHYSICAL REVIEW 8 VOLUME 39, NUMBER 13 1 MAY 1989

Long-range hopping in substitutionally disordered solids

P. E. Parris
Department of Physics, Uniuersity ofMissouri R-olla, Rolla, Missouri 6540I

(Received 24 October 1988; revised manuscript received 20 December 1988)

A theoretical approach for studying charge-carrier and energy di6'usion due to long-range hop-
ping in substitutionally disordered solids is presented. Unlike some earlier theories, which invoke a
pair approximation to treat back-transfer processes, the current theory makes use of the exact solu-
tion to an appropriate single-defect problem —one in which long-range jumps into, out of, and be-
tween both the defect site and all other active sites in the lattice are explicitly included. From this
exact solution a new long-range e6'ective-medium theory is constructed to describe the
configurationally averaged transport properties of the disordered system.

I. INTRODUCTION

The purpose of this paper is to discuss a new and con-
ceptually simple approach to the problem of long-range,
diffusive transport in substitutionally disordered con-
densed phases. It is intended to apply to those cir-
cumstances where the transport process takes place as a
result of variable-range hopping among a set of active
sites distributed randomly in some fixed concentration
over a regular lattice. This is not a new subject. Indeed,
both this problem and a related one, wherein the active
sites are distributed randomly in a continuum, have been
the subject of considerable interest. ' Consequently, a
diverse array of theoretical approaches have been ad-
vanced which make use of most of the normal elements of
standard transport theory: master equations, diagramat-
ic expansions, continuous-time random walks, coherent-
potential-approximations, Pade approximants, effective-
medium theories, cumulant expansions, etc. Existing ap-
proaches have met with reasonable success in some
parameter regimes, notably the short-time low-
concentration limit. ' ' ' Nonetheless, the complicated
nature of many of the existing approaches, the essential
similarity of many of the approximations involved, and
the relative dearth of exact results for the long-range
problem all suggest that there may still be room for alter-
native approaches, particularly when they can provide in-
sight into situations where earlier theories have proven
inadequate or inappropriate.

The treatment presented here is very similar in spirit to
the kind of self-consistent approaches that have been
used to study transport in systems with finite (e.g. ,
nearest-neighbor) interactions. ' Such treatments,
often referred to as "effective-medium" or "coherent-
potential" theories are based upon the idea of finding a
translationally invariant effective medium, one for which
the perturbation due to embedded "defects" self-
consistently vanishes when averaged over a probability
distribution associated with the defect configuration. The
success of such approaches for short-ranged systems
arises from the fact that it is a relatively simple exercise
to solve (exactly) the problem of a short-range defect em-
bedded in a short-range effective medium. When all ac-

tive sites in the lattice are connected by long-ranged tran-
sistion rates, then both the averaged effective medium
and the defect which one wants to embed become long
range as well. As a result, the single-defect problem be-
comes considerably more complicated, and the construc-
tion of a useful effective medium less straightforward.
Additional approximation procedures usually become
necessary, and it is these which have basically dis-
tinguished the different efFective-medium theories that
have been implemented thus far. ' ' '

The most notable shortcoming associated with existing
treatments of the long-range problem is the way in which
back transfer to an initially occupied site is treated. As
observed earlier, some sort of pair approximation is usu-
ally invoked: Back transfer to and from one other active
site in the lattice is first treated more or less exactly, and
then the relative position of the two sites is subsequently
averaged over. Transfer between other sites in the medi-
um are either neglected or treated in a similar low-order
approximation. %'hile this procedure leads to a reason-
able description at short times and low concentrations, it
becomes increasingly problematic at long times when
back-transfer processes dominate the diffusion.

It is precisely the Inanner in which back transfer is
treated that the current approach differs from earlier
treatments. In particular, the present theory has as its
foundation an exact solution to a particular single-defect
problem in which long-range jumps between all other
active sites in the effective medium are treated exactly.
As a result, new expressions are obtained for the
frequency-dependent diffusion constant, the memory ker-
nels that describe transport in the disordered medium,
and other characteristic features of the transport process.
These expressions recover the essential features of earlier
theories over comparable parameter regimes and, due to
the more detailed treatment of back transfer used in the
present approach, offer the possibility of providing in-
creased accuracy in the long-time, high-concentration
limit as well.

The paper is laid out as follows. In Sec. II we intro-
duce the basic master equation describing long-range
diffusive transport in a disordered solid. The average
solutions to this equation are then discussed, and a for-
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mal equation is introduced for the purpose of analyzing
the behavior of a single active site embedded in a partial-
ly averaged effective medium. This equation is solved ex-
actly and used to obtain a self-consistent condition
obeyed by quantities chosen to characterize the effective
medium. In Sec. III-the self-consistent condition is ana-
lyzed in detail and related to expressions and approxi-
mate procedures that have, in appropriate limits, been
implemented in previous theories. In Sec. IV expressions
for the frequency-dependent diffusion coefficient arising
from the theory are analyzed in detail for several impor-
tant physical cases. The theory is then explicitly imple-
mented in a study of the zero-frequency diffusion con-
stant for systems in which the hopping rate falls off ex-
ponentially with distance. In the limit in which the hop-
ping rates fall off over distances which are very small
compared to a lattice spacing, the functional dependence
of the diffusion constant on the concentration of active
sites is shown to approach a limiting curve resembling
that associated with nearest-neighbor site percolation.
The last section contains a summary.

II. FORMUALTION OF THE EFFECTIVE MEDIUM

ity of Eq. (I) ensures that the ensemble-averted probabili-
ties obey a translationally invariant generalized master
equation ' ' (GME) of the form

dI'„ = f dr'+[M„(t r'—)P (t')
dt 0

M— „(r —r')P„(r')] .

It is to be emphasized that the memory functions M„(t)
appearing in Eq. (3) completely determine the nature of
transport in the configurationally averaged system.
Indeed, along with the averaged Green's functions G„(t)
they serve to defi'ne the effective-medium that we seek.
The Green's functions or propagators G„(t) are the solu-
tions to Eq. (3) corresponding to localized initial condi-
tions. Specifically, the quantity G„(t)=G„(t)is the
averaged probability of finding the particle at site n at
time t if it was initially at site I at t =0. Introducing La-
place transforms over time with Laplace ("frequency")
variable E, and denoting the Laplace transform of G„(t)
by g„(E), we obtain from Eq. (3) the following equations
obeyed by the Green's functions:

The dynamical behavior of a particle executing random
hops among the fractionally' occupied active sites of a d-
dimensional hypercubic lattice can be described by the
master equation

Eg„(E)—5„=—I (E)g„(E)

++M„(E)g (e) . (4)

dpn =g W„p (t) W~„p„(t)—
dt

for the probability p„(t) of finding the transport particle
at the nth site of the lattice at time t. Here
n = (n i, n 2, . . . , nd ) is a lattice vector, and W„ is the
jump rate from the mth to the nth site. We assume that
8 „can be factored into three parts

8'„~=c„bmw„

The first two depend only on the sites to and from which
the particle hops, respectively, and the third part is a
function only of the displacement of the jump. In most
treatments this displacement-dependent factor w„=w (n)
is taken to be either of exponential,
-exp( —p~m —n~) or of multipolar w„—~n

—m~

form but is, at any rate, assumed to fall off with sufficient
rapidity at large separations so that its second "moment"
g=g„n w„exists. For convenience we assume that the
w„are normalized to unity so that g„w„=l. We also
define wo =0. The site-dependent parts c„and b are
random variables that are zero if the relevant site is inac-
tive. Inactive sites occur with probability q = 1 —p. Ac-
tive sites occur in fractional concentration p, and for
these sites c„and b can be drawn from distributions
cr(c) and 0(b) that reflect the difficulty of leaving or
entering a given active site.

To proceed, we consider the configurationally averaged
system described by the averaged probabilities P„(t)
= (p„(t)), in which angular brackets are used to denote
averages over the ensemble of allowed configurations. As
demonstrated explicitly by Klafter and Silbey, the linear-

In Eq. (4), M„(E) is the Laplace transform of M„(t), and
the quantity I (E)=—g M (8) is the frequency-
dependent "exit rate" out of active sites in the effective
medium.

To calculate the memory functions we now proceed
essentially as in effective-medium solutions to the short-
range problem. ' That is, we first imagine "embed-
ding" some particular active site in the effective medium
described by Eqs. (3) and (4). Translational invariance of
the effective medium allows us to take the position of this
active site to be the origin. We therefore seek equations
which govern the evolution of the partially averaged sys-
tem in the presence of this particular active site. We ob-
serve that for any particular realization of the disordered
medium, a transport particle at a given active site is sen-
sitive to its environment only through the total rate at
which it can leave that particular site. In other words,
one can characterize any active site in the real disordered
system by the total rate with which hops away from that
site occur. For some particular active site at the origin
this exit rate, which we will denote by y, can be written
as the sum of the rates for hopping to all the other active
sites in its environment, i.e.,

y =g W„o =+cob„w„.

It is the quantity y, therefore, which we seek to
preserve in our equations of motion. Thus, introducing
Lapace-transformed probabilities P„(E),we introduce the
following equation describing the evolution of the active
site plus effective medium:
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where

+r(.)a(.)p, (.)5„,
—b,(s)M„(c,)Po(E),

~(.) =[r(.) —y]n'(. ) .

sP „(s)—P„(0)= —I (s)P„(s)+gM„(E)P (s)

(6)

Equation (10) is an exact consequence of Eq. (6). Now us-
ing the GME [Eq. (4)] obeyed by the Green's functions,
the sum appearing in Eq. (10) can be written

yg„M =[(E+r)g„—5„,] .

By writing equation Eq. (10) for the case n=0, and using
the corresponding result from Eq. (11), a closed equation
for Po results, namely,

Except for the last two terms, Eq. (6) is simply the La-
place transform of the GME appearing in Eq. (3}. The
last two terms in Eq. (6) arise from the fact that we have
specified the origin as an active site from which particles
jump with exit rate y (and not r) to all other sites in the
effective medium. The second-to-last term describes the
way in which probability transfer away from the origin
changes and arises only when n=0. The last term de-
scribes the way in which probability transfer from the
origin to the nth site changes due to the fact that the to-
tal rate from the origin occurs with rate y. It should be
noted that the particular balance we have chosen between
forward and backward jumps, while not a unique choice,
is largely determined by the requirement to conserve the
total probability of finding the particle somewhere in the
system. At any rate, these last two terms modify the
jump rate from the origin to every other site, making the
origin a local defect in the otherwise translationally in-
variant effective lattice.

Equation (6) is intended to represent the set of equa-
tions obeyed by a partially averaged effective medium
containing an active site with exit rate y. As such, it
defines the single-defect problem which we wish to use in
constructing an effective-medium theory. That is, a final
average (over y) of the solutions to Eq. (6) should be ex-
pected to self-consistently reproduce the actual solutions
for the effective medium. Of course, as in short-range
theories, in order to carry this program through we need
to solve the coupled set of equations represented by Eq.
(6) in terms of the formal solutions to the effective medi-
um. Fortunately, as shown by Kenkre and Mong in a
different context, this can be done exactly by using a vari-
ation of a technique due to Montroll. "The first step is
to formally represent the solution to Eq. (6) in terms of
the Green's functions for the effective medium. This
leads to the Dyson equations

P„(s)=g„(s)—gg„(s)V, (E}P,(E)
m, s

in which we have assumed that the particle is placed ini-
tially at the active site at the origin, so that P„(0)=5„o.
The relevant perturbation terms can be identified from
the last two terms on the right-hand side of Eq. (6).

Po =go+go(r —y)Po
—[(I —y)/r][(8+I )go —1]Po . (12)

This is readily solved to give

goI
y+(r —y)ego

(13)

Equation (13) can be substituted back into, e.g. , Eq (10).
to obtain the remaining probabilities. It is worth em-
phasizing again that Eq. (13) is the exact solution to the
problem of a long-range defect embedded in a long-range
system, and includes back transfer processes between all
sites. The random variable in the solution is y, which is
governed by a distribution p(y) that depends upon the
entire set of random variables [co,b I [see Eq. (2)].
Self-consistency is now achieved by requiring that the
average of Po over the distribution p(y ) coincide with the
dynamical solution of the effective medium for the same
initial conditions, i.e., we set

(P, &=g, . (14)

The resulting effective medium is then characterized by
Eq. (3), in which the detailed structure of the memory
functions have yet to be examined, and the quantity I"(E)
is determined upon applying the self-consistency condi-
tion to Eq. (13). That is, the self-consistent value of I (E)
is the one which satisfies the equation

(
r(E) —y

y+ [r(.) —y].g,(.)
=0. (15)

[From this point onward, angular brackets will denote
averages over the exit rate distribution function p(y). ]
To close Eq. (15) we can combine it with the usual spec-
tral representation for the self-propagator go as an in-

tegral over the Brillouin zone of the reciprocal lattice,
i.e.,

V, (s)=5, ob, (c,)[r(c,)5 o
—M (E)] .

go(e) =(2m ) Idkg "(s)

=(2~)-"Idk[E+r(s) —M"(E)]-' (16)
Substitution of Eq. (9) into Eq. (8} yields a more explicit
relation

P„(s)=g„(s)+g„(e)&(E)r(s}Po(E)

in which M" and g" denote the discrete Fourier trans-
forms of M„and g„, respectively. For example,

—gh(E)g„(c, )Mm(E)Po(s) . (10) M"(s)=+M„(E)exp( —ik n) . (17)
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III. SOLUTIONS TO THE SELF-CONSISTENT
CONDITION

A. The frequency-dependent exit rate I

is the sum of N independently distributed random vari-
ables (X being the number of sites in the lattice), the dis-
tribution p(y ) will be the X-fold convolution of the corre-
sponding single-variable distribution functions, and the
Laplace transform of p(y ) will be the product of their La-
place transforms. Thus,

P(w) = Q[(1—p)+p exp( —co„r)], (19)

in which we have introduced the pure-crystal jump rates

co~ —AM~ (20)

The factors in the product appearing in Eq. (19) are
just the Laplace transforms of the distributions

p( W„)=p5(8'„—co„)+(1—p)5( W„)

Equation (15) has a very simple form similar to the
self-consistent condition obtained in the short-range
problem. ' This simplicity does not come without a
price. In particular, much of the complex structure of
the theory is hidden in the fact that the multisite distribu-
tion function p(y) over which averages must be per-
formed is considerably more complex than the single-site
distribution functions which appear in other theories. By
definition, the quantity p(y)dy represents the probability
for the total hopping rate out of a randomly chosen ac-
tive site to lie between y and y+dy. Naturally, this to-
tal rate depends upon the positions of all the other active
sites in the disordered medium as well as on the distribu-
tions o (c) and cr(b) For co. nvenience in what follows, we
will focus on the situation where the functions c„and b„
reAect no energetic site disorder aside from the random
occupation of the lattice sites. Specifically, we will as-
sume that the variables b„are dimensionless and have
density o(b)=p5(. b —1)+(1 p)5(b)—, and that the vari-
ables c„(which have units of frequency) are distributed
according to the density o(c)=p5(c —A)+(1 —p)5(c),
where A represents the exit rate for leaving a site in the
pure crystal (p =1). For the active site at the origin we
take co=A, so that y=+„Ab„w„.

With this simplification, the first point worth noting is
that g(r), the Laplace transform of the distribution func-
tion p(y), is a well-known quantity in the literature asso-
ciated with dispersive transport. ' Letting ~ denote
the Laplace variable conjugate to y, we have

g(~)= J e ~'p(y)dy=(e ~') . (18)
0

Thus, P(r) gives the configurationally averaged probabili-
ty that a particle has not left by time ~ the active site on
which it was placed at ~=0. Since

y=+Ab„w„=+&„

where we have introduced the quantity a=(1
—ego)/(ego). We now rewrite the left-hand side of Eq.
(21) using the integral identity

(I —y)/(I +ay)= J dr(I —y)exp[ —(I +ay)r] .
0

(22)

With Eq. (22) substituted into Eq. (21) the averages can
be expressed in terms of the function i)'jlr) defined in Eq.
(18). The self-consistent condition then takes the form

exp( —I r) [ I P(ar)+d [g(ar)]/d(ar) ]dr=0 .
0

(23)

Equation (23) is now in the form of a Laplace transform.
By using the usual theorems regarding the Laplace trans-
form of a derivative it reduces (after some slight manipu-
lation) to a much simpler expression, namely,

u+(u)=ego(e),
where

u =I (e)/a(e) .

(24)

(25)

In Eq. (24) the function %(e) is the Laplace transform
of g(r). Equation (24) is completely equivalent to the
self-consistent condition (15). Nonetheless, expressed in
this way it seems somewhat surprising since it appears to
equate the decay of probability without back transfer (as
represented by 4) to the corresponding decay with back
transfer (as represented by go). However, because of the
argument u on the left-hand side, Eq. (24) has a simple
(and quite reasonable) physical interpretation. To see
this, we rewrite 4'(c) as

%(e)= [e+X(c,)] (26)

where X(e) is the Laplace transform of a kernel which
describes irreversible decay from an initially occupied
active site. We can write a similar expression for go(e),
namely,

g, (e)=[e+r(e)—r, (e)]-', (27)

where I (e) and I z(e) correspond to the gain and loss
terms in the GME. Equation (27) is exact provided we
identify

is worth noting that the function f(~) or its Laplace
transform appear at some point in most treatments of the
long-range transport problem. Often, however, it appears
as an approximation to the diagonal element of the
Green's function go (see, e.g. , the discussion in Sec. IV B).
While this is an adequate approximation at short times
(before any back transfer occurs) it becomes progressively
worse at long times when the effects of back transfer
dominate the decay of gz. In fact, as we shall now show,
the self-consistency condition (15) implies a more funda-
mental relationship between Go(t) and g(t), one which is
most easily expressed in terms of the Laplace transforms
go(c. ) and %(e). To see this we first reexpress Eq. (15) as

(21)

which follow from the distributions for the b„. Equation
(19) has been obtained by other means previously. 3 It rii(e) =QM„(e)g„(e)/go(e) . (28)
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With these we can reexpress the variable u appearing
in Eq. (24) in the form

The left-hand side of (33) is the Laplace transform of the
time derivative of g(t). Using Eq. (19) we find

In Eq. (29) we have used the definition of

pco„exp( co„—t)itj( t)
dt „[q+p exp( co—„t)]

(34)

a = [1 Ego(e )]/ego(E
Multiplying Eq. (34) by exp( —ut) and integrating, we ob-
tain

along with Eq. (27). Replacing r. with u [as given by Eq.
(29)] in Eq. (26) and substituting the result into the self-
consistent relation expressed by Eq. (24) we obtain a sim-
ple expression relating X and I, namely,

u %(u) —1=—+co„P„(u),

where

(35)

I (E)=X(u) . (30)

4(e) = [a,+1 (e)] (31)

Thus, this simple approximation to the self-consistent
condition expressed by Eqs. (15) and (24) is equivalent to
insisting that the kernel describing loss of excitation from
an active site be given by a single function, independent
of the form of the back-transfer kernel I z. This approxi-
mate form also allows us to obtain from Eq. (31) an expli-
cit (but approximate) expression for I (E), namely,

I (e) =X(r. ) = [1—E'I'(E)]/'P(s) . (32)

Equation (32) may be used with the exact expression for
P(t) given in Eq. (19) to investigate the frequency-
dependent jumping rate I (c, ). The error in this approxi-
mation will be most noticeable for small but nonzero c, ,
where it can be shown that u /e~1 go(0), instead of ap-
proaching unity. Nonetheless, it is also possible to show
that the full self-consistent condition and the approxi-
mate one embodied by Eq. (32) lead to the same zero-
frequency limit for dynamical quantities such as the
diffusion constant. Thus both the very-short and very-
long-time limits of the self-consistent theory are correctly
treated by this approximation.

B. The memory kernels M

We now use the expressions for I (E) developed in the
last section to obtain useful expressions for the memory
kernels. We start by using Eq. (26) [which defines X(e)]
at argument u, along with Eq. (30) (which is just another
expression of the self-consistent condition) to obtain

u%(u) —1=—I (E)%(u) . (33)

One intuitively expects the kernels describing transfer
away from an initially occupied site with and without
back transfer to be closely related. Equation (30) suggests
that they are essentially identical except for a (self-
consistent) scaling of the arguments. Of course, for large
E (corresponding to very short times before back transfer
is important), I ~ can be neglected. In this limit Eq. (29)
shows that u is essentially equal to c. Moreover in the
opposite limit in which c, goes to zero, a diverges, and so
u goes to zero linearly in c. as well. Thus, u and c behave
very similarly, suggesting that at least for the purposes of
calculating I ( E ), we can, to reasonable approximation,
replace u and c. in the argument of X. This gives
I (E)=X(E), which allows Eq. (26) to be written

p exp[ —(u + c„o)t] ti(tt)
P„(u)= dt

o q +p exp( co„t )— (36)

Upon comparison of Eq. (35) and Eq. (33) we obtain
the following expression for I (E):

I (E)=+M„(s)=+co„P„(u)/V(u) . (37)

A sum over lattice sites is contained in the right-hand
side of both equalities in Eq. (37). Equating correspond-
ing terms in each sum we obtain the desired result for the
memory functions

M„(E)=co„P„(u)/%(u) . (38)

In addition, the functions P„(u) can be expressed explicit-
ly in terms of the concentration and the Laplace trans-
form of g(t). Expanding the denominator of Eq. (36) in a
geometric series and performing the integration we ob-
tain

P„(u)= —g (
—p/q)J+(u +j co„),

j=1
so that

(39)

M„(E)= —g ( —p/q)~+(u +j co„)co„/'l(u),
j=1

(40)

IV. DIFFUSION IN THE EFFECTIVE MEDIUM

Transport in a disordered medium can be character-
ized by the behavior of the average mean-squared dis-

which is a functional of %(E) over an extended range of
its argument. We should point out that Eqs. (38)—(40)
completely close the self-consistent equations we have de-
rived and provide an implicit iterative scheme for deter-
mining the dynamical properties of the effective medium.
For example, since 4(s) is known exactly through a La-
place transformation of Eq. (19), one can use it with the
initial guess u =E in Eqs. (38)—(40) to calculate an initial
approximation to the memory functions, which may be
then used to determine go(e) and I (e). These can be
used to evaluate a new approximation to u from Eq. (24),
and the whole process repeated until it converges. In the
present paper we do not explicitly follow this procedure
except in the limit c.=u =0, for which no iteration is
necessary. In addition, we derive in the next section
some analytical results which follow from the theory in
important limits.
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placement

(r'(r) ) =gn'&„(r)

of the transport particle as a function of time (note that
all distances are measured in units of the lattice con-
stant). Equivalently, one can focus on the time- or
frequency-dependent diffusion coefficients,

(41)

which can be summed exactly to give

M„(E)=pro„[1—(1—p)co„E '] .

This gives for the different coeKcient

D(E)=(2d) '[pAg+p(1 —p)A (2E ']+O(1/E )

=pDo(1 —qA/2/gE)

in which

g=gn w„, (2=+n w„, and Do=(2d) 'Ag

(47)

(48)

D(E)=I dtee "D (r),
0

(42)

(r (r) ) =gn G„(t)= —
I Vi,G"Iq=o, (43)

where V& denotes the Laplacian operator in reciprocal
space and G (r) is implicitly defined in terms of its La-
place transform in Eq. (16). A straightforward calcula-
tion based upon Eqs. (41)—(43) and Eqs. (16) and (17)
shows that

respectively. These latter quantities are defined so that if
transport is ultimately diffusive, i.e., if asymptotically the
mean-square displacement grows linearly with time, then
the linear growth will be characterized either by the
infinite-time limit of D (t) or the zero-frequency limit of
D(c.).

We now obtain expressions for these quantities from
the theory developed in Secs. II and III. We first observe
that in the translationally invariant effective medium the
diffusion coeKcients are readily obtained in terms of the
memory functions. For a particle initially localized at
the origin

is the pure-crystal diffusion constant. We see that the
very-short-time limit is characterized by a diffusion con-
stant which is reduced from the pure-crystal value by a
factor corresponding to the concentration of active sites.
Note that the validity of this result is not limited to small
concentrations, since we have summed all powers of p to
obtain Eq. (47). Indeed, in Eq. (48) the frequency depen-
dence of D(E) vanishes in the pure-crystal limit (p =1),
to give the exact pure-crystal result, valid for all times.

B. I,om concentrations

Equation (48) is expected to hold out to times on the
order of I/pA. For times longer than this, but still small
compared to the asymptotic limit, additional approxima-
tions become necessary. In particular, it is convenient to
consider low concentrations at short to intermediate
times. It has been observed in earlier work that the low-
concentration and short-time limits are in a certain sense
complementary. ' ' Using the first term of Eq. (39) in
Eq. (45) we find for p '(( 1

D(E)=(2d) 'gn M„(e) . (44)
D(E, )=(p/2d)gn co„[%(u +co„)/%(u)] .

Thus, from Eqs. (38) and (44) we obtain

D(e) =(2d) 'gn co„P„(u)/'Plu) . (45)

Along with Eq. (36), this provides a direct relationship
between the diff'usion constant D(E) and the function
%(E). We now consider various limiting cases.

As in much of the earlier work, it is now convenient to
use the assumed low concentration of active sites to re-
place the lattice sum in Eq. (49) with an integral over a
dimensionless position variable r. In this continuum ap-
proximation, Eq. (49) becomes

D(E)=(p/2d) jdr r co,%'(u + c)o/%(u) . (50)

Using Eq. (26), we can now rewrite the factor involving
the function 4 in the form

A. Short-time limit

To examine the dynamical behavior at very short times
we can expand %(u) for large c,. As we mentioned ear-
lier, when c is large, the quantity u is very nearly equal to
s and in this limit Eq. (19) gives

4(u+co, )/0'(u) = u+X(u)

or equivalently

0'(u+ co, )/%(u) = 1

(51)

(52)

%(c,)=s ' —(y)E +(y )e +O(E ) . (46)
in which

Substituting this result into Eq. (39) and (40) and retain-
ing terms to order c we obtain

x(1+&y)E-')

A, = [u +X(u +co, ) ]/[u +X(u )] .

Insofar as we are interested in short times, and therefore
large values of u, we can replace X by the lowest term in
a large-u expansion, namely X(u) —(y ). This is indepen-
dent of u. Hence, to leading order, X(u) =X(u +co, ) and
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C. Long-time limit

The very-long-time behavior of the system is deter-
mined by the low-frequency properties of the expressions
we have developed. In particular the zero-frequency lim-
it of Eq. (45) yields the following expression for the
diffusion constant:

D = gn co„g„(0)l+(0) . (54)

Note that Eq. (54) is an exact solution to the full self-
consistent condition, and does not depend upon our ear-
lier approximation c, =u. We can reexpress Eq. (54) by
introducing the function

k= l. Making this substitution in Eqs. (50) and (52) and
employing our earlier approximation u =c, which is very
good at short times (large u), we obtain the expression

D(c)=(p/2d) Jdrr co(r)[1+co(r)%(c)] ' . (53)

This is very similar in form to results that have been
obtained previously in this limit by different methods. ' '

Indeed, over the parameter regime for which it is expect-
ed to be valid Eq. (53) is in essential agreement with the
earlier results. For example, an analysis of Eq. (53) along
the same lines as that presented by Blumen, Klafter, and
Silbey in Ref. 8 reveals the same functional dependence
on the basic transport parameters as earlier treat-
ments. ' ' ' This includes, among other things, the
correct scaling behavior of the diffusion constant for mul-
tipole transfer rates found by Haan and Zwanzig. ' The
corresponding analysis is of sufficient similarity to that
given by Blumen et al. , that we refer the interested
reader to Ref. 8 for details. We now turn to a study of
the long-time, high-concentration limits in which theories
based upon a pair approximation or low-density expan-
sion are expected to break down.

different from any other, since all sites would be "in con-
tact" with a large number of others. Thus in this limit,
the diffusion constant would be close to that associated
with the average environment, so that D =pao, where Do
is the diffusion constant in the pure lattice. As the ex-
ponential fall off of the rates becomes stronger, the ex-
istence or absence of nearest neighbors becomes increas-
ingly important. In the limit in which the next-nearest-
neighbor hopping rate m2 becomes small compared to the
nearest-neighbor rate to, (i.e., for very large p) there
should be a very strong drop off of the diffusion constant
at the concentration for which a path of nearest-active-
neighbor sites fails to span the solid. That is to say, one
might expect the curves to approach or at least resemble
that associated with a site-percolating lattice. Of course
for any value of the constant p which is not infinite, one
expects there to be a finite (but exponentially small) value
of the diffusion constant for all concentrations below the
nearest-neighbor percolation threshold. Indeed, accord-
ing to the arguments given by Ambegaokar, Halperin,
and Langer, ' the actual value at lower concentrations
should scale with the hopping rate for the closest lattice
neighbor for which a percolating path spans the lattice.
The ability to display such a wide variation in behavior
represents, therefore, a rather strong test of any long-
ranged theory.

Given the simple, single-defect character of the theory
that we have developed, the features discussed above are
surprisingly well reproduced in the curves which appear
in Figs. 1 and 2. In both of these curves we have evalu-
ated Eq. (56) for three different values of p= 1, 5, and 8;
and for concentrations p between 10 and 1. In Fig. 1

we also include a curve for the case p, = 14, corresponding
to a very strong fall off of the exponential hopping rates,
along with representative numerical data (the solid trian-

exp( zt )f( t)—
o q +p exp( zt)— (55)

1.0

Comparison with Eq. (36) then shows that %'(0)=f (0) so
that Eq. (54) can be written

0.8

D =pgn ro„f(co„)lf(0) . (56)
DjD0

0.6

The function g(t) can be calculated to any desired degree
of accuracy through Eq. (19); hence, so can the function
f (z) by numerical integration. Thus Eq. (56) provides an
explicit means for calculating the diffusion constant for
particular systems and is one of the main results of this
paper.

To test the ability of the theory we have developed to
correctly treat the long-time limit we have used Eq. (56)
to evaluate the diffusion constant for a system which has
we11-defined limiting cases. Specifically, we considered a
three-dimensional cubic lattice with hopping rates of ex-
perimental form, w „=A exp( —p ~

n
~ ), for values of the

concentration ranging from the filled lattice p =1, down
to p=10 . One would expect that for a small enough
value of the exponential constant p, the environment seen
by any given active site would not be substantially

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

fractional concentration p

1.0

FIG. 1. Normalized diffusion constant vs the fractional con-
centration of active sites for a three-dimensional lattice with ex-
ponential hopping rates w„=A exp( —pn). The four curves
correspond to values of the exponent p= 1, 5, 8, and 14, respec-
tively, with larger values of p, lying closer to the axis. The solid
triangles indicate the diffusion constant for a site percolating
lattice with nearest-neighbor hopping rates (see text).
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0
l0

D/D 0

-6
l0

0.0 l 0.1

fractional concentration p

FIG. 2. Normalized diffusion constant vs the fractional con-
centration of active sites for a three-dimensional lattice with ex-

ponential hopping rates m„= A exp( —pn). The three curves

correspond to values of the exponent @=1, 5, 8, respectively,
with larger values of p falling oA'more rapidly at low concentra-
tions.

gles) for the site-percolation problem taken from the
work of Kirkpatrick. All curves have been normalized
to the value of the diffusion constant for the filled lattice
to facilitate comparison. Note that for p=1, 5, 8, and 14,
the ratio of the next-nearest-neighbor hopping rate to the
nearest-neighbor hopping rate is w2/w, =exp[ —(2'
—1)p]=0.66, 0.12, 0.036, and 0.003, respectively. In
Fig. 1 we plot the diffusion constant on a linear scale.
Figure 2 is plotted logarithmically. In each case the
squares indicate the actual concentrations where calcula-
tions were performed, and the curves are straight lines
connecting the points to provide visual guides. Each
point calculated required a numerical evaluation of the
function f (z} for a whole range of z values as in Eq. (56).

Note that for the smallest exponent, p= 1, the curves
in Figs. 1 and 2 are very close to the line D/Do=p, in

keeping with our previous expectations. In contrast, ihe
curves with stronger exponential decay of the hopping
rate show dramatic decreases at a point somewhat below
the nearest-neighbor site-percolation threshold, p, =0.31.
For values of p in the range considered, the curves tend
to be greater than the actual nearest-neighbor percolation
curve: This is as one would expect based upon their
greater connectivity to the rest of the lattice. Also Fig. 2
clearly shows that the "transition" which seems to ap-
pear in the linear curves is not absolute; the diffusion con-
stant actually remains nonzero for all nonzero concentra-
tions, although it does take on very small values. Thus
the efFective-medium theory presented above seems to
provide a quantitatively reasonable description of the
long-time limit, at least for exporiential hopping with ex-
ponents in the range p(14. Indeed, the curve corre-
sponding to @=14 actually does a reasonable job of
reproducing the critical curvature of the percolation
data, although it shows significant deviations at higher
concentrations. Apparently this deviation corresponds to

a breakdown of the theory rather than an actual influence
arising from the increasing number of non-nearest-
neighbor at higher concentrations (see the discussion at
the end of Sec. IV D, where the slope of the curve in the
high-concentration limit is calculated explicitly). This
breakdown manifests itself for values of p & 14 in values
of D which fall appreciably below the percolation curve
(which we would expect to represent a lower bound for
the long-ranged system). Of course, a value of p equal to
14 corresponds to a hopping rate which falls off over dis-
tances comparable to —,', of the lattice spacing. Insofar as
exponential hopping rates are associated with the overlap
of electronic wave functions this is probably well below
the range required for any real physical application.
Moreover, for hopping rates which fall off more rapidly
than this a nearest-neighbor model is probably more ap-
propriate (and more tractable). Thus we feel, in view of
the relatively low order of the effective-medium theory
that we have developed, the results are quite satisfactory
and suggest that the theory performs well in the limit for
which it was designed, namely the case where the hop-
ping rates have an extended range.

For the three-dimensional lattice that we have con-
sidered, the diffusion constant never vanishes except at
zero active-site concentration. In the long-range problem
the vanishing of the diffusion constant is a signature of
anomalous diffusion, that is, a mean-square displacement
r (t) -r' which grows with time, but with a power v that
is less than 1. From the form of Eq. (56) we see that a
vanishing of the diffusion constant for a finite concentra-
tion of active sites requires the divergence of f (0), or
equivalently, the divergerice of the relaxation function at
zero frequency, %'(0). [Note the factors in the numerator
of Eq. (56) are all finite since they are evaluated at finite
frequencies. ] This has a simple physical interpretation.
Recall that by definition %(E) is the Laplace transform of
g(t) and so [cf. Eq. (18}]

+(0)= f dt ( exp( y t ) ) = ( I/y —) . (57)
0

Thus, as observed earlier, the diffusion coefficient is
inversely proportional to the mean waiting time between
jumps. For exponentially decaying hopping rates this
quantity does not diverge in two and three dimensions.
In one dimension it is possible for the average waiting
time to diverge at low concentrations and thus give rise
to anomalous diffusion. ' Identical arguments can be
given which predict the existence of this type of transport
threshold in d-dimensions whenever the hopping rates
fall off more rapidly than exp( pn"). This coul—d be im-
portant in low-dimensional systems since recent theoreti-
cal work suggests that in some strongly dissipative sys-
tems the hopping rate can fall off as exp( —A,R ).

D. High concentrations

Finally we consider the limit of a small number of inac-
tive sites. For a nearly pure material the concentration of
active sites will be close to one, and we can expand in
powers of the concentration q of inactive sites. Perform-
ing a Taylor series expansion of Eq. (19) about q =0 and
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taking Laplace transforms we obtain

4(u) =Co(u) 1+qgco„%o(u —co„) +O(q ), (58)

neighbors (n= 1). We then find Do =co„A=2dco, , and
D, =(2d —1) 'Do.

where 0'0(s)=(E+A) ' is the relaxation function for a
pure lattice with q =0. Substituting this into Eq. (33) we
And

r(E)=/co„[1—q'Po(u —co„)/'Po(u)] . (59)

Then using the definition of I (e) as the sum over the
memory functions we obtain

M„(s)=co„[1—q+0(u —co„)/0'0(u)]

which gives for the diffusion coefficient

D(E) =(2d) 'gn co„[1—q%o(u —co„)+(u)] .

(60)

(61)

This reduces at zero frequency to

D (0)=Do qD, , — (62)

where Do =Ag and

D, =(2d) 'gn to„[A(A —co„) '] . (63)

Considering our earlier example of exponential hop-
ping rates in which co„=Aexp( —pn), we note that for
small p, the quantity A —co„=A, because A is then the
sum over many rates very close to A. Thus, in this limit
D, =Do. From Eq. (62) we then obtain D(0)=pDO as
discussed earlier. In the opposite limit in which p is very
large we can approximately neglect all but the nearest

V. SUMMARY

We have developed a simple effective-medium theory
for treating long-range transport processes in substitu-
tionally disordered condensed phases. The theory is
based upon the exact solution to the problem of a single-
defect embedded in a partially averaged environment and
involves a more complete description of back-transfer
processes than is obtained within the pair approximation
usually employed. We have explored different limits of
the theory and found that it reproduces essential details
of the low-concentration, short-time results obtained pre-
viously. It also yields exact results in the high-
concentration limit, p=1. To test the usefulness of the
theory for describing other features of the long-time,
high-concentration behavior, we have employed it to
study diffusion on a three-dimensional lattice with ex-
ponential hopping rates for active-site concentrations
greater then 10 . %'e find that the theory produces
reasonable results over physical regimes of interest, but
breaks down when the hopping rates fall off over dis-
tances much smaller than the lattice spacing. It is possi-
ble that a multidefect effective-medium theory of the
present type would improve the theory in this regime.
Nonetheless, for exponents which are large, but not too
large, the results realistically predict a quasitransition
near the concentration at which a nearest-neighbor path
of active sites fails to span the lattice. The theory also
predicts anomalous diffusion below a critical concentra-
tion for exponential hopping rates in one-dimension, in
agreement with earlier results.
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