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In this paper the problem of bounding transient growth in Iterative Learning Control 
(ILC) is examined.  While transient growth is not a desirable property, the alternative, 
robust monotonic convergence, leads to fundamental performance limitations.  To 
circumvent these limitations, this paper considers the possibility that some transient 
growth, if properly limited, is a viable and practical option.  Toward this end, this paper 
proposes tools for analyzing worst-case transient growth in ILC.  The proposed tools are 
based on pseudospectra analysis, which is extended to apply to ILC of uncertain systems.  
Two practical problems in norm-optimal ILC weighting parameter design are considered.  
Using the presented tools, it is demonstrated that successful design in the transient 
growth regime is possible, i.e. the transient growth is kept small while significantly 
improving asymptotic performance, despite model uncertainty. 

 
Keywords: iterative learning control, pseudospectra, transient analysis, robustness 

 

I. Introduction 

Iterative learning control (ILC) [1-3] is used to improve the performance of 

systems that repeat the same operation many times.  At the conclusion of each 

operation, the tracking error is used to batch-update a feedforward control signal.  

Convergence of the learning process results in a feedforward control signal that is 

customized for the repeated motion, yielding very low tracking error. 

 ILC is a performance-improving control algorithm, rather than a stabilizing 

algorithm, and thus the emphasis of much of the ILC literature focuses on behavior at 

convergence.  Although convergence of the algorithm is typically demonstrated, 

comparatively little attention is given to the nature of the convergence.  The transient 

behavior of the learning process, however, is critically important in many practical 
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applications.  For example, in robotics and manufacturing applications, slow 

convergence leads to delays in process startup and possibly costly material waste.  

Perhaps of greater concern to the ILC designer is the problem of large transient 

growth [4], whereby the error may grow rapidly and with little warning, potentially 

damaging hardware.  Generally, when large transient growth occurs the learning 

process must be aborted, and thus the high performance guaranteed at convergence is 

never realized. 

The problem of large transient growth has been studied extensively by 

Longman and colleagues [4-8].  In many cases the ILC signal appears to be 

converging over early iterations, followed by rapidly diverging behavior [4].  The 

rapid divergence may be the onset of a large transient growth, or it may be true 

instability. In practice the two possibilities can be indistinguishable.  Further 

complicating the problem is the fact that large transient growth can occur in 

exponentially stable learning systems [5].  Essentially, the problem derives from the 

two-dimensional, time- and iteration-domain, dynamics of the learning process (in 

this context, the dimension refers to the domain over which the dynamics evolve, not 

the number of state variables in the dynamic system).  Generally, more stringent 

stability conditions are desired in two-dimensional systems [9]. 

A major thrust in ILC research has been the development of algorithms that 

ensure contraction of the error, measured by an appropriate norm, from one iteration 

to the next, termed monotonic convergence.  Popular design techniques for achieving 

monotonic convergence are frequency domain design [5], norm-optimal design [10], 

model-inversion design [11], and gradient design [12].  When the plant model is 

known precisely, these methods are capable of converging arbitrarily quickly to an 

arbitrarily low error (in no-noise scenarios).  However, in practice the plant model is 
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never precisely known.  An algorithm that yields monotonic convergence for a 

bounded set of plant models, containing the actual plant, is said to be robustly 

monotonically convergent (RMC).  The above designs can be used to construct RMC 

algorithms, but converged tracking performance is limited, depending on the size of 

the uncertainty bounds [11-14]. 

Due to the limited performance at convergence, RMC is often overly 

restrictive and generally conflicts with the high performance goals of ILC.  

Specifically, RMC algorithms are very conservative in that the worst case system is 

forced to convergence monotonically; thus, RMC sacrifices performance for a 

restrictive monotonicity guarantee.  However, monotonic convergence is not a 

necessary constraint in many applications.  Therefore, some transient growth, if kept 

small, is acceptable for many applications, particularly if the result is a significant 

performance increase. 

In order to extend ILC design beyond the limitations of RMC, it is necessary 

to revisit the problem of transient growth.  The main contribution of this work is the 

application of pseudospectra analysis [15] to the ILC transient growth problem.  In 

particular, pseudospectra tools are extended to examine worst-case transient growth in 

ILC systems with model uncertainty.  The use of pseudospectra tools for ILC transient 

analysis was first presented in [16], although that work did not consider model 

uncertainty.  The approach presented in [16] and this paper are the first such 

approaches that allows the ILC designer to analyze the effect of algorithm or 

parameter changes on the transient learning behavior.  Although it may be possible to 

use these tools to generate fundamentally new ILC algorithms, that topic is not 

explored here.  Instead, application of the proposed tools is illustrated by examining 

two parameter design problems in norm-optimal ILC.  Using the presented tools, 
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successful design in the transient growth regime is demonstrated, i.e. transient growth 

is limited while significantly improving asymptotic performance, despite model 

uncertainty.  

Throughout this work let     denote the spectral radius and let   denote the 

Euclidean 2-norm on nC  and also the induced matrix norm on nxmC , that is for a 

matrix nxmT C , 

  
1

sup

m






 
x

x

T Tx T

C

 and    max T T , 

where     is the maximum singular value and     is the set of eigenvalues.   

The remainder of this paper is organized as follows.  In Section II key results 

in monotonic convergence analysis for ILC are reviewed.  The results illustrate key 

performance limitations that are imposed by the RMC condition.  There are a number 

of mathematical tools that can be applied to the analysis of non-monotonic learning; 

these are surveyed in Section III.  One tool, the pseudospectra, is selected for further 

exploration, and in Section IV methods are developed for analyzing worst-case 

transient growth for a set of uncertain systems.  Section V demonstrates the 

application of this tool on two norm-optimal ILC design problems: convergence rate 

weighting and time-varying Q-filter shaping.   Finally, conclusions are given in 

Section VI. 

II. Background: Stability and Monotonic Convergence in ILC 

Consider a discrete-time, single-output linear time-invariant system, 

 
     
     

1

,

x k Ax k Bu k

y k Cx k d k

  

 
 

where u(k) is the input and y(k) is the output.  The output response to external 

disturbances and the initial conditions are lumped in d(k).  The system can be “lifted” 

[17] by noting that over the finite time horizon, , 1, , 1k m m m N    ,  



Towards Transient Growth Analysis and Design in Iterative Learning Control 
Bristow and Singler 

 

5 
 
 

 
 

 

 
 

 

 
 

 

1

2 1

1 2 1

0 0 0
0

0
1 1 1

0

0
1 1 1

m

m m

m m m

m N m m m

p
y m u d m

p p
y m u d m

p p p

y m N u N d m N
p p p p



 

   

 
      
              
      
                 

y u d
P



 


  

   

  


, (1) 

where, 

 1

0,

,i i

i m
p

CA B i m


  

 

are the system Markov parameters and m is the relative degree.  Let the desired output 

be given by yd(k), or 

      1 1 .
T

d d dy m y m y m N     dy   

In the ILC problem it is desired that the system repeat a process indefinitely.  Each 

iteration, 0,1,j     of the process involves tracking yd, then resetting to zero initial 

conditions.  It is standard to assume that the disturbance repeats each iteration, 

0 1  d d d  .  Then, the tracking error on the jth iteration is given by j j de y y , 

or, 

 0j j  e Pu e , 1, 2,j   . (2) 

The ILC problem is to select uj using the error history from previous trials to 

asymptotically reduce the error.  A common method is the first-order linear ILC 

update algorithm, given by, 

  1j j j  u u eQ L , (3) 

where  and  are in NxNR .  Combining (1), (3), closed-loop dynamics are given by 

 1 0j j  u Tu f , (4) 

where   T I PQ L  and 0 0f eQ L .  Clearly the ILC system is convergent if 

  1 T . 
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Remark:  In some design techniques, such as frequency domain [5] or LMI 

[18], the update algorithm is written with dynamic filters.  These algorithms can be 

written as (3) by lifting the filters into matrices  and .  However, in other ILC 

approaches the algorithm is feedback-based, such as [19], or higher-order.  The 

analysis presented in this work applies only to algorithms of the form (3). 

Remark:  Contrary to many results in the field of control systems, 

convergence, alone, is often insufficient in ILC because of the propensity for slow 

convergence and large transient growth [5,6].  For applications where large transient 

growth and slow convergence may not be problematic, it is well known that  IQ  

and c IL , where c has the same sign and smaller magnitude than pm, is sufficient 

for zero error convergence [5]. 

To analyze the transient behavior of an exponentially convergent ILC system, 

define lim j j u u  and j j  u u u . Then, from (4), 

 1j j  u T u , (5) 

or, 

 1 0
j

j  u T u . (6) 

Therefore, the sequence 

 2, , , ,jT T T   (7) 

gives the worst-case  bound on the overall transient growth or decay of j u  during 

learning.  The special case 1T  is referred to as monotonic convergence because 

the bounding sequence is necessarily monotonically decreasing, 

1j j j  T T T T . 

III.   The Pseudospectra 

For a given N N  matrix T, the key mathematical problem in this work is 

analyzing the behavior of (7).  If a matrix T is normal, i.e., * *TT T T , then (7) is 



Towards Transient Growth Analysis and Design in Iterative Learning Control 
Bristow and Singler 

 

7 
 
 

trivially given by  kk T T  for all k.   More generally, tight bounds on (7) are 

nontrivial; some well known bounds are summarized in Table 1 and illustrated in 

Figure 1.   

Table  1.  Well-known transient response bounds. 

Spectral radius decay rate1:    kk  T V T  

Norm bound: 
kk T T  

Growth rate: 1k k T T T  

Limiting rate2:  1
lim log k

k k
 T T  

1     1 , V V V  Proof on page 19, [15]. 
2  Proof on page 159, [15]. 

 

 

 

Figure 1.  Monotonic and nonmonotonic possible transient behavior of kT . 

 
Recent research has focused on bounding (7) for nonnormal matrices.  Three 

approaches are departure from normality [21-23], Lyapunov inequalities [24,25], and 

pseudospectra [15].  Here the pseudospectra is used because it has a history of success 

in engineering applications and a visual interpretation useful in design.  Specifically, 

the pseudospectra and associated pseudospectral radius are defined [15] as follows: 

 
Definition: The  -pseudospectra of a matrix T is the set  

 T  in the complex plane 

consisting of all points z  such that z  is an eigenvalue of T E  for some 

n nE  with E .  The  -pseudospectral radius of T is defined by 

    {max : }.z z   T T  

 

log
k

T

k0
log T

 log  TMonotonic 
Response 

Nonmonotonic
Response 
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Equivalently, the pseudospectra is the set where the resolvent   1
z

I T  is large:   

   1 1( ) { : }.z z    T I T  

The eigenvalues of T are the points where the norm of the resolvent is infinite, 

therefore, ( ) ( ) T T  for all 0  . 

Many pseudospectral bounds for transient growth can be found in [15].  A key 

result is the Kreiss matrix theorem, which bounds the maximum transient growth in 

terms of the  -pseudospectral radius: 

 
Kreiss Matrix Theorem [15, Section 18]:  For any N N  matrix T, 

 
0

( su) )p (k

k
eN


T T TK K , 

where e is the exponential constant and the Kreiss constant is defined by 

 
 

0
(

1
) sup 









T
TK . 

 
The Kreiss constant gives upper and lower bounds on the maximum transient 

growth, however the constant is difficult to compute.  Therefore, plots of 

pseudospectra are often used to estimate the magnitude of transient growth. 

To illustrate the visualization aspect of the pseudospectra, a simple example is 

used. Consider the three matrices 

 
1 2 3

0.8 0 0.8 0 0.8 0
, , .

0.1 0.8 1 0.8 10 0.8

     
       
     

T T T
 

Shown in Figure 2 are boundaries (or level sets) of pseudospectra for these matrices 

for various values of  computed using Eigtool [30]. The eigenvalues are located at 

0.8 for each system, however the pseudospectra of each matrix are quite different.  

For T1, the pseudospectra boundaries are clustered closely around its eigenvalues; for 

T2, the pseudospectra boundaries are larger and extend outside of the unit circle 

for 110  ; for T3, the pseudospectra extend well outside of the unit circle, even for 

very small values of  . 
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Figure 2.  The  -pseudospectra boundaries of T1, T2, and T3 from left to right. The 
color bar is on a  10log  scale so that the values of   are 5 110 , ,10  from inside to 
outside. 

Interpretation of the pseudospectra plots is done as follows.  The Kreiss matrix 

theorem shows that if the pseudospectral radius  
 T  sufficiently exceeds one, then 

transient growth should be expected; more precisely, if   1  T  for some  , 

then 
0

sup 1k

k
T  and therefore transient growth must occur. If the pseudospectral 

radius exceeds one for a small value of  , large transient growth is expected. 

Thus, Figure 2 above indicates that transient growth is expected for T2 and T3 

with more transient growth expected for T3.  This is confirmed by direct computations 

of the transients 1
kT , 2

kT , and 3
kT , in Figure 3. 

0 5 10 15 20
10

-2

10
-1

10
0

10
1

10
2

power k

lo
g

10
 ||

 T
k  ||

 

 

T
1

T
2

T
3

 
Figure 3. Transient behavior of the powers k

iT  for 1,2,3i  .  For 1i  , the powers 

decay monotonically to zero; for 2i  , there is transient growth before decay; for 
3i  , there is larger transient growth. These results are easily predicted using the 

pseudospectra plots above in Figure 2. 
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IV. Accounting for Uncertainty in Transient Growth Analysis 

The previous transient growth analysis assumes the transition matrix is known 

exactly.  However, in practice the system is not precisely known.  Recall that the 

transition matrix is given by, ( ) T I PQ L , where P is the plant matrix.  As is 

standard, [13,14], assume the plant P is uncertain but can be represented by 

 ( ) mP P I WΔ  (8) 

where mP  and W  are known and Δ  is unknown.  mP , W , and Δ , are lower 

triangular Toeplitz. With this uncertainty representation, the transition matrix T can 

be written as 

 , T X YΔ  (9) 

where, 

 
  ,

.


 

m

m

X

Y

I P

P W

Q L

Q L
 (10) 

Thus, the transient behavior of the powers of  T X YΔ  are of interest, where X  

and Y  are known matrices, but Δ  is an unknown lower triangular Toeplitz matrix.  

Assuming a known bound on the uncertainty, say Δ , consider the 

following modified pseudospectra and pseudospectral radius: 

 
Definition: For given matrices , NxNX Y R , define the modified pseudospectra 

( )   T  to be the set in the complex plane consisting of all points z  such that z  

is an eigenvalue of   T X YΔ E  for some N NΔ R and N NE  with Δ lower 

triangular Toeplitz and ||     Δ Ε .  The modified pseudospectral radius is 

defined by 

    , ,{max : }.z z     T T  

 

This modified pseudospectra yields a worst-case transient analysis.  If , ( )  T  

extends far enough outside of the unit disk, then there is a Δ  so that the powers of 
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 T X YΔ  experience transient growth before decaying to zero.  This set is difficult 

to compute directly, so two approaches are considered for approximating , ( )  T .  In 

the first approach, an upper bounding method using spectral value sets is examined; in 

the second approach, a random uncertainty lower bounding method is used. 

A. Approach 1: Spectral Value Sets 

The following definition and theorem for spectral value sets will be useful in 

the derivation of an upper bounding set that contains the modified pseudospectra 

( )   T . 

 
Definition: For given matrices NxNA R , NxMB R , and LxNC R , the  -spectral 

value set ( , , ) A B C  is the set in the complex plane consisting of all points z  

such that z  is an eigenvalue of A BΘC  for some M LΘ  with Θ . 

 
Theorem 1 [24,26]: The set ( , , ) A B C is given by 

 
 1 1( , , ) ( ) : ( )z z      A B C A C I A B C: 

. 

 
The pseudospectra can be considered a special case of spectral value sets since 

( ) ( , , )  A A I I .  Now, define the set 

      1 1(  o:) r z z z
     


        
 


 

I
T I X Y I X

I
C , (11) 

which is a larger bounding set for the modified pseudospectra, as shown in the 

following theorem.  

 
Theorem 2:  Let  T be given by (9), and ( )   T  given by (11). Then 

( ) ( )     T T . 
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Proof:  Assume ( )z    T . Then, z is an eigenvalue of   T E X + YΔ E , with 

N NΔ R and N NE , Δ lower triangular Toeplitz, and ||     Δ Ε .  Rewrite 

T E  as, 

 
 


   

     

T E X YΔ E

I
X Y I D

I

, (12) 

where, 

 
0

0


    

Δ
D

E
. (13) 

Now, D , so, by Theorem 1, 

    1 1z 
       

I
I X Y I

I
. 

Therefore, it is also true that ( )z    T , from which it follows that 

( ) ( )     T T . ■ 

The boundary of ( )   T  can be computed in a similar manner to the 

pseudospectra (see the Appendix).  However, the matrix D is structured in ( )   T , 

but unstructured and complex for the set ( )   T . Specifically, D in (13) is block 

diagonal and Δ  is real-valued and lower triangular.  Thus, the boundaries of ( )   T  

are a conservative upper bound on the boundaries of , ( )  T .  To obtain tight bounds, 

methods for incorporating structured perturbations in the modified pseudospectra 

computations need to be developed.  An alternative lower bounding method is 

presented in the next section that does not rely on the spectral set bounding approach. 

B. Approach 2: Random Uncertainty 

The second approach to allowing uncertainty in transient growth analysis is to 

randomly select disturbances Δ  and compute the worst case pseudospectra of T  for 
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the selected disturbances. In this way, a lower bounding set is computed for the 

modified pseudospectra , ( )  T .   

The second approach can be summarized as follows. 

1) Randomly select perturbations , 1,...,l l mΔ  with l   , as described 

below. 
2) For each l , compute the pseudospectra of l lT X + YΔ ; specifically, 

compute the function 1( ) ( ) 1 / ( )l l lc z z z    I T I T  at all points in a 

computational grid in a region of interest as described in the Appendix. 
3) For the points in the computational grid, set ( ) min ( )l lc z c z . 

4) Plot the level sets of the function  10log ( )c z . A value of p  for a level set of 

this function corresponds to a   value of 10 p  for the worst case 
pseudospectra of T  for the selected disturbances. 

Remark: Disturbances with the largest possible norm, i.e.,   , are 

selected in this approach to best approximate the boundaries of the modified 

pseudospectra set , ( )  T  as closely as possible.   

The random perturbations, lΔ , are lower triangular Toeplitz, which can be 

written as 

 

 
   

     

0 0 0

1 0

0

1 2 0

l

l l
l

l l lN N


 

  

 
 
 
 
   

Δ



 

 



, 

for some  l i , 0, , 1i N  .  Therefore, one can select  l i , 0, , 1i N   

randomly from any distribution and then normalize the set so that l   .  Because 

jΔ  represents a dynamic system perturbation [13], 

          110 1 1l
N

l l lzz N z       Δ  , 

and band-limiting lΔ  corresponds to truncating the perturbation impulse response, 

thereby emphasizing high-frequency perturbations over low-frequency perturbations.  
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Uncertainties for many physical systems tend to be largest at high frequencies, so 

high-frequency perturbations are expected to generate the worst case  l z . 

Figure 4 shows the estimate for the modified pseudospectra , ( )  T  using the 

approach outlined above with 1  .  The modified pseudospectra is calculated for the 

system presented in Section V with weighting parameters q=10000, r=0, and s=1 

(known to yield transient growth).  Plot 4.a shows the modified pseudospectra 

calculated using 1000 random perturbations, which serves as a best estimate.  The 

smallest level set to extend outside of the unit circle, ε=10-4, is marked with an arrow.  

Plot 4.b shows that the pseudospectra can be well estimated using only a few 

perturbations by truncating l  to emphasize high frequency perturbations.  In 

particular, the smallest level set extending outside the unit circle is correctly obtained.  

Plots 4.c and 4.d demonstrate that a few random perturbations will not accurately 

estimate the pseudospectra when n is large, or high frequencies are not emphasized. 
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Figure 4.  Modified pseudospectra for a perturbed set of systems,  l l T I PQ L , 

using Approach 2.  Plot a shows the computed boundaries using 1000 random 
perturbations of Tl at several different l  truncations.  Plots b, c, d show the 

boundaries with 10 random perturbations and three different truncations.  Arrows 
point to the largest ε level set that crosses the unit circle.  The color bar is on a  10log  

scale so that the values of ε are 8 110 , ,10  . 

V.   Applications in ILC Design 

In this section a method is demonstrated by which pseudospectra may be used 

for ILC design.  The goal here is to use pseudospectra analysis to predict whether a 

set of design parameters will yield small transient growth, and thus be acceptable for 

practical application.  The approach presented here is based on a norm-optimal ILC 

design framework, but can be generalized for frequency domain [16] or LMI design 

of ILC.  Of course, one needs to consider transient growth in norm-optimal ILC 

design only when the system is perturbed, so the results of  Section IV.B are used to 

estimate the modified pseudospectra for a set of bounded system perturbations.. 

The simulations presented in the following two subsections use the following 

example system, 

a. b.

c. d.

 ε=10-4  ε=10-4

 ε=10-2  ε=10-1
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           1

model

low frequency uncertain high frequency
dynamics resonance

1P z C zI A B P z W z z
     

 
, 

with low frequency dynamics, 

    
  

2

model

0.0025 1

1 0.1

z
P z

z z




 
, 

high frequency resonance filter, 

  
2

2

1.89 0.9

1.6 0.8

z z
W z

z z

 


 
, 

and unknown, bounded dynamics,   1z


  .  A Bode plot of P(z) and the Pmodel(z) 

is shown in Figure 5.  A time horizon of N=60 is used. 

 
Figure 5.  Bode plot of the nominal system Pmodel(z) and perturbed system P(z) for the 
Illustrative Example. 

For the purposes of the control design, assume that   0z   and use Pmodel(z) 

as the nominal design model.  The norm-optimal method [10] is used to design Q  

and L  to minimize 

    1 1 1 1 1 1 1

TT T
j j j j j j j j jJ           e Qe u u R u u u Su , (14) 

for the design parameters positive definite Q and positive semi-definite R and S.  The 

resulting controller is well known and is given by 
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where Pm is the lifted representation of Pmodel(z).  The state transition matrix is then 

given by 

    1T T
   m mm mT P QP R S R QPP WΔ , 

where Δ  is the lifted representation of  z  and W is the lifted representation of 

W(z). 

A. Learning Rate Selection 

In this section, consider the simplified scalar weighting design, Q=qI, R=rI, 

S=sI.   It is well known that the parameter r controls the transient response, but not 

the asymptotic solution.  A small r results in fast convergence (for the nominal 

system), while a large r slows convergence.  Although r is typically used to reduce 

noise sensitivity [17], here, its effect on transient growth is considered. 

Consider the design parameters q=10000 and s=1, which result in transient 

growth when r=0.  Figure 6 shows the modified pseudospectra calculated using 

Approach 2.  The pseudospectra are generated using m=10 random perturbations with 

FIR support n=2.  Increasing r has two predominant effects on the pseudospectra: 1) 

the eigenvalues (contained in the region encircled by the smallest level set) bunch 

together and approach one, and 2) the level sets shrink to a smaller radius around the 

eigenvalues, resulting in a smaller protrusion from the unit circle.  The former 

corresponds to the well-known slowing of the learning as r increases, while the latter 

corresponds to a decrease in transient growth of the worst-case system in the 

perturbation set.  The transient growth of one such perturbation, shown in Figure 7, 

illustrates these effects.  By iterating over choices of r, an acceptable worst-case 

transient growth can be obtained. 
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One can study transient behavior more generally by examining the normality 

of the transition matrix.  Rewriting lT  yields, 

    1 1

Normal Non-normal

q q q
l r r r

 
   T I G I G H
 

, 

where T s
q m mG P P I  and T

l  m mPH P WΔ .  lT  is non-normal because lWΔ , and 

thus H , are non-normal.  However, as r approaches infinity, lT  approaches a normal 

matrix.  Therefore, r acts as a robustifying variable in a practical sense by reducing 

transient growth for the worst-case system perturbations.  The same is true as q 

approaches zero, but q affects asymptotic tracking performance, so it is not desirable 

to reduce. 

Remark: The robustifying effect of r is only apparent in the case of transient 

growth.  When q and s are selected to satisfy robust monotonic convergence 

conditions, r has little effect on robustness [14]. 
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Figure 6.  Modified pseudospectra for lT  with q=10000 and various values of r.  The 

color bar is on a  10log  scale so that the values of ε are 8 110 , ,10  . 
 

  
Figure 7.  Transient growth for the  Δ I  perturbation with q=10000, s=1, and 
various values of r.  

B. Time-Varying Q-filter Design 

In this section consider the diagonal performance weighting, 

    0 , , 1diag q q N Q  .  For simplicity, assume r=0 and s=1.  The diagonal Q 

weighting is designed to emphasize performance over time segments, called α-
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segments, where the error exhibits large time-frequency energy distributions [27], 

such as during step changes in the reference.  This approach is similar to time-varying 

Q-filter bandwidth designs in the frequency domain [13,28], where it has been 

demonstrated that performance improvements are most significant when the learning 

system is not monotonic [29].  Here the method in [27] is extended for transient 

growth design. 

The design procedure is as follows: 

1. First, set Q=q*I, where q* is the largest value for which the transient 

growth is deemed acceptable.  The value q* can be obtained, for example, 

by tuning q on the physical system. 

2. The pseudospectra is then calculated using Approach 2, and serves as the 

reference pseudospectra.  Let ε* denote the smallest ε-level set that 

extends outside the unit circle. 

3. Replace Q=q*I with     0 , , 1diag q q N Q   and iteratively shape 

q(i), i=0,...,N-1  in the manner discussed in [27], with one difference.  

Rather than maintaining a particular robust monotonic bound as in [27], 

maintain the same ε* as in the reference pseudospectra.  

Consider, again, the example system.  As a starting point, the scalar weighting 

q=5000 is treated as the largest weighting that yields acceptable transients.  Learning 

transients and the pseudospectra are shown in Figure 8.  Diagonal Q are then tuned by 

lowering q except during a segment around the time k=20 where the weighting is 

increased.  Figure 8 shows two candidate designs for the diagonal Q along with their 

pseudospectra, transient growth profiles, and asymptotic tracking error.  As can be 

seen, Q is reshaped without significantly altering the pseudospectra, and thus the 

transient response.  In Design 2 a 20% reduction in weighting across most of the 
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iteration (from 5000 to 4000) allows a 40-fold increase of the weighting (from 5000 to 

200000) during the critical “step”, resulting in an overall 67% reduction in error. 

 

 

 

 
Figure 8.  Pseudospectra, Q diagonal, transient growth, and asymptotic tracking for 
three designs of Q.  The first column shows Q=5000I, column two shows Design 1 
and column three shows Design 2. 

VI. Discussion and Conclusions 

This paper considers the problem of bounding transient growth in ILC 

systems.  While transient growth is an undesirable property in ILC, robust monotonic 

convergence is a performance-limiting constraint.  Thus, it is reasonable to consider 

some transient growth as a trade-off for improved performance when the system 

model is uncertain.  The main contribution of this work is the extension of 

pseudospectra analysis to examine worst-case transient growth behavior in ILC 

systems with model uncertainty.   
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The proposed analysis is applied to two design problems in norm-optimal ILC:  

convergence rate parameter tuning and time-varying performance parameter design.  

In both problems, transient growth is limited while significantly improving 

asymptotic performance, despite model uncertainty.  Thus, successful design in the 

transient growth regime is demonstrated. 

Appendix: Computation of Pseudospectra 

Computation of the pseudospectra is an actively researched topic [15].  Here, 

some main points are briefly addressed.  First, note that Eigtool is a freely available 

Matlab program [30], which is widely used for pseudospectra computation. However, 

a modified pseudospectra computations is employed in this work.  Therefore a basic 

pseudospectra algorithm is outlined as follows.  

The preferred computational approach for pseudospectra is based on the 

characterization of the pseudospectra given above: a point z  is in ( ) T  if 

  1 1z   I T . Furthermore, it is known that z  is in the boundary of the  -

pseudospectra if the above inequality is an equality. For the standard matrix 2-norm, 

   1
1z z  I T I T , and therefore 

    11
z z      I T I T . 

A simple algorithm for the computation of pseudospectra now proceeds as follows 

[15]:  

1) Choose a region of interest in the complex plane and a computational grid for 
that region. (For the ILC pseudospectra problems in this work, the region of 
interest is a square surrounding the unit circle in the complex plane.)  

2) At each point z  in the computational grid, compute  ( )c z z I T . 

3) Plot the level sets of the function  10log ( )c z . A value of p  for a level set of 

this function corresponds to a   value of 10 p for the matrix T.  

There are many ways to improve the computational efficiency of the basic 

pseudospectra algorithm.  For example, computing the Schur decomposition of T 
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gives *T USU , where U is unitary and S is an upper triangular matrix with the 

eigenvalues of T along the diagonal. Since the standard matrix 2-norm is unchanged 

by unitary transformations,    1 1
z z

  I T I S , and so  

    11
z z      I T I S . 

Thus, the minimum singular value of an upper triangular matrix needs only be 

computed at each point in the computational grid. This minimum singular value 

computation can be performed efficiently using a Lanczos iteration; see [15] for 

details. 

Remark:  One problem that arises in lifted analysis of ILC systems is that the 

matrix size grows as O(N2) with the iteration length.  For long iterations (greater than 

several thousand samples), computing  ( )c z z I T  on a regular PC is impractical 

due to memory limitations.  One option is to use a Lanczos iteration [15] to calculate 

the singular value, but to replace every matrix calculation step with a dynamic 

simulation.  This can be achieved by transforming T into the discrete-time system 

T(q) by reversing the lifting process.  This approach was applied in [31] to calculate 

the maximum singular value of T, and the modification to calculate  ( )c z z I T  

for the pseudospectra calculation is straightforward.  Other methods for large-scale 

pseudospectra computations can be found in [15]. 
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