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Abstract

We report our experience in using two different languages to build
the same software project. Specifically, we have converted an entire un-
dergraduate compiler course from using AspectJ, an aspect-oriented lan-
guage, to using OCaml, a functional language. The course has evolved
over a period of eight years with, on average, 60 students completing it
every year. In this article, we analyze our usage of the two programming
languages and we compare and contrast the two software projects on a
number of parameters, including how they enable students to write and
test individual compiler phases in a modular way.
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University. Current affiliations: Aske Simon Christensen, CLC Bio, Jan Midtgaard, Technical
University of Denmark, Johnni Winther and Ian Zerny, Google.

i



Contents

1 Introduction 1

2 Domain of discourse 1
2.1 The compiler project . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 The source and target language . . . . . . . . . . . . . . . 1
2.1.2 Basic compiler architecture . . . . . . . . . . . . . . . . . 4

2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Design and implementation 6
3.1 Implementation languages . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Types and data . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Operational behavior . . . . . . . . . . . . . . . . . . . . . 10

3.2 Implementation differences . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Environments and Linking implementation . . . . . . . . 12
3.2.3 Peephole optimization . . . . . . . . . . . . . . . . . . . . 12
3.2.4 Error reporting . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Evaluation 13
4.1 Language and design . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Code conciseness . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.3 Tree types . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.4 Tree traversal . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.5 Static guaranties . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.6 Emerging patterns . . . . . . . . . . . . . . . . . . . . . . 18
4.1.7 Multiple return values . . . . . . . . . . . . . . . . . . . . 19
4.1.8 Pretty printing . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.9 Subtleties . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 System and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Lexing and parsing . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Compiling and building . . . . . . . . . . . . . . . . . . . 26
4.2.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.7 Development environments . . . . . . . . . . . . . . . . . 29

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ii



5 Related work 31
5.1 Language and language feature comparisons . . . . . . . . . . . . 31
5.2 The expression problem and extensible compilers . . . . . . . . . 32
5.3 Compiler work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusion and perspectives 34

A Compile time table 36

List of Figures

1 Grammar of lvalues and expressions in Joos2 . . . . . . . . . . . 3
2 Basic compiler architecture . . . . . . . . . . . . . . . . . . . . . 3
3 Abstracting printing procedures . . . . . . . . . . . . . . . . . . . 7
4 Abstract syntax tree representations of lvalues† . . . . . . . . . . 8
5 Exceptions and types . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Environment and linking phases in the AspectJ implementation . 12
7 Environment and linking phases in the OCaml implementation . 12
8 Definite assignment analysis . . . . . . . . . . . . . . . . . . . . . 20
9 Example of an ambiguous grammar . . . . . . . . . . . . . . . . . 23
10 Output error from ocamlyacc (excerpt from parser.output) . 24
11 Output error from (patched) SableCC . . . . . . . . . . . . . . . 24
12 Output error from Menhir (parser.conflicts) . . . . . . . . 25
13 Compile times of Joos compilers on the czero and mersenne bench-

marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



1 Introduction

Programming languages come with claims of modularity, flexibility, and type
safety. However, few implementation reports provide evidence to substantiate
these claims. In this case study, we evaluate the implementation of a compiler for
a subset of the Java programming language using two different programming
languages and development environments: One, AspectJ, is aspect-oriented,
and the other, OCaml, is functional. The compilers have been reference imple-
mentations for the undergraduate compiler course at Aarhus University. Each
implementation is therefore under hard design constraints. As such, we can
meaningfully compare and contrast the two implementations and the imple-
mentation languages of the same software project. The compiler project is
substantial in that it features a non-trivial subset of the Java programming
language (see Table 1, page 2).

This paper is structured as follows. After having introduced the project in
more detail (Section 2) we describe the overall architecture common to the two
compilers (Section 3) and then analyse the use of AspectJ and OCaml on a
number parameters (Section 4). Finally we discuss related work (Section 5) and
conclude (Section 6).

2 Domain of discourse

The two reference compilers have been implemented as part of an undergraduate
compiler course. The use of the compilers as an educational tool has a significant
influence on their designs. In this section, we briefly outline the structure of the
compiler course. We then clarify which requirements the educational context
places on the implementations. Finally, we specify what measures we consider
for evaluating the two solutions.

2.1 The compiler project

We first establish the common ground of the compiler project: the feature set
of the input (henceforth: source) language and the phases that compose the
compiler. Both the source language features and the compiler phases are the
same for both compiler implementations.

2.1.1 The source and target language

The source language of the compiler project is a subset of Java 1.3, named Joos.1

The course makes use of three such subsets containing an increasing number of
features:

Joos0 ⊂ Joos1 ⊂ Joos2 ⊂ Java 1.3

1Joos is an acronym for Java Object-Oriented Subset
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Feature Joos0 Joos1 Joos2 Java1.3
classes X X X X

interfaces X X

packages X X X

subtyping X X X

non-static methods X X X X

static methods X X X

non-static fields X X X X

static fields X X

checked exceptions X X X

exception throw X X

exception handling X

class library access X X X

implicit this X X X

closest match overloading X X

boolean, int X X X X

char, byte, short X X X

array X X X

multi-dimensional array X X

long, float, double X

Table 1: Selected features in Joos0, Joos1, Joos2, and Java 1.3

Joos0 is the smallest of the Java subsets containing simple primitive types and
strings, expressions, statements, and class definitions. Basic I/O can be per-
formed through System.in.read and System.out.print. This subset
does not include subtyping and exceptions,2 yet it is big enough to implement,
e.g., lists and trees, as classes with non-static fields. Joos1 extends the Joos0
subset with arrays, subtyping, packages, exception checking, etc. In addition,
the resulting language can use a large fraction of the Java 1.3 standard library.
As such, Joos1 represents a significant subset of Java 1.3 yet it is suitable for
a compiler course project and possible to handle in a clean phase-separated
compiler design. Joos2 extends the Joos1 subset even further toward the full
Java 1.3 language with interfaces, static fields, closest match overloading, ex-
ception throwing, multi-dimensional arrays, etc. Overall, Joos2 represents the
biggest Java 1.3 subset manageable within the same phase architecture as Joos1.
The feature set of each of the languages has been designed to maintain the above
subset relationship. Table 1 illustrates selected high-level features for each sub-
set. To be more concrete, we include in Figure 1 the grammar of lvalues [1,
pp. 64-65] and expressions in the Joos2 language.

The target language of the compiler project is the Java Virtual Machine
(henceforth: JVM) in the form of the Jasmin assembly format [24, 25].
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lvalue ::= id (local)

| expr . id (non-static field)

| type . id (static field)

| expr[expr] (array index)

expr ::= null (null literal)

| int (integer literal)

| char (character literal)

| string (string literal)

| bool (boolean literal)

| op expr (unary operation)

| expr op expr (binary operation)

| this (this reference)

| lvalue (lvalue)

| lvalue = expr (assignment)

| type . id(expr , . . .) (static invoke)

| expr . id(expr , . . .) (non-static invoke)

| id(expr , . . .) (simple invoke)

| new type(expr , . . .) (object allocation)

| new type[expr] . . . (array allocation)

| (type) expr (cast)

| expr instanceof type (instanceof query)

Figure 1: Grammar of lvalues and expressions in Joos2

Scanning+Parsing Weeding Environment+Linking Hierarchy

DisambiguationType checkingConstant foldingReachabilityDefinite assignment

Resources Code generation Optimization Limits Emission

.java

.j

Figure 2: Basic compiler architecture
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2.1.2 Basic compiler architecture

The pedagogical requirement for the implementation is modularity: students
learn and program one compiler phase at the time. For inspiration, students
are given the full source code for a small Joos0 compiler. In addition they
are given a compiler skeleton on which they proceed to “fill in the blanks” of
each phase towards a complete Joos1 compiler.3 An online web-service allows
students to upload a compiler phase, which is then compiled together with the
remaining phases of the reference compiler, and finally the resulting compiler
is run on a selection of more than 1200 test cases accumulated over a number
of years. The students are thereby able to test each of their compiler phases
in isolation. In order for such a service to be successful, the interfaces between
phases have to be fixed. Figure 2 provides an overview of the involved phases
which we describe next.

The characters of the input file are first grouped into tokens by the scanner
(Scanning). The token stream is then parsed according to a context-free gram-
mar and an abstract syntax tree (AST) is built (Parsing). Being context free,
the parser accepts too many ASTs, some of which are subsequently rejected
(Weeding). Names (local variables, type names, fields, methods, ...) are then
mapped to their declaration (Environment+Linking). The Hierarchy phase is
concerned with checking well-formedness of the class hierarchy and calculating
sets of non-shadowed fields and methods for each type. Based on these sets the
Disambiguation phase then resolves dot-separated identifier sequences. Type
checking determines a type for each expression and lvalue, statically resolves
overloaded method calls, and checks type consistency. The subsequent phase
performs constant folding of expressions and of static final field declarations
(Constant folding). Next come two static analyzes mandated by the Java Lan-
guage Specification [12]: the Reachability analysis ensures that all statements of
the program are reachable and the Definite-assignment analysis ensures that all
local variables are properly initialized before being used. The Resources phase
calculates signatures for types, methods, etc. and assigns each local variable to
an integer offset in the stack frame. Code generation constructs (an internal
representation of) a JVM byte code sequence for each method and constructor.
The following Optimization phase performs peephole optimization of these se-
quences. The Limits phase ensures basic operand stack height consistency of
the optimized byte code. In addition it calculates the maximal operand stack
height needed for each method’s stack frame. Finally the emitter serializes the
internal byte-code representation into ASCII files (Emission), which are subse-
quently assembled into Java class files using the Jasmin assembler [25].

2A Joos0 class implicitly extends Object and all methods bypass exception checking by
requiring the header throws Exception.

3For extra credit they can extend their Joos1 compiler with any number of Joos2 features.
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2.2 Requirements

1. The implementation must be modular, where each module4 represents a
particular phase of the compiler in correspondence with the course struc-
ture. Each module should be reasonably self-contained with a clear inter-
face defining its boundaries.

2. The implementation language and environment must be accessible to third-
year computer-science students based on their previous education.

2.3 Evaluation criteria

Our evaluation does not take place against a predefined basis, but instead con-
sists of a set of parameters that can be measured and evaluated within the
project we outlined. We consider parameters that say something about gen-
eral aspects of the implementation languages as well as specific solutions used
within the implementations. We compare the implementations on each crite-
ria in an attempt to clarify the relative strengths and weaknesses of the two
implementations.

This evaluation does not establish any general properties of the languages.
However, the present study does provide a single yet substantial point for which
a relative comparison is meaningful. The specific aspects we consider and the
evaluation criteria used are:

1. The expressive power of the implementation languages. Our abstract mea-
sure of expressiveness is lines of code. Following practice elsewhere [3], we
measure both the lines of source code without comments as well as the
number of bytes of compressed source code. The latter measurement at-
tempts to compensate for the sometimes verbose and repetitive patterns
and naming conventions common in idiomatic Java code.

2. The availability of the language and tools on different platforms. In par-
ticular, we will assess the ease with which these tools are installed and
used on various operating systems and distributions.

3. The availability of libraries. To avoid starting from scratch, the compiler
project depends on a number of libraries to facilitate the implementation.

We do not evaluate:

• The development process. The two compilers have been built at different
times and by different people. The later reimplementation (in OCaml)
benefited greatly from the existing implementation. Both in terms of de-
sign: the phases were well established; and in terms of the implementation:
tricky details and corner cases were already dealt with and could simply
be reimplemented.

• The understandability of the implementations for the students. We con-
sider it a topic of teaching and hence outside the scope of this study.

4A module is some language- or implementation-specific notion of a separate component.
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3 Design and implementation

This section describes the overall design of each of the two implementations.

3.1 Implementation languages

Java is a descendant of the Simula family of object-oriented programming lan-
guages, providing a class-based object model and static typing. AspectJ is an
extension of the Java programming language which adds aspect-oriented fea-
tures, allowing crosscutting modifications to Java structures, e.g., by specifying
join points at which control flow can be rerouted elsewhere, and by injecting
additional fields and methods into existing classes. For the implementation, we
primarily use the latter feature.

OCaml is a descendant of the ML family of functional programming lan-
guages, providing static typing and full type inference. For the implementation,
we use only traditional ML features: signatures, modules, algebraic data types,
pattern matching, and to a limited degree, first-class functions and mutable
cells. We avoid most of the advanced OCaml features including first-class and
parametric modules, generalized algebraic data types (GADTs), polymorphic
variants and the entire object-oriented layer.

In the following we detail the key features of abstraction, types, effects and
the operational behavior of the two languages.

3.1.1 Abstraction

Interfaces and classes provide the specification/implementation facility in Java.
Figure 3a illustrates how we might abstract two printing procedures using the
Strategy Pattern [11]. On top of this, AspectJ adds a notion of aspects that
can change the structure and behavior of interfaces and classes.

OCaml provides module types and (parameterized) module implementa-
tions as the specification/implementation facility. Figure 3b illustrates how we
might abstract the equivalent printing procedures using modules. Alternatively,
records and first-class lexically-scoped functions can provide similar lightweight
abstractions as illustrated in Figure 3c.

3.1.2 Types and data

Both Java and OCaml are statically typed with a mostly sound type system.
In Java, types are given by class definitions which allow subclassing. Interface
and implementation (class) relationships are defined nominally, e.g., the class
specifies the interface by name in the implements clause, as in Figure 3a.

In OCaml, types are structural and composed mostly from smaller types
in literal expressions or by algebraic data-type definitions. For example, the
printer type of Figure 3c is composed of two function types. Interface (signa-
ture) and implementation (module) relationships are defined structurally. For
example, the StdOutPrinter module of Figure 3b is structurally an implemen-
tation of the Printer type without explicitly stating any relationship between

6



interface Printer {

public void print(String str);

public void println(String str);

}

class StdOutPrinter implements Printer {

public void print(String str) { System.out.print(str); }

public void println(String str) { print(str + ”\n”); }

}

(a) A Java implementation using the Strategy Pattern

module type Printer = sig

val print : string -> unit

val println : string -> unit

end

module StdOutPrinter = struct

let print str = print_string str

let println str = print (str ˆ ”\n”)
end

(b) An OCaml implementation using modules

type printer = {

print : string -> unit;

println : string -> unit

}

let stdout_printer =

let print str = print_string str in

let println str = print (str ˆ ”\n”) in

{ print = print; println = println }

(c) An OCaml implementation using records and first-class functions

Figure 3: Abstracting printing procedures

the two. As a consequence, we can pass the StdOutPrinter module to any client
expecting a printer type.

Figure 4a shows how to define the abstract syntax tree of lvalues as a class
hierarchy in Java. Each subclass of Lvalue represents a kind of lvalue and
corresponds to a production in the grammar of lvalues from Figure 1. A toString

method is defined to construct the string representation of an lvalue. Virtual-
method dispatch provides case discrimination on the distinct kinds of lvalues.

Figure 4b shows how to define the abstract syntax tree of lvalues as an
algebraic data type in OCaml. Here, each case (constructor) of lvalue represents
a kind of lvalue. A string_from_lvalue function is defined to construct the string
representation of an lvalue. Here, pattern matching provides case discrimination
on the distinct kinds of lvalues.
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public abstract class Lvalue {

public String toString();

}

public class Local extends Lvalue {

public Identifier id;

public String toString() {

return id.toString();

}

}

public class NonstaticField extends Lvalue {

public Expression receiver;

public Identifier name;

public String toString() {

return receiver.toString() + ” . ” + name.toString();

}

}

public class StaticField extends Lvalue {

public NamedType type;

public Identifier name;

public String toString() {

return type.toString() + ” . ” + name.toString();

}

}

public class ArrayIndex extends Lvalue {

public Expression base;

public Expression index;

public String toString() {

return base.toString() + ” [ ” + index.toString() + ” ] ”;
}

}

(a) A class hierarchy of lvalues in Java

type lvalue =

| Local of identifier

| NonstaticField of expression * identifier

| StaticField of named_type * identifier

| ArrayIndex of expression * expression

let rec string_from_lvalue lvalue = match lvalue with

| Local (id)

-> string_from_identifier id

| NonstaticField (receiver, name)

-> string_from_expression receiver ˆ ” . ” ˆ string_from_identifier name

| StaticField (ntype, name)

-> string_from_named_type ntype ˆ ” . ” ˆ string_from_identifier name

| ArrayIndex (base, index)

-> string_from_expression base ˆ ” [ ” ˆ string_from_expression index ˆ ” ] ”

(b) An algebraic data type of lvalues in OCaml

Figure 4: Abstract syntax tree representations of lvalues†

†These figures assume definitions of identifiers, types and expressions similar to the lvalue
structure being defined.
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interface StringMapInterface {

// Throws an unchecked exception on unknown keys
public class NotFoundError extends RuntimeException {}

public String lookupImplicit(String key);

// Throws a checked exception on unknown keys
public class NotFoundException extends Exception {}

public String lookupExplicit(String key) throws NotFoundException;

}

class StringMap implements StringMapInterface { /∗ . . . ∗/ }

String foo(StringMap map) {

String str1 = map.lookupImplicit(”key1”);
String str2;

try {

str2 = map.lookupExplicit(”key2”);
} catch (NotFoundException e) {

str2 = ”key2 not found”;
}

return str1 + ” ” + str2;

}

(a) Exceptions in Java

module type STRING_MAP = sig

type t

(∗ Throws an (unchecked ) exception on unknown keys ∗)
exception NotFound

lookup_implicit : t * string -> string

(∗ Returns ’NotFound ’ on unknown keys ∗)
datatype result = Found of string | NotFound

lookup_explicit : t * string -> result

end

module StringMap : STRING_MAP = struct (∗ . . . ∗) end

let foo map =

let str1 = StringMap.lookup_implicit map ”key1” in

let str2 = match StringMap.lookup_explicit map ”key2” with

| Found str -> str

| NotFound -> ”key2 not found”
in str1 ˆ ” ” ˆ str2

(b) Exceptions and types in OCaml

Figure 5: Exceptions and types

3.1.3 Effects

Java is an imperative language with mutation being the default. All variables
and most data structures are mutable. OCaml is a largely pure functional
language with immutability being the default (a notable exception is OCaml’s

9



mutable strings5). However, variables can be marked as mutable and explicit
reference cells can be used to mutate data structures.

Both languages support a form of exceptions for error recovery and other
control effects. Here Java has two kinds of exceptions: checked and unchecked.
Unchecked exceptions are exceptions that can occur at any point during execu-
tion and do not affect the static semantics of the program. Checked exceptions
must be declared as part of a method’s type signature. When a method declar-
ing checked exceptions is invoked, the caller must handle each declared exception
or itself declare it as part of its own type signature. These constraints are stat-
ically enforced by the Java compiler. Figure 5a illustrates these two kinds of
exceptions.

OCaml’s exceptions are unchecked. An equivalent of checked exceptions can
instead be represented using a data type in the existing static type system.
Figure 5b illustrates the use of a result type to denote the statically enforced
handling of the exceptional case.

3.1.4 Operational behavior

Both languages use an eager evaluation strategy where function application,
or method invocation, evaluates arguments prior to entry. A peculiarity of
the OCaml implementation is that it evaluates arguments from right to left,
although the actual order is left unspecified by the language specification [23].
Both languages pass arguments by value. A specificity of Java programming
language is that the value being passed for a heap-allocated object is a reference
(pointer) to this object.

3.2 Implementation differences

With the language details in place, we now turn to how the implementations
use the features of the languages. The major difference between the two com-
piler implementations is the way in which they accumulate information: one
is imperative using shared and mutable data structures (AspectJ), another is
functional using persistent immutable data structures (OCaml). This difference
echoes a categorization from the abstract syntax tree compiler literature:

• The “Christmas tree” compiler model [1] in which a mutable abstract
syntax tree structure accumulates information and (declaration) pointers
as the tree is traversed and

• The transformational compiler model originating with Steele [34] (and
since pursued in both untyped and typed settings [9, 18, 21]) in which dif-
ferent immutable tree structures capture the available information and in
which additional information is accumulated through a tree-to-tree map-
ping.

5The first steps towards making OCaml’s strings immutable have been taken with the
recent 4.02 release.
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The AspectJ implementation follows the Christmas tree model. Specifically
the implementation makes use of the SableCC parser generator [10] to concisely
and declaratively specify the initial abstract syntax tree. SableCC then uses this
specification to automatically generate a Java class hierarchy which is similar
in structure to the example in Figure 4a. Once generated, the compiler uses
AspectJ to inject new fields on the auto-generated classes thereby decorating
the tree with additional information for use during the compilation phases. This
synergy between AspectJ and SableCC forms the basis of the AspectJ compiler
design.

The OCaml implementation follows the transformational model. Each tree
is defined by a data-type declaration similar to the example in Figure 4b. These
trees are immutable, i.e., they make no use of reference cells or other mutable
fields. Each phase is defined as a pure function mapping a tree of one type to
a tree of another type. This functional mapping between algebraic data types
forms the basis of the OCaml compiler design.

3.2.1 Modularity

By modularity of the compiler, we refer to how the compiler separates the var-
ious phases which an input program is subjected to during compilation. In the
context of the compiler course, and listed as Requirement 1 in Section 2.2, it
is important that each phase is independently specified and well-defined. The
implementation must be modular for two reasons. First, from an educational
point of view, a clear specification and implementation of each phase aids under-
standing. Second, from a technical point of view, and of particular importance
to the course structure, is the ability to build a full compiler with some phases
supplied by a student and with the rest of the phases copied from the reference
implementation. This modularity allows the students to build and test a full
compiler despite not having implemented all of its phases.

In the AspectJ implementation, we achieve modularity by implementing
each compiler phase as an aspect. Each aspect, representing a compiler phase, is
responsible for injecting fields and methods into the proper classes. For example,
the typechecking phase is implemented as an aspect that will inject a type field
on all lvalue and expression nodes. The injected information forms the interface
(or contract) between the individual phases.

In the OCaml implementation, we achieve modularity by implementing each
compiler phase as a program transformation from one algebraic data type to
another. For example, the weeding phase is implemented as a statically-typed
function:

Weeding.weed_program : Ast.program -> Weedingast.program

where Ast and Weedingast are distinct modules each declaring a program

type. In this case the static type information forms the interface (or contract)
between the individual phases.
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Environments Linking

Figure 6: Environment and linking phases in the AspectJ implementation

Name resolving Environment building

Figure 7: Environment and linking phases in the OCaml implementation

3.2.2 Environments and Linking implementation

The collective goal of the environment and linking phases is to provide means
for looking up a member (a field, a constructor, or a method) on a particular
reference type. The two implementations, however, achieve this goal in inher-
ently different ways. The AspectJ version works by setting (injecting) a pointer
from the use of a reference type to the corresponding declaration. The OCaml
version, in contrast, builds a separate immutable data structure, types, which
represents what a particular reference type means, e.g., the signature of its
constructors, methods, and fields. Moreover the two phases are reordered: the
AspectJ implementation first injects symbol tables into AST nodes (for method
environments, field environments, and local environments), and subsequently
injects a pointer from reference types to their declaration. In contrast, the
OCaml implementation first builds a separate dictionary that maps (canonical)
type names to the separate types structure and subsequently checks missing
or duplicate declarations of fields, locals, etc. based on the dictionary. We
illustrate the different order of the two phases in Figures 6 and 7.

3.2.3 Peephole optimization

The peephole optimization phase of the two implementations also differ sig-
nificantly. Like GCC, the original AspectJ-version defines a domain-specific
language (DSL), including a lexer, parser, pattern matching compiler, etc. to
express patterns for peephole optimization. In contrast, the OCaml version
relies on the builtin pattern matching functionality, expressing each peephole
pattern as a pure, pattern matching procedural value. This design thereby
follows the embedded DSL tradition [15].

3.2.4 Error reporting

The AspectJ implementation attempts to report a sequence of errors for pro-
grams containing several errors. In contrast, for simplicity, the OCaml imple-
mentation reports the first error and exits.
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4 Evaluation

In this section we proceed to evaluate the two compiler implementations. We
split the evaluation in two parts: the first part evaluates language-level param-
eters whereas the second part evaluates system-oriented parameters.

4.1 Language and design

4.1.1 Code conciseness

Table 2 summarizes the lines of code in each of the two implementations. Lines
of code is a crude measure of code conciseness. It does not take into account
programming style. As such idiomatic Java code with comments and lots of
whitespace appear needlessly long. Nevertheless the measure gives some indi-
cation as to which things are easy to express in one language and harder to
express in another. In the following subsections we will proceed to break down
and analyse Table 2 in more detail.

From a first reading of (the two last lines of) Table 2, it is clear that the
AspectJ implementation requires substantially more lines of code (8436+44624
LoC vs. 6790+1173+9029 LoC): a factor of three. What is perhaps more sur-
prising, is that the two implementations use roughly the same number of hand-
written lines (8436 LoC vs. 6790+1173 LoC). SableCC generates a surprisingly
large amount of code, consisting of a lexer, a parser, toString methods, vari-
ous forms of visitor patterns, etc. In contrast ocamllex and ocamlyacc generate
only a barebones lexer and parser.

A number of parameters affect the brevity of the OCaml implementation.

• The tree traversals are structural over the data types, with one pattern-
matching function per type. We have preferred explicit functions, e.g.,
structurally walking a list of statements by pattern matching, over relying
on List.map and List.fold left from the standard library. Since
part of the reference compiler is handed out as a skeleton to students
(novices to OCaml and functional programming) this preference should
lower the bar at the cost of verbosity.

• We have chosen to decouple pattern matching of a formal parameter from
the function headers themselves and instead use a separate match-with
construct in function bodies. This eases code restructuring, e.g., inserting
an additional let-binding before the pattern match, but at the cost of
additional characters.

• Finally we use OCaml’s begin-end constructs to emphasize sequential
evaluation of expressions, rather than the less verbose semicolon-separated
parenthesized list – again in order to avoid that students confuse the
constructions with the syntactically similar lists (semi-colon separated in
square brackets) or tuples (comma separated in parentheses).
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Source LoC Compressed LoC (bytes)
AspectJ OCaml Ratio AspectJ OCaml Ratio

Phase Phase AST
lexer 38a 210 – 5.53 526 1869 3.55
lexer (auto) 1256 588 – 0.47 3167 3145 0.99
parser 737a 849 – 1.15 3174 4113 1.30
parser (auto) 13629 8441 – 0.62 19600 23557 1.20
AST 80a 0 185 2.31 567 1477 2.60
AST (auto) 19117 0 – – 128750 0 –
visitor 0 0 – – 0 0 –
visitor (auto) 10622 0 – – 22209 0 –
weeding 479 495 136 1.32 3266 5487 1.68
environment 161 125 126b 1.56 1170 2438 2.08
type linking/name resolving 275 442 130 2.08 1970 5154 2.62
hierarchy 500 396 – 0.79 3113 3493 1.12
disambiguation 235 336 128 1.97 1726 4111 2.38
type checking 1262 952 161 0.88 6489 8557 1.32
constant folding 256 375 – 1.46 1333 2999 2.25
reachability 115 75 – 0.65 832 935 1.12
definite assignment 493 178 – 0.36 2318 1630 0.70
resources 123 254 139 3.20 761 3430 4.51
code generation 807 734 83 1.01 3117 5010 1.61
optimizationc 21 87 – 4.14 281 890 3.17
limits 107 153 85 2.22 974 2439 2.50
code emission 128 121 – 0.95 1094 1274 1.16
util 415 18 – 0.04 2039 411 0.20
class environment 183 97 – 0.53 1338 990 0.74
class-file parser 243 200 – 0.82 1914 1804 0.94
errors 147 295 – 2.01 2293 2319 1.01
instruction 1284 296 – 0.23 12711 1791 0.14
main 347 102 – 0.29 2909 1318 0.45

total handwritten 8436 6790 1173 0.94 37306 49686 1.33
total auto generated 44624 9029 – 0.20 72292 26530 0.37

a Number of lines of code in the relevant SableCC file section.
b Number of lines of code in the types module.
c Excluding the peephole pattern collection. The AspectJ numbers do not include code implement-
ing the peephole optimization DSL, nor the AspectJ peephole driver.

Table 2: Number of lines of code (LoC) in each implementation. Each source
LoC was obtained by first removing comments and blank lines and counting with
wc -l. Each compressed LoC was obtained by further removing line breaks
and redundant whitespace before compressing with gzip. Entries marked with
(auto) denote auto-generated code.
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All in all, the two implementations are very close according to the lines-of-
code measure, with OCaml being a bit more concise on raw lines-of-code and
AspectJ a bit more concise when considering compressed lines-of-code. This
matches our expectation that the compressed lines-of-code measure will benefit
the AspectJ implementation given the sometimes verbose and repetitive style
of idiomatic Java. OCaml is sometimes cited as a domain-specific language for
compilers thus it was surprising to us that the OCaml implementation did not
turn out to be smaller than the AspectJ implementation. In our view, the fact
that the AspectJ implementation is comparable to the OCaml implementation,
regarding lines of handwritten code, indicates that AspectJ and SableCC are
indeed very expressive tools for writing a compiler in Java.

4.1.2 Modularity

Both systems are designed with modularity in mind and satisfy Requirement 1
to a sufficient degree. In our compiler design, a module is associated with a
compiler phase. Each phase is specified separately, as an aspect in AspectJ, or
as a function in OCaml. When using the testing suite, the concrete implemen-
tation of a phase can then be supplied by either the student or by the reference
implementation.

Even though both implementations satisfy the modularity requirement, the
abstractions used to this effect are very different. A compiler phase is more
flexible in the AspectJ implementation. For example, the implementation might
inject administrative information as fields on the tree nodes and use them locally
to the phase or as input to a later phase. This injection is not possible in the
OCaml implementation: The data type of trees defines the interface between
phases and changing it would require explicitly changing the phases that interact
with it. The flip-side of flexibility is stability. The OCaml specification is very
robust. All interactions between phases are determined by the static type of
the phase.6 Failure to comply with the interface is thus caught immediately
at compile time. In AspectJ, the interactions between phases are determined
by the concrete use that a particular phase makes of the information contained
within shared data structures, e.g., the abstract syntax tree. The interactions
of phases is therefore defined largely by the implementation and not by the
static specification. Thus, some discipline is needed when implementing phases
in AspectJ.

4.1.3 Tree types

The ASTs of both compilers are specified in a BNF-like notation: in OCaml the
AST is specified as an algebraic data type in a separate module (summarized in
the OCaml AST column of Table 2), whereas in SableCC the AST is specified

6For completeness, an OCaml implementation could potentially circumvent the fixed trans-
formation interfaces dictated by static types by introducing, e.g., shared mutable state and
using it to communicate with other phases. However, such use of state would need to be done
deliberate and is not the intended design in the OCaml implementation. In contrast, injecting
fields in classes is the intended design in the AspectJ implementation.
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as a grammar in a dedicated section of the SableCC specification (summarized
in the AST row of Table 2). From this specification SableCC auto-generates
a class hierarchy that represents ASTs (summarized in the AST (auto) row of
Table 2).

The concrete data types for representing ASTs are a bit more involved than
the lvalue example from Figure 4, as they also represent position information.
Position information is common to many node types in the AST, as they need
it to generate user-friendly error messages. The auto-generated, object-oriented
AST underlying the AspectJ implementation models the sharing of position in-
formation by inheritance: All AST nodes share a common super type, Node,
which contains a position field along with getter and setter methods for ma-
nipulating positions. This object-oriented sharing in a common super type is
reminiscent of the AST representation in the OCaml implementation: Rather
than distributing the position information out into each variant (which would
require a needless case dispatch to obtain the position), it is instead kept in a
common record type along with the variant type. Any recursive occurrence of
the type refers to the (outermost) record type, thereby retaining both the posi-
tion and the pattern matching ability. Our example of lvalues is thus represented
as follows in the OCaml representation:

type lvalue = { lvalue_pos: Lexing.position; lvalue: lvalue_desc }

and lvalue_desc =

| Local of identifier

| NonstaticField of exp * identifier

| StaticField of namedtype * identifier

| ArrayIndex of exp * exp

The representation of lvalues after the type-checking phase extends this design
by using an extended record to remember the type of an lvalue. Surprisingly, this
representation did not arise in an attempt to mimic the AspectJ representation:
Instead it was inspired by OCaml’s own AST representation [23], which should
be representative of best practice within the language.

The resulting tree types of the two implementations differ in that one is based
on mutation: in AspectJ a sub-tree is replaced by destructing the original tree,
whereas the other is based on duplication: in OCaml a sub-tree is replaced by
creating a new AST with a new sub-tree. Furthermore the tree representations
differ in that the auto-generated tree types from SableCC are doubly linked, with
a parent and a child node each containing a reference to each other, whereas
the OCaml tree types are structural, with a parent node containing references
to (structurally smaller) child nodes (but not vice versa).

The singly-linked, structural representation has the advantage of enabling
sharing: multiple identical sub-trees need only be allocated once with each posi-
tion just containing a pointer to it. On the other hand, when a sub-tree changes,
all nodes on the spine from the root of the AST to the corresponding sub-tree,
need to be copied to preserve the singly-linked representation. In the OCaml
implementation, the phases map between multiple data types. Each data type
encodes which AST nodes that can occur at a specific point in the compilation
process. To avoid needless copying from one such data type to the next, tree
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modules share data types that do not change between them. For example, the
binary operations are invariant and hence shared across the first six phases, until
occurrences of +, ==, and != have been correctly resolved by the typechecker,
e.g., into string concatenation, address equality, and address inequality, respec-
tively. In contrast, the AspectJ implementation shares the same auto-generated
(sub)class hierarchy of binary operations across all compiler phases.

4.1.4 Tree traversal

The auto-generated visitor patterns in the AspectJ implementation have the
advantage of being reusable: the same traversal code is used throughout almost
all of the phases. In contrast, the OCaml implementation is based on hand-
written traversal code. This code has the advantage of being customizable for
the particular phase at hand, e.g., if a phase does not need to traverse certain
sub-trees of the AST it simply doesn’t do so. This tradeoff between reusability
and customizability shows up in Table 2 for many transformation phases where
the size of the OCaml code dominates the size of the AspectJ code: explicit
traversal code simply takes up more space.

One phase stands out as incompatible with the auto-generated visitor code
in AspectJ: the hierarchy phase, which resolves class hierarchy relationships
and the inheritance, hiding, and overriding of fields and methods according
to the Java Language Specification [12, chap.8,9], needs to traverse the class
hierarchy in a depth-first (or topologically-ordered) manner. Concretely this is
implemented in AspectJ by overriding the visitor methods for a type declaration
to first check any declared super types. The resulting code is not as concise as
the corresponding OCaml code when comparing the lines of code, however it
may be needlessly punished by Java’s tradition for repetitive code and long,
descriptive method names, as the compressed AspectJ phase actually takes up
less space than the OCaml phase (see Table 2’s hierarchy row).

Alternatively, one could have chosen to write reusable fold functions for the
AST data types that are shared across multiple phases in the OCaml implemen-
tation. For example, the constant folding, reachability, definite assignment, and
resources phases all traverse the same typed AST representation of the program
and would therefore potentially have benefited from such fold functions. We
chose not to pursue this direction further, out of a desire to keep the skeleton
code as simple as possible for newcomers to the language — which is in line
with the requirements for the project.

4.1.5 Static guaranties

The two implementations differ in how many invariants of the project are ex-
pressed in (and thereby statically ensured by) the type system. Three invariants
of this sort are guaranteed by OCaml’s type system:

(a) “there are no nodes of this sort after phase X”. For example, names and
method invocations are syntactically ambiguous and are therefore repre-
sented as AmbiguousName and AmbiguousInvoke constructors in the
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AST data types up to the disambiguation phase. Once these syntactic
forms are disambiguated based on name resolving and type checking, the
constructors do not occur in the subsequent AST data types.

(b) “there are no nodes of this sort before phase X”. For example, implementation-
wise arrays are special, with special-purpose instructions on the JVM. As a
consequence the array-length primitive and the array-clone methods must
be treated separately. However as arbitrary fields may be named length
and arbitrary methods may be named clone(), we require type anal-
ysis to distinguish the array-cases from the rest. As a consequence, the
ArrayLength and ArrayClone constructors do not occur in the AST
data types before type checking.

(c) “all nodes of this sort carry this information from phase X”. For example,
the resource-phase calculates an offset for each local variable as well as the
signature of each method. As a consequence the AST data type contains
an integer component for local variable declaration and use nodes, and a
signature string for method declaration and call nodes.

In contrast, the AspectJ implementation uses a single class hierarchy to
model the node types (as would a pure Java-based implementation), thereby
not statically guaranteeing (a), (b), or (c). The above static guarantees come
at the price of code duplication in the OCaml implementation (compare the
handwritten 80 LoC in AspectJ’s AST row with the handwritten 1173 LoC
that are the sum of OCaml’s AST column in Table 2).

4.1.6 Emerging patterns

Throughout both implementations, design patterns arose to address similar is-
sues in each their own way.

In the AspectJ implementation, the code makes repeated use of an auto-
generated getAncestor-method, which accepts a class as argument and walks
up the spine of the AST until it finds an instance of that class argument. For ex-
ample, this method is used to type check occurrences of the subexpression this,
in which the type checker needs access to the (type of the) outer class. A visit
to a this-expression node will invoke the following excerpt which walks up the
spine in the search for a type declaration node (PTypeDecl) and subsequently
extracts and saves its types:

@Override

public void outAThisExp(AThisExp exp) {

...

PTypeDecl typed = exp.getAncestor(PTypeDecl.class);

exp.type = typed.type;

}

In the OCaml implementation a different pattern arose: as the AST traver-
sals proceed from parent to child nodes without any immediate way to retrieve
the parent of a given node, any such contextual information must be passed
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along as additional arguments. In the above example, to type check occur-
rences of the subexpression this, the type checker would therefore pass along
(information about) the outer class declaration. The type checker however needs
to pass multiple pieces of such contextual information, e.g., the return type of
a method to type check return statements. Rather than having to repeatedly
patch the function headers and their multiple call sites to each pass and accept
additional arguments, we developed a pattern of info records which contain all
such contextual information. For example, the following excerpt declares an info
record type containing the current return type as well as the canonical name of
the enclosing class declaration and the type environment in which to look it up:

type info =

{ tenv : Types.type_env;

type_cname : Types.canonical_name;

...

current_return_type : Types.typeexp;

... }

The traversal code all just pass one additional argument which is an instance
of the above record type. If at one point the compiler implementer needs an
additional piece of information to be passed, the info record type can easily be
expanded without having to change the traversal code. This pattern of info
records is reminiscent of attribute grammars [19]. In particular we typically
pass inherited attributes as info records, which is a form of information passed
downwards in the AST traversal.

One can imagine a number of alternative implementation choices for this
particular issue: For example, in AspectJ we could have saved such contextual
information in (phase-)global variables for constant time access. Similarly in
OCaml we could have saved such contextual information in (phase-)global ref-
erence cells and thereby avoided the allocation and garbage collection of the
info records.

4.1.7 Multiple return values

Figure 8 contains an excerpt from the definite assignment analysis of the two
implementations. The analysis ensures that all local variables are assigned be-
fore they are used. Section 16 of the Java Language Specification [12] mandates
that Java implementations use a specific static analysis to ensure this property.
The analysis operates over four sets of locally declared variables:

• one set represents the set of variables that are definitely assigned before
evaluating an expression,

• one set represents the set of variables that are definitely assigned after
evaluating an expression, and

• two sets represent the set of variables that are definitely assigned after
evaluating an expression to true or false, respectively.
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public aspect DefiniteAssignment extends DepthFirstAdapter {

public Set<ALocalDecl> PExp.defasnBefore = null;

public Set<ALocalDecl> PExp.defasnAfter = null;

public Set<ALocalDecl> PExp.defasnAfterTrue = null;

public Set<ALocalDecl> PExp.defasnAfterFalse = null;

public Set<ALocalDecl> PLvalue.defasnBefore = null;

public Set<ALocalDecl> PLvalue.defasnAfter = null;

...

private Set<ALocalDecl> infiniteSet = new HashSet<ALocalDecl>();

...

@Override

public void caseAAssignmentExp(AAssignmentExp exp) {

PLvalue lvalue = exp.getLvalue();

PExp rightExp = exp.getExp();

lvalue.defasnBefore = exp.defasnBefore;

lvalue.apply(this);

rightExp.defasnBefore = lvalue.defasnAfter;

rightExp.apply(this);

if (lvalue instanceof ALocalLvalue) {

exp.defasnAfter = new HashSet<ALocalDecl>();

exp.defasnAfter.addAll(rightExp.defasnAfter);

exp.defasnAfter.add(((ALocalLvalue)lvalue).local_decl);

} else {

exp.defasnAfter = rightExp.defasnAfter;

}

exp.defasnAfterTrue = exp.defasnAfter;

exp.defasnAfterFalse = exp.defasnAfter;

}

...

}

(a) The AspectJ implementation of definite assignment analysis

and defass_exp exp scopeset b cld = match exp.TAst.exp with

...

| TAst.Assignment (lvalue,exp) ->

let a = defass_lvalue lvalue true scopeset b cld in

let a,_,_ = defass_exp exp scopeset a cld in

(match lvalue.TAst.lvalue with

| TAst.Local x -> let a’ = Varset.add x a in

a’,a’,a’

| _ -> a,a,a)

...

(b) The OCaml implementation of definite assignment analysis

Figure 8: Definite assignment analysis

20



Lvalues require only two such sets though: before and after.
The OCaml code for the function defass exp models this by passing

around sets (b in Figure 8b represents the before set) and returning a triple
consisting of the three after sets. Similarly defass lvalue accepts a ’be-
fore’ set and returns an ’after’ set. In contrast the AspectJ implementations
injects four fields into expression nodes (PExp), and two fields into lvalue nodes
(PLvalue). It remains only to connect together the sets appropriately. In
OCaml this happens by passing an after set (a) obtained from the lvalue as
an argument to the recursive defass exp call. In AspectJ this happens by
assigning to the injected rightExp.defasnBefore field before calling the
visiting method.

If the value being assigned is a local variable it needs to be added to the
set of definitely assigned ones. In (immutable) OCaml this is straightforward,
whereas the mutable AspectJ implementation requires duplicating an existing
set.

The OCaml code passes around a few additional inherited attributes: defass exp

passes scopeset which is the set of all local variables in scope and cld

which is an option describing the possibly enclosing local declaration. Simi-
larly defass lvalue accepts a boolean to indicate whether the lvalue is being
assigned (written) or read. Since these attributes differ between the different
syntactic categories (statements, expressions, lvalues, . . . ) there is too little
overlap in this case to warrant a common info record type as described in Sec-
tion 4.1.6. The AspectJ implementation contains corresponding idioms repre-
senting the same information (not shown in the listing).

4.1.8 Pretty printing

SableCC comes with handy autogenerated toString routines. In OCaml these
routines have to be written by hand. For pretty-printing the AST there is a
design choice: one can use OCaml’s standard pretty-printing library, Format, or
write one by hand. Whereas the first choice would be preferable from a software
engineering angle, we fear its syntax would set too high a bar for beginners in
OCaml.

4.1.9 Subtleties

For both languages we encountered a number of subtleties and surprises.
In OCaml the evaluation order is unspecified, however in practice both im-

plementations try to adhere to a (somewhat unusual) right-to-left evaluation
order following Caml’s Zinc virtual machine design [22]. This may lead to sur-
prises, e.g., if one traverses a list of methods, m::ms without explicitly dictating
evaluation order using let bindings:

(visit_method_decl m)::(visit_method_decls ms)
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If both m and ms contain errors, the resulting traversal rejects the program with
a reference to the last error (in ms), which is usually not what was intended.

In AspectJ the combination of auto-generated visitor code and replacing sub-
trees by mutation can lead to surprising results as well: if the visitor pattern
code keeps a reference to substituted sub-trees, e.g., in an iterator, the visitor
pattern will suddenly traverse the old, already replaced sub-tree, thereby causing
unexpected behavior.

Unlike OCaml, the tree representation auto-generated by SableCC is doubly-
linked with parent and child nodes containing references to each other. This
representation however forbids sharing of sub-trees: as a node can only reference
a single parent, if one sub-tree is inserted in several positions the parent reference
will only be valid for one of the positions. To preserve this tree invariant one
has to explicitly clone() the sub-tree and insert the copy instead. Since this
implicit tree invariant is not statically guaranteed, it is up to tests to catch a
missing clone() invocation.

In many languages it is a common source of errors to confuse reference
(address) equality with structural equality. In OCaml this shows up when com-
paring data, e.g., variable or type names, using address comparison operators
== and != instead of the structural comparison operators = and <>. In AspectJ
and Java the same issue shows up in comparisons that use reference comparison
== instead of a suitably overridden equals method. In the presence of sub-
typing, equals is itself prone to comparing incomparable types as all equals
methods override the Object comparison from java.lang.Object, which
can lead to tests that are always false. Prior work by the third author [38]
suggests a refinement of Java’s type system to address this issue.

4.2 System and tools

We now turn to an evaluation of the system-oriented parameters.

4.2.1 Libraries

For a non-trivial software project such as the present one, it is essential to be able
to build upon existing libraries for common tasks rather than having to start
from scratch. In the present case, both implementations rely on a library for
parsing Java’s .jar and class files. This enables the implementations to compile
up against the Java standard library. Since the .jar format is essentially a zip-
archive, available libraries for parsing those are required too.

The AspectJ implementation uses BCEL (the Byte Code Engineering Li-
brary, now part of the Apache Project) [5] for parsing class files from the Java
standard library. The OCaml implementation uses Javalib [4]. We found both
libraries to be mature and well-documented and hence up for the task. Al-
ternatives to the above libraries exist, e.g., the more recent Barista library for
OCaml [7]. However we have found no need to pursue such alternatives.

In both cases, these library dependencies have been made easily available
through established package systems on the different platforms, e.g., Cygwin,
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%{ %}

%token A

%start x

%type <unit> x

%%

x : { }

| A x { }

| A A x { };

(a) The example in ocamlyacc

Tokens

a = ’a’;

Productions

x = {empty}

| {one} a x

| {two} [first]:a [second]:a x;

(b) The example in SableCC

Figure 9: Example of an ambiguous grammar

MacPorts and APT/RPM, or shipped as part of the project skeleton, e.g., as
jar files for the various Java libraries. Furthermore, for the OCaml project,
the Makefile for building the skeleton contains a special “libs” target that will
download and install all remaining libraries that were not installed by the host’s
package management system. For subsequent editions of the course we would
consider the recent OPAM package management system for OCaml [28].

4.2.2 Lexing and parsing

For the OCaml implementation we used ocamllex (a lexer generator) and ocamly-
acc (a parser generator) both included in the OCaml distribution, whereas
for the AspectJ implementation we used (a locally branched version [37] of)
SableCC [10] — a combined lexer and parser generator which also auto-generates
classes representing the syntax tree along with methods implementing generic
tree traversals via visitor patterns.

The error messages from ocamlyacc (shift-reduce, reduce-reduce conflicts)
leaves a bit to be desired compared to SableCC. For example, consider the
ambiguous grammars in Figure 9a and Figure 9b corresponding to the following
context-free grammar (writing Λ for the empty string):

x ::= Λ | A x | A A x

When fed to ocamlyacc the error message included in Figure 10 indicates the
problem in terms of the automaton to which the grammar has been compiled
without indicating the context which leads to said problem. The error mes-
sages of SableCC have been improved to be more informative: as the example
error in Figure 11 illustrates, the error message now includes information about
the parser’s stack, which reflects a derivation in the input grammar. The error
messages of ocamlyacc are not as descriptive and hence more on par with the
original SableCC conflict error messages. For the second iteration of the OCaml
version of the course, we therefore switched parser generator from ocamlyacc to
Menhir [29]. To a large extent, the switch was seamless, as the input format of
the two tools is largely compatible. Overall, Menhir provides better error mes-
sages on par with the patched SableCC for the benefit of the students debugging
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0 $accept : %entry% $end

1 x :

2 | A x

3 | A A x

4 %entry% : ’\001’ x

...

7: reduce/reduce conflict (reduce 2, reduce 3) on $end

state 7

x : A x . (2)

x : A A x . (3)

. reduce 2

Rules never reduced:

x : A A x (3)

State 7 contains 1 reduce/reduce conflict.

4 terminals, 3 nonterminals

5 grammar rules, 8 states

Figure 10: Output error from ocamlyacc (excerpt from parser.output)

SableCC version 3.2/daimi-201008261629

...

class java.lang.RuntimeException:

reduce/reduce conflict in state [stack: TA TA PX *] on EOF in {

[ PX = TA PX * ] followed by EOF (reduce),

[ PX = TA TA PX * ] followed by EOF (reduce)

}

class java.lang.RuntimeException:

reduce/reduce conflict in state [stack: TA TA PX *] on EOF in {

[ PX = TA PX * ] followed by EOF (reduce),

[ PX = TA TA PX * ] followed by EOF (reduce)

}

Figure 11: Output error from (patched) SableCC

shift-reduce and reduce-reduce conflicts. For example, on the input from Fig-
ure 9, Menhir produces the error in Figure 12, which reflects the ambiguity in
terms of the input grammar.
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** Conflict (reduce/reduce) in state 3.

** Token involved: #

** This state is reached from x after reading:

A A x

** The derivations that appear below have the following common factor:

** (The question mark symbol (?) represents the spot where the

** derivations begin to differ.)

x // lookahead token is inherited

(?)

** In state 3, looking ahead at #, reducing production

** x -> A x

** is permitted because of the following sub-derivation:

A x // lookahead token is inherited

A x .

** In state 3, looking ahead at #, reducing production

** x -> A A x

** is permitted because of the following sub-derivation:

A A x .

Figure 12: Output error from Menhir (parser.conflicts)

A range of alternative lexer and parser tools exist, e.g., JLex and ANTLR
for Java/AspectJ, and uLex for OCaml. No such alternatives have been pursued
at this point.

While developing the Joos lexer with ocamllex we encountered the following
error message:

ocamllex: transition table overflow, automaton is too big

The problem is that with too many keywords in the language, the size of the
generated lexer automaton explodes. This is however such a common error that
the OCaml manual [23] suggests a work-around: to keep a separate hashtable
of keywords and scan all identifiers with a single regular expression, e.g.,

[’A’-’Z’ ’a’-’z’] [’A’-’Z’ ’a’-’z’ ’0’-’9’ ’_’]*

and subsequently look up the identifier in the hashtable to determine whether
the present token is a keyword or an identifier.

In the initial porting of the grammar from SableCC to ocamlyacc we ac-
cidentally used the identifier type as a non-terminal in the grammar fed to
ocamlyacc. This was unfortunately not caught by ocamlyacc even though type
is a keyword in OCaml. Instead we received a subsequent error from the OCaml
compiler as the auto-generated parser did not itself parse. Historically ocamly-
acc is derived from the Berkeley Yacc implementation, with the original C back-
end replaced by an OCaml backend. As such it does not check for such conflicts.
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AspectJ OCaml
Time (sec) Total SableCC⋆ native bytecode
Best 62.67 25.21 + 6.56 25.51 15.47
Average of 3 runs 64.51 25.51 + 6.63 25.71 15.50

⋆ Column reports times to invoke SableCC twice — once for the
Joos2 parser (first number) and once for the Peephole DSL
parser (second number)

Table 3: Compile times for a full build of the two implementations

The Menhir parser generator, which was developed more recently, performs such
checks.

Space-wise, the handwritten OCaml code for generating a lexer and a parser
dominates the corresponding SableCC specification. First SableCC uses a single
file format for both the lexer and the parser and thereby enjoys the sharing of
a common token definition. Second by studying the numbers in Table 2, the
difference is greatest in the description of the lexers: the lexer specification in
ocamllex takes 210 source lines, whereas the lexer section of the entire SableCC
specification takes only 38 source lines. This difference is mostly due to a triple
duplication of the OCaml token definition: one occurrence declares the token
data type, one token-to-string function dispatches on the token data type, and
finally the lexer itself is defined by a regular expression for each token in the
data type. In contrast, SableCC generates code for the former two automati-
cally, thus saving a factor of three. Third, the slight size difference in the parser
specifications is due to SableCC’s support for Extended BNF (EBNF) gram-
mars, which includes common regular expression shorthands for options (A?),
non-empty lists (A+), and possibly empty lists (A*). Again ocamlyacc does not
support these for historic reasons, however Menhir does.

4.2.3 Compiling and building

OCaml is well-known for its fast compiler, which results in a very short edit-
compile-run development cycle. Table 3 reports build times to build each im-
plementation from scratch. The reported byte code build times for OCaml to
some extent confirms the above understanding.

The compile times for the AspectJ implementation is clearly dominated by
the time to run the SableCC parser generator (reported in a separate column).
The times to run ocamllex and ocamlyacc are negligible (0.10 sec for ocamllex,
and 0.08 sec for ocamlyacc, on average). When subtracting the lexer and parser
generation times of SableCC, the build times are more comparable (about 30
seconds for AspectJ and about 25 seconds for native OCaml).

The AspectJ implementation can be built with Eclipse’s built-in compilation
system. As an alternative, we have provided students with a vanilla Makefile
as part of the skeleton. The OCaml implementation uses ocamlbuild (a ded-
icated build tool included with the OCaml distribution) which we invoke with
suitable arguments from a plain Makefile. Initially we used ocamldep (a ded-
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icated dependency analyser included with the OCaml distribution) to manually
generate suitable Makefiles for the compilation process, however ocamlbuild
deals with dependency analysis automatically and reliably.

Both of the above tools have their advantages: for AspectJ, integrated build-
ing in Eclipse is a plus for development. Similarly for OCaml, Makefiles integrate
well with other tools, e.g., the Emacs editor.

4.2.4 Execution

The OCaml implementation primarily makes use of immutable data structures.
These structures can in some cases slow things down, e.g., by a logarithmic
factor for search trees. On the other hand, a common idiom of the AspectJ
implementation, described in Section 4.1.6, is to walk parent pointers up to
the AST root. This walk is avoided in the OCaml implementation by instead
threading (passing around) the local environment. Another difference in execu-
tion comes from the dynamic optimization techniques used by the JVM, as well
as its ability to cache static structures for fast initialization time on subsequent
runs.

We have measured the compilation time using the AspectJ implementation
on four different configurations of the underlying Java runtime:

1. the client mode is the default mode of the runtime system;

2. the server mode, invoked with -server, performs additional compilation
during startup;

3. the interpreter mode, invoked with -Xint, disables dynamic compilation;
and

4. the client mode without class caching, invoked with -Xshare:off, dis-
ables the caching of class structures to disk.7

In almost all cases, the compilation times of the server mode, the client mode,
and the client mode without caching show no statistically significant difference in
performance, measured at 95% confidence. For completeness, we have included
the full data table in A, Table 5. The Java runtime in interpreter mode, i.e.,
without dynamic compilation, is consistently slower than the other Java modes,
but not by much. The AspectJ implementation performs comparably to Sun’s
(now Oracle’s) Java compiler, but for some of the larger programs it is up to
a factor of two slower, e.g., for the czero and grammar benchmarks (see A,
Table 5).

We have measured the compilation time using the OCaml implementation for
both the compiler produced by the OCaml byte-code compiler and the compiler
produced by the OCaml native code compiler. Our measurements confirm the
folklore that OCaml performs quite predictably (cf. the standard deviation col-
umn of OCaml native in A, Table 5). Overall the byte-code compiled version is

7Class data sharing [35] is a JVM technique that saves internal class representations to
disk and uses memory mapping to quickly recreate them on subsequent runs

27



3 3.5 4 4.5 5 5.5
czero

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
mersenne

java -Xserver

java (client)

java -Xint

java -Xshare:off

ocaml native
average

median

Figure 13: Compile times of Joos compilers on the czero and mersenne bench-
marks

a factor of two behind the native-code compiled version, which in turn is within
a factor two of the AspectJ implementation. For small input programs, the
overhead of starting the OCaml native code is faster than the AspectJ startup,
e.g., for the helloworld, helloworld2, int2str, mandelbrot, mersenne, and ping-
pong benchmarks (see A, Table 5). However, once the JVM is up and running
the statically optimized OCaml cannot keep up. Another explanation is the
maturity of the AspectJ implementation which has been refined over the years.
We expect this gap to narrow as the OCaml implementation also matures.

Figure 13 displays two selected benchmarks in more detail. The czero bench-
marks shows how, for a larger benchmark, the Java and AspectJ implementa-
tions outperform the OCaml implementation in terms of compilation speed. The
three Java configurations with dynamic compilation perform comparably, while
the interpreted mode is a bit slower and the OCaml native code is a factor of
two slower. The mersenne benchmarks shows how, for a small benchmark, the
startup overhead of the Java runtime becomes noticeable. Here OCaml is the
fastest and the three Java configurations with dynamic compilation show some
unpredictability as seen by the relatively large standard deviations.

4.2.5 Debugging

Java ships with JDB, the Java Debugger, and its integration with, e.g., Eclipse,
provides a reasonable debugging environment.

OCaml ships with ocamldebug which can be used to debug a byte-code
compiled OCaml program. It provides all the standard features for stepping
and inspecting the code. It also allows hooking in OCaml printing routines to
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allow improved pretty-printing of values. Initially the debugger could not be
used on Windows due to a bug in the Cygwin Flexlib package which OCaml
depends upon. This error has been fixed in later version of Flexlib.

4.2.6 Documentation

For documenting the two implementations, we have used the de-facto tools for
the platform: Javadoc for Java/AspectJ and ocamldoc for OCaml. Both tools
work reasonably, but we found neither were perfect for the job. Javadoc does not
support the AspectJ extensions to Java. As a consequence the documentation
has been generated by temporarily rewriting AspectJ constructs into Java ones,
e.g., aspect into class, and running Javadoc on the temporary files.

The ocamldoc tool makes many assumptions about how and where code is
commented. We would prefer to place all comments with the implementation
code even when we also specify an interface, since the implementation code is
what the students will be editing. The documentation build uses the OCaml
compiler to obtain symbols and type information. This is useful but also com-
plicates generation of documentation for “non-existing” code, e.g., the lexer and
parser specifications. Also we found the generation time to be very long. We
have not pursued alternatives at this point, e.g., the enhanced ocamldoc tool,
Argot [6]. For a project such as this compiler project it might also be worth
considering an alternative type of documentation tool all together, e.g., literate
programming [20, 30] or out-of-source documentation.

4.2.7 Development environments

There are a multitude of editors and development environments. For the As-
pectJ project, a standard Java setup works and we do not cover their respective
merits here.

For the OCaml project, being a bit more esoteric, we have considered two
setups specifically: Emacs using Tuareg Mode and Eclipse using the OCaml
plugin OcaIDE. Both Emacs and Eclipse are widely used and the Tuareg and
OcaIDE extensions appeared to be the most complete OCaml extensions for the
respective editors.

Emacs and Tuareg Mode Installation is straightforward: one has to fetch
and unpack the tuareg archive and paste a few setup lines into one’s .emacs
configuration file. Development of OCaml within Emacs follows mostly the same
workflow as with other major Emacs modes for programming. When editing in
tuareg-mode, a keyboard shortcut will start an interactive top-level; and another
keyboard shortcut will invoke a compilation command, here the default make
-k will result in building the compiler with default arguments. Furthermore
compilation errors are formatted in accordance to Emacs style which makes it
possible to easily navigate between them.
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Eclipse and OcaIDE Installation is straightforward using Eclipse’s existing
plugin installation infrastructure. After installing, Eclipse might need to be
told where the OCaml and Make executables and library files are located. Fi-
nally, Eclipse users have two choices for configuring the build setup: (1) they
can use the Makefile-managed project which will simply use our existing build
infrastructure; or (2) they can use the ocamlbuild-managed project. Option (1)
does not provide full development environment support, e.g., for the debugger
and top-level. However, option (2) requires manually configuring actual library
locations for the compiler and linker. At the time of writing, this setup cannot
be done in a system-agnostic and reusable way.

A frustration we have with the Eclipse system is that some of its configu-
ration is located outside of the project directory and prohibits us from simply
shipping this setup to the students as part of the source archive.

4.3 Summary

Both implementations have satisfied the project objectives. Both programming
languages have sufficient support across the main platforms. The languages have
the necessary libraries and provide the necessary tools to work effectively. By de-
sign, the main programming concepts are within reach of the course students—
witness the eight successive instances of our compiler course. Based on the total
number of lines of the two implementations and experience running the course,
we also perceive both projects as equally challenging development-wise. The
main differences to draw from our evaluation are:

Efficiency of the build setup. The build times of our implementations con-
firm the reputation of the OCaml native-code compiler and byte-code
compiler as being efficient. Both provide a faster turnaround time com-
pared to compiling the AspectJ implementation.

Efficiency of the compilers. Our evaluation of the execution speed of the
compilers, i.e., the time it takes to compile a Joos program, shows an
overall win for the AspectJ implementation by a factor of two. There
are two main suspects that might cause this deficiency in the OCaml
implementation:

Garbage-collection time. The OCaml implementation is based on the
transformational compiler model, where each phase constructs a new
tree leaving the previous as garbage. This can lead to increased
garbage collection time, e.g., if the compiler code retains a pointer to
an old tree thus forcing OCaml’s tracing garbage collector to preserve
it, and any additional data structures it (transitively) refers to.

General lack of optimization. The AspectJ implementation has been
refined over six years which is not yet the case for the more recent
OCaml implementation. Indeed, the current implementation still
uses a few inefficient data structures, such as linked lists to represent
sets.
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Investigating and optimizing the compilers is an ongoing effort and we
expect to narrow the gap between the two as the OCaml implementation
matures.

Reliability of the compilers. Our evaluation shows some benefit in the ex-
pressiveness of specifications in the OCaml implementation. This expres-
siveness is due both to the static type system of OCaml, which allows a
strict specification of each phase, as well as the transformational compiler
model, which allows characterizing the input and output at a finer level
of granularity. The static specification guides and in some places forces a
particular implementation.

5 Related work

We split our discussion of related work in three: first we compare to previous
work concerned with language comparison, second we compare to previous work
related to the so-called expression problem and extensible compiler frameworks,
and third we compare to previous work on general compiler writing.

5.1 Language and language feature comparisons

Hudak and Jones [16] report on an experiment of prototyping a “Geometric
Region Server” in a number of different languages, including Haskell, Ada, C++,
and Awk. Their comparison confirms the impression of functional programs as
being compact: solutions range from the authors’ Haskell solution of only 85
LOC to 1105 LOC for the reported C++ solution. The present case study,
which is orders-of-magnitude larger, does not confirm this impression. This
could be due to several factors: our mostly first-order OCaml implementation,
the expressiveness of AspectJ combined with SableCC, or maybe some inherent
property of our project and its modularity requirements.

Hartel et al. [14] compare an impressive range of functional programming lan-
guage implementations on the same program, Pseudoknot, a non-trivial applica-
tion of approximately 3000 LOC taken from molecular biology. The comparison
focuses primarily on compile time and execution time of this floating-point sen-
sitive program. As in the present case, the Pseudoknot benchmark program was
translated from one language into the next (starting with a version in Scheme).
The comparison comes with a number of caveats: for example, some implemen-
tations use single precision floating point numbers whereas others use double
precision floating point numbers — a difference which can affect the comparison
of run times. Nevertheless, with suitable optimization, optimizing implemen-
tations of functional languages could approach the performance of C for such
numeric applications more than 15 years ago.

The Computer Language Benchmarks Game [3] (formerly known as the Great
Computer Language Shootout) is a community effort to benchmark different
programming language implementations against each other. Starting from one
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class \ method weeding disambiguation type checking definite assignment
local · · · ·

non-static field · · · ·
array index · · · ·
static field · · · ·

Table 4: A dispatch matrix on lvalues

man’s desire to compare scripting languages, the benchmarks game has grown
increasingly popular and spurred programming language communities to im-
prove their benchmark performance in order to make their language of choice
more attractive. At the time of writing, the benchmarks game compares execu-
tion time, memory usage, and CPU load of 14 different small, but non-trivial
applications written in 27 different languages (and running on even more imple-
mentations) across four different architectures. Like us, the benchmarks-game
implementers notice a small, but significant difference in Java’s execution time
when comparing the first and subsequent runs of the Java VM.

Minsky and Weeks [26] describe the Jane Street Capital company’s usage of
OCaml for high-frequency trading on Wall Street. They highlight the terseness
of the language, the strong guarantees they obtain from the language’s type sys-
tem, as well as the predictable behavior of the compiler. On the other hand they
criticize the language for lacking generic operations, e.g., for printing arbitrary
OCaml values, and for lacking tools for programming in the large. Admittedly
of course, our 10 KLOC comparison is far from the 1-2 MLOC in production at
Jane Street Capital.

5.2 The expression problem and extensible compilers

Reynolds [31] originally pointed out the tension between programs that are
easy to extend with additional data vs. programs that are easy to extend with
additional operations. The tension was later popularized by Wadler as ‘the ex-
pression problem’. Harper classifies this problem as the representation choice of
a dynamic dispatch table and the inherent duality of the problem [13]. Consider
again the grammar of lvalues from Figure 1. Here we have four classes repre-
senting the four productions of lvalues. The compiler implementation consists
of several passes over lvalues, e.g., weeding, disambiguation, type checking, and
definite assignment. The product of these two sets populates a dispatch matrix
as illustrated in Table 4. We might represent this table by rows or by columns.
In Java we represent a row as a Java class and each method as a Java method
on that class. Extending the table with a new row is easily done by locally
defining a new class of lvalues. Extending the table with a column is difficult
since we must separately add a new method to each existing class of lvalues. In
OCaml we represent a column as an OCaml function that case dispatches on
the classes of lvalues. Extending the table with a new column is easily done by
locally defining a new function over lvalues. Extending a row is difficult since
we must separately add a new case to each existing function over lvalues.
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In our particular context the ability to add new columns, e.g., new compiler
passes, is needed most. For the same reason the AspectJ implementation uses
double dispatch (through the Visitor Pattern [11]) to locally define a compiler
pass and uses aspects to add new information to the AST classes. The OCaml
implementation simply defines a new AST data type whenever information is
added or removed from the AST. In both cases, this somewhat static definition
of the AST is reasonable and even desirable because it makes many aspects of the
compiler transparent. The OCaml data types are closed and fixed and we don’t
use AspectJ to extend the types of AST nodes beyond those auto-generated
by SableCC. However, AspectJ is capable of defining new classes within the
existing class hierarchy as well as adding new methods and fields to existing
classes, which makes it a viable candidate for use in an extensible compiler.

Polyglot [27] is an extensible compiler framework for the Java programming
language, which can be extended with both new AST node types and with new
compiler passes. It has furthermore been designed with extension scalability in
mind, meaning that the implementation effort of extensions should vary with
the size of the language extension. The Polyglot framework includes a data-
flow analysis engine, which comes with implementations of the reachability and
definite assignment analyses similar to the present compilers. Like the OCaml
implementation (and in contrast to the AspectJ implementation), the Polyglot
framework is functional: it does not perform destructive updates to the abstract
syntax tree.

Ekman and Hedin [8] present another extensible Java compiler, JastAddJ.
JastAddJ is itself written in JastAdd, a declarative, aspect-oriented, domain-
specific programming language based on attribute grammars. The JastAddJ
compiler is structured as a Java 1.4 compiler which is extended to a Java 1.5
compiler using attribute grammar extensions, including the substantial addition
of generic types and wildcards to the type system. The compiler is implemented
with the AST as the only data structure. As such, its type analysis is represented
by a reference attribute, similar to our AspectJ implementation.

JastAdd shares some of the aspect-oriented advantages with our AspectJ
implementation in the form of keeping related code grouped together. It fur-
thermore shares some of the declarative advantages with our OCaml implemen-
tation by keeping reference attributes to a minimum. Ekman and Hedin [8]
report source-lines-of-code (SLOC) for their implementation which are compa-
rable with those of the present paper — albeit for a full Java 1.4 compiler. These
should be taken with a grain of salt though, as (a) their domain-specific language
leaves the order of attribute evaluation unspecified, and (b) the JastAdd system
caches many attributes, both of which may make code with explicit evaluation
order and caching come out worse. They do not report on the lines-of-code
generated by the JastAdd system.

5.3 Compiler work

As previously mentioned, the OCaml data types were inspired by the OCaml
compiler’s own AST representation [23]. This data type representation is in
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itself close to that of the Standard ML of New Jersey compiler [2], and as
such reasonably traditional within the functional programming community. The
encoding of additional invariants in the types themselves bears similarities to
the typed intermediate languages of the type-directed TIL compiler [36].

A number of other papers discuss design issues in a compiler course. In
the nano-pass framework of Sarkar, Waddell, and Dybvig [32], the authors ar-
gue that several minimalistic passes over a syntax tree is preferable to fewer
“monolithic” passes. Even though Scheme is dynamically typed, the framework
allows to define input and output languages for each pass (specified as BNF
grammars), and (1) have boilerplate traversal code auto generated, (2) have the
framework ensure that each pass conforms to the specification and, (3) ensure
that the pipeline input and output languages match up. The auto-generated tree
traversal code of the nano-pass framework is comparable to the auto-generated
visitor code by the SableCC parser generator. On the other hand, the nano-pass
framework’s static checks are comparable to the static guarantees provided by
the tree types of the OCaml implementation. Keep and Dybvig [17] later make
the case for the nano-pass framework in an industrial setting of the commercial
Chez Scheme compiler.

Schwartzbach [33] describes the overall design decisions behind the com-
piler course based on the original AspectJ implementation by the first author.
Schwartzbach furthermore argues that students can appreciate formal notation
such as inference rules, as they distill the essence of a complex, prose-based
language specification. In contrast, we focus on comparing and contrasting the
two reference implementations.

6 Conclusion and perspectives

In this case study, we have compared and contrasted two implementations of
the same software project in an attempt to give a non-trivial apples-to-apples
comparison. The resulting analysis is finer than a micro-benchmark shootout
yet big enough to reflect real-world practice.

Our entire code base shows that functional code (OCaml) is more concise
than the corresponding aspect-oriented code (AspectJ). However, a large frac-
tion of the aspect-oriented code is auto-generated, and the parts we wrote by
hand have about the same size.

The aspect-oriented implementation follows the “Christmas tree” model,
where the abstract-syntax tree is mutable and updated sequentially, and the
functional implementation follows the transformational model, where the abstract-
syntax tree is immutable and successive versions are created sequentially. The
functional implementation provides fast response times in the best case and a
slowdown by a factor of two in the worst case. Its performance is predictive.
The overhead of the additional tree copying is to some extent outweighed by
tree sharing at design time and by OCaml’s well-tuned garbage collector at run
time.

Each of AspectJ and OCaml has its advantages and disadvantages. Each
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phase of the OCaml implementation has a statically guaranteed interface, but
this static guarantee induces redundant data-type declarations and correspond-
ing traversal code. The visitor patterns of Java and AspectJ prevent much of
this redundancy, but the interface of each phase of the AspectJ implementation
must be checked dynamically. Also, the visitor pattern may interact poorly
with mutable abstract-syntax trees. Naturally, one could mirror each approach
in the other, e.g., by using only a single data type throughout the phases of the
OCaml implementation, along with a uniform fold function for traversing the
corresponding abstract-syntax tree. We expect such an approach to reduce the
amount of hand-written OCaml code below that of the AspectJ implementation.

In conclusion, from a language perspective, each of the two implementations
represents a tradeoff between flexibility and static guarantees. The flexibility
of the AspectJ implementation was helpful in creating the first version of the
project in an exploratory manner. Once the design had stabilized, the static
guarantees of the OCaml version were helpful in the teaching context to guide
students and to isolate the effects of each phase, thereby ensuring stability of the
outcome. From a systems perspective, both platforms come with their quirks
and surprises which hinder a completely smooth user experience. As such, there
is no clear winner. The two implementations demonstrate that non-trivial and
modular software can be obtained by combining a reasonable amount of code
with auto-generated (boiler-plate) code and available libraries.
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mid avg dev mid avg dev mid avg dev mid avg dev mid avg dev mid avg dev mid avg dev

anagram 100 1 1.28 1.24 0.09 1.79 1.78 0.03 1.75 1.83 0.15 1.79 1.79 0.00 1.76 1.77 0.03 5.75 5.75 0.01 12.27 12.26 0.04

brainfuck 314 7 1.35 1.33 0.05 2.00 2.02 0.08 2.00 2.02 0.07 2.14 2.14 0.00 2.10 2.08 0.03 4.48 4.49 0.02 9.93 9.93 0.01

container 32 1 1.33 1.32 0.03 1.54 1.54 0.02 1.59 1.58 0.03 1.60 1.61 0.03 1.55 1.55 0.01 1.93 1.93 0.01 4.59 4.59 0.01

cpr 188 4 1.39 1.34 0.09 1.90 1.88 0.03 1.85 1.85 0.04 1.89 1.89 0.00 1.85 1.86 0.03 2.63 2.63 0.01 5.53 5.53 0.01

crypto 275 6 1.23 1.26 0.05 1.95 1.97 0.03 1.95 1.96 0.03 1.99 1.99 0.00 1.95 1.98 0.06 4.43 4.43 0.00 9.49 9.48 0.02

czero 791 1 1.42 1.42 0.02 2.81 2.81 0.05 2.76 2.76 0.00 3.40 3.40 0.00 2.76 2.74 0.03 5.44 5.44 0.01 11.68 11.68 0.03

fib 99 3 1.23 1.20 0.08 1.65 1.65 0.00 1.64 1.65 0.05 1.69 1.68 0.03 1.70 1.66 0.06 2.73 2.74 0.01 5.83 5.84 0.03

grammar 570 18 1.54 1.49 0.12 2.76 2.77 0.03 2.80 2.78 0.03 3.30 3.30 0.00 2.80 2.82 0.03 5.86 5.86 0.00 12.88 12.85 0.05

helloworld 19 1 1.13 1.12 0.11 1.39 1.41 0.03 1.40 1.40 0.00 1.44 1.44 0.00 1.40 1.39 0.00 1.03 1.03 0.00 2.24 2.24 0.01

helloworld2 25 1 1.08 1.08 0.03 1.39 1.41 0.03 1.39 1.40 0.00 1.49 1.50 0.01 1.45 1.44 0.00 1.09 1.09 0.00 2.37 2.37 0.01

int2str 31 1 1.10 1.09 0.08 1.44 1.43 0.03 1.40 1.41 0.03 1.49 1.49 0.00 1.44 1.43 0.03 1.11 1.11 0.00 2.35 2.35 0.01

joos1 531 17 1.30 1.29 0.02 2.20 2.17 0.06 2.20 2.18 0.07 2.19 2.19 0.00 2.10 2.11 0.03 2.39 2.40 0.01 5.23 5.35 0.22

joos2html 301 1 1.16 1.20 0.07 2.36 2.24 0.20 2.15 2.13 0.08 2.19 2.20 0.00 2.05 2.07 0.08 3.65 3.64 0.02 7.65 7.65 0.03

mandelbrot 38 1 1.12 1.12 0.01 1.44 1.45 0.00 1.45 1.45 0.00 1.49 1.49 0.00 1.44 1.43 0.03 1.02 1.02 0.00 2.22 2.22 0.00

matrix 320 5 1.20 1.24 0.09 1.95 1.96 0.08 2.00 2.01 0.08 2.05 2.03 0.03 2.00 2.00 0.05 2.33 2.33 0.01 5.53 5.53 0.03

mersenne 104 4 2.13 2.14 0.02 1.60 1.61 0.03 1.65 1.63 0.03 1.64 1.64 0.00 1.65 1.63 0.03 1.37 1.37 0.01 2.95 2.95 0.01

pingpong 15 1 1.89 1.93 0.10 1.39 1.39 0.00 1.39 1.38 0.03 1.44 1.44 0.00 1.39 1.38 0.03 0.80 0.80 0.00 1.83 1.82 0.00

salary 226 5 1.95 1.92 0.07 1.70 1.71 0.03 1.70 1.70 0.00 1.74 1.74 0.00 1.70 1.70 0.00 2.25 2.25 0.01 4.86 4.86 0.02

scheme 975 30 2.77 2.78 0.01 2.60 2.63 0.06 2.60 2.64 0.11 3.35 3.35 0.00 2.60 2.58 0.03 3.70 3.70 0.02 7.86 7.87 0.07

search 124 4 2.13 2.14 0.04 1.70 1.71 0.03 1.75 1.73 0.03 1.75 1.76 0.03 1.70 1.71 0.03 2.18 2.19 0.02 4.59 4.59 0.00

strategy 205 4 2.10 2.11 0.07 1.75 1.75 0.00 1.75 1.75 0.04 1.79 1.80 0.00 1.74 1.75 0.05 2.47 2.48 0.02 5.16 5.15 0.02

sudoku 164 1 2.06 2.07 0.12 1.80 1.83 0.06 1.85 1.83 0.02 1.89 1.89 0.00 1.76 1.77 0.03 5.01 4.99 0.02 10.57 10.57 0.05

temp 68 4 2.10 2.10 0.01 1.55 1.55 0.00 1.55 1.55 0.00 1.59 1.58 0.03 1.54 1.55 0.05 2.21 2.21 0.01 4.58 4.63 0.10

turing 151 1 2.19 2.20 0.09 1.84 1.87 0.08 1.80 1.87 0.17 1.85 1.85 0.00 1.85 1.83 0.03 5.34 5.34 0.02 11.79 11.80 0.01

geo. avg. 1.53 1.82 1.81 1.90 1.81 2.51 5.44

Table 5: Compile times of resulting Joos compilers
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