
Olivier Danvy and
Jacob Johannsen

Report

From Outermost 
Reduction Semantics 
to Abstract Machine
Department of Computer Science



 

 

 

 

 

 

 

 

 

ISBN 978-87-7507-311-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover painting sketch by Irene Danvy, Aarhus, Summer 2014 

 

Aarhus University Library 



From Outermost Reduction Semantics

to Abstract Machine ∗

Olivier Danvy and Jacob Johannsen
Aarhus University †

January 2015

Abstract

Reduction semantics is a popular format for small-step operational seman-
tics of deterministic programming languages with computational effects.
Each reduction semantics gives rise to a reduction-based normalization
function where the reduction sequence is enumerated. Refocusing is a
practical way to transform a reduction-based normalization function into
a reduction-free one where the reduction sequence is not enumerated. This
reduction-free normalization function takes the form of an abstract ma-
chine that navigates from one redex site to the next without systematically
detouring via the root of the term to enumerate the reduction sequence,
in contrast to the reduction-based normalization function.

We have discovered that refocusing does not apply as readily for re-
duction semantics that use an outermost reduction strategy and have
overlapping rules where a contractum can be a proper subpart of a redex.
In this article, we consider such an outermost reduction semantics with
backward-overlapping rules, and we investigate how to apply refocusing
to still obtain a reduction-free normalization function in the form of an
abstract machine.

∗Extended version of [6].
†Department of Computer Science, Aabogade 34, DK-8200 Aarhus N, Denmark
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1 Introduction

A Structural Operational Semantics [28] is a small-step semantics where re-
duction steps are specified with a relation. For a deterministic programming
language, this relation is a function, and evaluation is defined as iterating this
one-step reduction function until a normal form is found, if there is one. This
way of evaluating a term is said to be “reduction-based” because it enumerates
each reduct in the reduction sequence, reduction step by reduction step. A re-
duction step from a term ti to the reduct ti+1 is carried out by locating a redex
ri in ti, contracting ri into a contractum ci, and then constructing ti+1 as an
instance of ti where ci replaces ri. In a Structural Operational Semantics, the
context of every redex is represented logically as a proof tree.

A Reduction Semantics [14] is a small-step semantics where the context of
every redex is represented syntactically as a term with a hole. To reduce the
term ti to the reduct ti+1, ti is decomposed into a redex ri and a reduction
context Ci[ ], ri is contracted into a contractum ci, and Ci[ ] is recomposed with
ci to form ti+1. Graphically:

ti = Ci[ri]→ Ci[ci] = ti+1

A reduction step is therefore carried out by rewriting a redex into a contractum
according to the reduction rules, with a rewriting strategy that matches the
reduction order and is reflected in the structure of the reduction context. If
the reduction strategy is deterministic, it can be implemented with a function.
Applying this decomposition function to a term which is not in normal form
gives a reduction context and a potential redex.

Reduction is stuck for terms that are in normal form (i.e., where no potential
redex occurs according to the reduction strategy), or if a potential redex is found
which is not an actual one (e.g., if an operand has a type that the semantics
deems incorrect).

For a deterministic programming language, the reduction strategy is deter-
ministic, and so it yields a unique next potential redex to be contracted, if there
is one. Furthermore, for any actual redex, only one reduction rule can apply.
Therefore, there are no critical pairs and rewriting is confluent.

The format of reduction semantics lends itself well to ensure properties such
as type safety [33], thanks to the subject reduction property from type theory.
It also makes it possible to account for control operators and first-class con-
tinuations by making the reduction context part of the reduction rules [3, 14].
Today reduction semantics are in common use in the area of programming lan-
guages [15, 26].
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1.1 Reduction-based vs. reduction-free evaluation

Evaluating a term is carried out by enumerating its reduction sequence, reduc-
tion step after reduction step:

. . .→
ti︷ ︸︸ ︷

Ci−1[ci−1] = Ci[ri]→

ti+1︷ ︸︸ ︷
Ci[ci] = Ci+1[ri+1]→

ti+2︷ ︸︸ ︷
Ci+1[ci+1] = Ci+2[ri+2]→ . . .

This reduction-based enumeration requires all of the successive reducts to be
constructed, which is inefficient. So in practice, alternative, reduction-free eval-
uation functions are sought, often in the form of an abstract machine, and many
such abstract machines are described in the literature.

Over the last decade, the first author and his students have been putting for-
ward a methodology for systematically constructing such abstract machines [10,
5, 4]: instead of recomposing the reduction context with the contractum to ob-
tain the next reduct in the reduction sequence and then decomposing this reduct
into the next potential redex and its reduction context, we simply continue the
decomposition of the contractum in its reduction context, as depicted with a
squiggly arrow:

. . .→ Ci−1[ci−1] Ci[ri]→ Ci[ci] Ci+1[ri+1]→ Ci+1[ci+1] Ci+2[ri+2]→ . . .

This shortcut works for deterministic reduction strategies where after recompo-
sition, decomposition always comes back to the contractum and its reduction
context before continuing [10]. In particular, it always works for innermost re-
duction, and has given rise to a ‘syntactic correspondence’ between reduction
semantics and abstract machines [2, 3].

This syntactic correspondence has proved successful to reconstruct many pre-
existing abstract machines as well as to construct new ones [1, 7, 17, 30], even
in the presence of control operators [3, 8]. For a class of examples, it applies
to all the reduction semantics of Felleisen et al.’s latest textbook [15]. More
generally, it concretizes Plotkin’s connection between calculi and programming
languages [27] in that it mechanizes the connection between reduction order (in
the small-step world) and evaluation order (in the big-step world), and between
not getting stuck (in the small-step world) and not going wrong (in the big-step
world).

That said, we have discovered that for reduction semantics that use an out-
ermost strategy and have backward-overlapping rules [12, 19, 18], refocusing
does not apply as readily: indeed after recomposition, decomposition does not
always come back to the contractum and its reduction context – it might stop
before, having found a potential redex that was in part constructed by the pre-
vious contraction. The goal of our work here is to study reduction semantics
that use an outermost strategy (“outermost reduction semantics”) and that
have backward-overlapping rules, and to investigate how to apply refocusing to
still obtain an abstract machine implementing a reduction-free normalization
function.
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1.2 Overview

We first illustrate reduction semantics for arithmetic expressions with an in-
nermost reduction strategy (Section 2), where all the elements of our domain
of discourse are touched upon: BNF of terms; reduction rules and contraction
function; reduction strategy and BNF of reduction contexts; recomposition of
a context with a term; decomposition of a term either into a normal form or
into a potential redex and a reduction context; left inverseness of recomposition
with respect to decomposition; one-step reduction as decomposition, contrac-
tion, and recomposition; reduction-based evaluation as the iteration of one-step
reduction; refocusing; and reduction-free evaluation. We then turn to the issue
of overlapping rules (Section 3). With respect to refocusing, the only problem-
atic combination of overlaps and strategies is backward-overlapping rules and
outermost strategy (Section 4). To solve the problem, we suggest to backtrack
after contracting a redex, which enables refocusing (Section 5). For symme-
try, we also consider foretracking (Section 6). We then review related work
(Section 7).

2 A simple example with an innermost strategy

We consider a simple language of arithmetic expressions with a zero-ary con-
structor 0, a unary constructor S, and a binary constructor A. The goal is to
normalize a given term into a normal form using only the constructors 0 and S.

Terms: The BNF of terms reads as follows:

t ::= 0 | S(t) | A(t, t)

Terms in normal form: The BNF of terms in normal form reads as follows:

tnf ::= 0 | S(tnf)

Reduction rules: The BNF of potential redexes reads as follows:

pr ::= A(0, t2) | A(S(tnf1 ), t2)

The reduction rules read as follows:

A(0, t2) 7→ t2
A(S(tnf1 ), t2) 7→ S(A(tnf1 , t2))

Note the occurrence of tnf1 , which is in normal form, in the left-hand side of the
second reduction rule: it is characteristic of innermost reduction.

All potential redexes are actual ones, i.e., no terms are stuck. We can thus
implement contraction as a total function:

pr 7→ c

contract(pr) = c
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Reduction strategy: We are looking for the leftmost-innermost redex. This
reduction strategy is materialized with the following grammar of reduction con-
texts:

C[ ] ::= �[ ] | C[S[ ]] | C[A([ ], t)]

We obtained this grammar by CPS-transforming a search function implement-
ing the innermost reduction strategy and then defunctionalizing its continua-
tion [11].

Lemma 1 (Unique decomposition). Any term not in normal form can be de-
composed into exactly one reduction context and one potential redex.

Recomposition: As usual, a reduction context is iteratively recomposed with
a term using a left fold, as specified by the following abstract-machine transi-
tions:

〈�[[[t]]]〉rec ↑ t
〈C[S[[[t]]]]〉rec ↑ 〈C[[[S(t)]]]〉rec

〈C[A([[[t1]]], t2)]〉rec ↑ 〈C[[[A(t1, t2)]]]〉rec

This abstract machine is a deterministic finite automaton with two states: an
intermediate state pairing a context and a term, and a final state holding a
term. Each transition corresponds to a context constructor. There is therefore
no ambiguity and no incompleteness. Recomposition is defined as the iteration
of these transitions:

〈C[[[t]]]〉rec ↑∗ t′

recompose(C, t) = t′

Since a context constructor is peeled off at each iteration, making the size of
the context decrease, the recomposition function is total.

Decomposition: Likewise, a term is iteratively decomposed in an innermost
fashion into a potential redex and its reduction context, as specified by the
following abstract-machine transitions:

〈C[[[0]]]〉decterm ↓ 〈C[[[0]]]〉deccont

〈C[[[S(t)]]]〉decterm ↓ 〈C[S[[[t]]]]〉decterm

〈C[[[A(t1, t2)]]]〉decterm ↓ 〈C[A([[[t1]]], t2)]〉decterm

〈�[[[tnf ]]]〉deccont ↓ tnf

〈C[S[[[tnf ]]]]〉deccont ↓ 〈C[[[S(tnf)]]]〉deccont

〈C[A([[[0]]], t2)]〉deccont ↓ C[A(0, t2)]

〈C[A([[[S(tnf)]]], t2)]〉deccont ↓ C[A(S(tnf), t2)]

This abstract machine is a deterministic pushdown automaton with four states
where the context is the stack: two intermediate states pairing a context and a
term, and two final states, one for the case where the given term is in normal
form, and one for the case where it decomposes into a context and a potential
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redex. Each transition from the first intermediate state corresponds to a term
constructor, and each transition rule from the second intermediate state cor-
responds to a context constructor. Each transition from the first intermediate
state peels off a term constructor, and each transition from the second interme-
diate state peels off a context constructor. There is therefore no ambiguity and
no incompleteness.

Furthermore, each transition preserves an invariant: recomposing the current
context with the current term yields the original term.

Given a term to decompose, the initial machine state pairs this term with
the empty context. There are two final states: one for terms in normal form
(and therefore containing no redex), and one for potential redexes and their
reduction context. Decomposition, which is defined as the iteration of these
machine transitions, is therefore a total function:

〈�[[[t]]]〉decterm ↓
∗ tnf

decompose(t) = tnf
〈�[[[t]]]〉decterm ↓

∗ C[pr ]

decompose(t) = C[pr ]

A notable property: Due to the invariant of the abstract machine imple-
menting decomposition, the recomposition function is a left inverse of the de-
composition function.

One-step reduction: One-step reduction is implemented as, successively, the
decomposition of a given term into a potential redex and its reduction context;
the contraction of this redex into a contractum; and the recomposition of the
reduction context with the contractum:

〈�[[[t]]]〉decterm ↓
∗ C[pr ] pr 7→ c 〈C[[[c]]]〉rec ↑∗ t′

t→ t′

Reduction-based evaluation: A term is evaluated into a normal form by
iterating one-step reduction:

t →∗ tnf

t ⇒rb t
nf

Towards reduction-free evaluation: Between one contraction and the next,
we recompose the reduction context with the contractum until the next reduct,
which we decompose into the next potential redex and its reduction context.
But since the reduction strategy is innermost (and deterministic), the decom-
position of the next reduct will come back to the site of this contractum and
this context before continuing. This offers us the opportunity to short-cut the
recomposition and decomposition to this contractum and this context and thus
to refocus by just continuing the decomposition in situ. 5 More formally, we
have

t ↓∗ C[pr ] C[pr ] ([ 7→]; ↓∗)∗ tnf

t⇒rf tnf

5



A(A(S(0), 0), 0)
decomposition

//

reduction

��

�[A([[[A(S(0), 0)]]], 0)]

contraction
��

�[A([[[S(A(0, 0))]]], 0)]
recomposition

rr
refocusing
��

A(S(A(0, 0)), 0)
decomposition

//

reduction

��

�[A([S[[[A(0, 0)]]]], 0)]

contraction
��

�[A([S[[[0]]]], 0)]
recomposition

rr
refocusing
��

A(S(0), 0)
decomposition

//

reduction

��

�[[[A(S(0), 0)]]]

contraction
��

�[[[S(A(0, 0))]]]
recomposition

rr
refocusing
��

S(A(0, 0))
decomposition

//

reduction

��

�[S[[[A(0, 0)]]]]

contraction
��

�[S[[[0]]]]
recomposition

rr
refocusing
��

S(0)
decomposition

// �[[[S(0)]]]

Figure 1: Innermost reduction sequence for A(A(S(0), 0), 0)

where ([ 7→]; ↓∗) denotes contraction in context followed by decomposition (and
was noted  in Section 1.1).

An example: See Figure 1.

Reduction-free evaluation: After applying refocusing, we follow the steps
of the syntactic correspondence [2, 3, 5], fusing the iteration and refocus func-
tions, inlining the contract function, and compressing corridor transitions. The
resulting normalizer implements a transition system described by the following
abstract machine:

t� 〈�[[[t]]]〉term

〈C[[[0]]]〉term � 〈C[[[0]]]〉cont
〈C[[[S(t)]]]〉term � 〈C[S[[[t]]]]〉term

〈C[[[A(t1, t2)]]]〉term � 〈C[A([[[t1]]], t2)]〉term

〈�[[[tnf ]]]〉cont � tnf

〈C[S[[[tnf ]]]]〉cont � 〈C[[[S(tnf)]]]〉cont
〈C[A([[[0]]], t2)]〉cont � 〈C[[[t2]]]〉term

〈C[A([[[S(tnf)]]], t2)]〉cont � 〈C[S[A([[[tnf ]]], t2)]]〉cont
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3 Backward-overlapping rules

Refocusing (i.e., the short-cutting of recomposition and decomposition after
contraction) is possible when, after recomposing a reduction context with a
contractum into a reduct, the subsequent decomposition of this reduct comes
back to this contractum and context before continuing.

However, there are cases where decomposition of the reduct does not come
back to the contractum. For example, this is the case when the reduction
strategy is outermost and the contractum is a proper subpart of a potential
redex: then after recomposing a reduction context with a contractum into a
reduct, the subsequent decomposition of this reduct would not come back to this
contractum and context—it would stop at the newly created potential redex,
above the contractum. So when the reduction strategy is outermost and a
contractum can be a subpart of a potential redex, refocusing is not possible.

A contractum can be a subpart of a potential redex when the reduction rules
contain backward overlaps:

Definition 2 (Backward-overlapping rules). Let l1 → r1 and l2 → r2 be two
reduction rules. If l1 decomposes into a non-empty context C and a term t that
contains at least one term constructor and that unifies with r2, then the two
rules are said to be backward-overlapping [12, 19, 18].

Symmetrically, if the left-hand side of one reduction rule can form a proper
subpart of the right-hand side of another rule, the reduction rules are said to
be forward-overlapping.

The combination of backward-overlapping rules and outermost reduction
does not occur often in programming languages. However, it does occur in the
full normalization of λ-terms using normal-order reduction, which has applica-
tions for comparing normal forms in proof assistants. Other occurrences can
more readily be found outside the field of programming-language semantics, in
the area of term rewriting.

We distinguish four cases of reduction strategy in combination with rule
overlaps, and treat each of them in the following sections:

innermost strategy outermost strategy
forward-overlapping rules Section 3.1 Section 3.2

backward-overlapping rules Section 3.3 Section 3.4

3.1 Forward overlaps and innermost strategy

In this case, a contractum may contain a potential redex. This redex will be
found in due course when the contractum is decomposed. The detour via an
intermediate reduct can therefore be avoided.
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3.2 Forward overlaps and outermost strategy

In this case, a contractum may contain a potential redex. This redex will also
be found in due course when the contractum is decomposed. The detour via an
intermediate reduct can therefore be avoided.

3.3 Backward overlaps and innermost strategy

In this case, a contractum may be a proper subpart of a potential redex. How-
ever, it should be considered after the contractum has been decomposed in
search for an innermost redex, which will happen in due course. The detour via
an intermediate reduct can therefore be avoided.

3.4 Backward overlaps and outermost strategy

In this case, a contractum may be a proper subpart of a potential redex. This
potential redex should be considered before decomposing the contractum since
it occurs further out in the term (i.e., towards its root). Avoiding the detour via
an intermediate reduct would in general miss this potential redex and therefore
not maintain the reduction order. Does it mean that we need to detour via every
intermediate reduct to normalize a term outside-in in the presence of backward
overlaps? In this worst-case scenario, reduction-free outside-in normalization
would be impossible in the presence of backward overlaps.

It is our observation that this worst-case scenario can be averted: most of the
detour via an intermediate reduct can be avoided if we can identify the position
of the correct potential redex without detouring all the way to the root.

In the next section, we show how to systematically determine the position of
the next potential redex relative to the contractum in the presence of backward
overlaps. This extra piece of information makes it possible to move upwards
in the term to the position of the potential redex. Most of the detour via the
intermediate reduct can therefore be avoided.

4 The simple example with an outermost strat-
egy

We now consider the same simple language of arithmetic expressions again, but
this time using an outermost reduction strategy.

Terms: The BNF of terms is unchanged:

t ::= 0 | S(t) | A(t, t)

Terms in normal form: The BNF of terms in normal form is also unchanged:

tnf ::= 0 | S(tnf)

8



Reduction rules: The BNF of potential redexes now reads as follows:

pr ::= A(0, t2) | A(S(t1), t2)

The reduction rules now read as follows:

A(0, t2) 7→ t2
A(S(t1), t2) 7→ S(A(t1, t2))

Note the occurrence of t1, which is not necessarily in normal form, in the left-
hand side of the second reduction rule: it is characteristic of outermost reduc-
tion.

All potential redexes are actual ones, i.e., no terms are stuck. We can thus
implement contraction as a total function:

pr 7→ c

contract(pr) = c

Reduction strategy: We are looking for the leftmost-outermost redex. We
materialize this reduction strategy with the same grammar of reduction contexts
as in the innermost case:

C[ ] ::= �[ ] | C[S[ ]] | C[A([ ], t)]

As in Section 2, we obtained this grammar by CPS-transforming a search func-
tion implementing the outermost reduction strategy and then defunctionalizing
its continuation.1

In contrast to Section 2, a term not in normal form can be decomposed
into more than one reduction context and one potential redex. For example,
the term A(S(A(S(t0), t1)), t2) can be decomposed into �[[[A(S(A(S(t0), t1)), t2)]]]
and �[A([S[[[A(S(t0), t1)]]]], t2)]. This non-unique decomposition puts us outside
the validity conditions of refocusing [10], so we are on our own here.

Recomposition: It is defined as in Section 2.

Decomposition: A term is decomposed in an outermost fashion into a poten-
tial redex and its reduction context with the following abstract-machine transi-
tions:

1A more precise grammar for contexts exists in the outermost case. It presents the same
problems for refocusing as the one used here, and the solution we present also applies to it.
Being unaware of any mechanical way to derive a precise grammar for outermost reduction,
we therefore present our solution using this less precise but mechanically derivable grammar.
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〈C[[[0]]]〉decterm ↓ 〈C[[[0]]]〉deccont

〈C[[[S(t)]]]〉decterm ↓ 〈C[S[[[t]]]]〉decterm

〈C[[[A(t1, t2)]]]〉decterm ↓ 〈C[[[A(t1, t2)]]]〉decadd

〈C[[[A(0, t2)]]]〉decadd ↓ C[A(0, t2)]

〈C[[[A(S(t1), t2)]]]〉decadd ↓ C[A(S(t1), t2)]

〈C[[[A(A(t11, t12), t2)]]]〉decadd ↓ 〈C[A([[[A(t11, t12)]]], t2)]〉decadd

〈�[[[tnf ]]]〉deccont ↓ tnf

〈C[S[[[tnf ]]]]〉deccont ↓ 〈C[[[S(tnf)]]]〉deccont

As in Section 2, this abstract machine is a pushdown automaton where the
context is the stack. This time, the machine has five states: two intermediate
states pairing a context and a term, one intermediate state with two terms and
a context (this state handles A terms – the A is shown in the transitions above,
but can be left implicit in an implementation), and two final states, one for the
case where the given term is in normal form, and one for the case where the
term decomposes into a context and a potential redex.

Each transition rule from the first intermediate state corresponds to a term
constructor. Each transition rule from the second intermediate state corre-
sponds to a term constructor on the left-hand side of an addition. Each transi-
tion rule from the third intermediate state corresponds to a context constructor.
There is no transition rule to handle A context constructors in the third state,
because the machine will move to the second state if it sees a A term construc-
tor, after which the machine is guaranteed to find a potential redex. There is
therefore no ambiguity and no incompleteness.

Furthermore, each transition preserves an invariant: recomposing the cur-
rent context with the current term yields the original term. Given a term to
decompose, the initial machine state pairs this term with the empty context.
There are two final states: one for terms in normal form (and therefore contain-
ing no redex at all), and one for potential redexes and their reduction context.
Decomposition, which is defined as the iteration of these machine transitions, is
therefore a total function:

〈�[[[t]]]〉decterm ↓
∗ tnf

decompose(t) = tnf
〈�[[[t]]]〉decterm ↓

∗ C[pr ]

decompose(t) = C[pr ]

A notable property: Due to the invariant of the abstract machine imple-
menting decomposition, as in Section 2, the recomposition function is still a left
inverse of the decomposition function.

One-step reduction: It is defined as in Section 2.

Reduction-based evaluation: It is defined as in Section 2.
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A backward overlap: The reduction rules contain a backward overlap:

A(0, t2) 7→ t2
A(S(t1), t2) 7→ S(A(t1, t2))

On the right-hand side of both reduction rules, the contractum may occur as
the first subterm in the left-hand side of the second rule. Additionally, the
contractum of the first rule may occur as the first subterm of the left-hand side
of the first rule.

Towards reduction-free evaluation: Between one contraction and the next,
we recompose the reduction context with the contractum until the next reduct,
which we decompose into the next potential redex and its reduction context.

Contrary to the innermost case, we now cannot be sure that decomposition of
the next reduct will come back to this contractum and context before continuing,
because a contractum in the context of an addition may be a new redex.

However, we can see from the reduction rules that any new redex constructed
in this way cannot be positioned any higher than one step above the contrac-
tum, so decomposition will always return at least to the site of this new redex.
Hence, if we backtrack/recompose one step after each contraction, we can short-
cut the recomposition and decomposition to this point, and just continue the
decomposition in situ.

More formally, we have

t ↓∗ C[pr ] C[pr ] ([ 7→]; ↑; ↓∗)∗ tnf

t⇒rf tnf

where ([ 7→]; ↑; ↓∗) denotes contraction under context followed by one step of
backtracking/recomposition and then decomposition.

The need for backtracking is caused by the existence of backward-overlapping
rules. In the present example, we only need to backtrack one step, but in general,
multiple steps are needed (Section 5 explains how to determine the number of
necessary backtracking steps). Our contribution here is that backtracking is
sufficient to enable refocusing and therefore reduction-free evaluation.

An example: See Figure 2.

Reduction-free evaluation: After applying refocusing, we fuse the iteration
and refocus functions, we inline the contract function and the backtracking func-
tion, and we compress corridor transitions. The resulting normalizer implements
a transition system described by the following abstract machine:

11



A(A(S(0), 0), 0)
decomposition

//

reduction

��

�[A([[[A(S(0), 0)]]], 0)]
contraction��

�[A([[[S(A(0, 0))]]], 0)]

recomposition

uu

backtracking��
�[[[A(S(A(0, 0)), 0)]]]

refocus��
A(S(A(0, 0)), 0)

decomposition
//

reduction

��

�[[[A(S(A(0, 0)), 0)]]]
contraction��

�[[[S(A(A(0, 0), 0))]]]

recomposition

uu

backtracking��
�[[[S(A(A(0, 0), 0))]]]

refocusing��
S(A(A(0, 0), 0))

decomposition
//

reduction

��

�[S[A([[[A(0, 0)]]], 0)]]
contraction��

�[S[A([[[0]]], 0)]]

recomposition

uu

backtracking��
�[S[[[A(0, 0)]]]]

refocusing��
S(A(0, 0))

decomposition
//

reduction

��

�[S[[[A(0, 0)]]]]
contraction��

�[S[[[0]]]]

recomposition

uu

backtracking��
�[[[S(0)]]]

refocusing��
S(0)

decomposition
// S(0)

Figure 2: Outermost reduction sequence for A(A(S(0), 0), 0)

t� 〈�[[[t]]]〉term
〈C[[[0]]]〉term � 〈C[[[0]]]〉cont

〈C[[[S(t)]]]〉term � 〈C[S[[[t]]]]〉term
〈C[[[A(t1, t2)]]]〉term � 〈C[[[A(t1, t2)]]]〉add
〈�[[[A(0, t2)]]]〉add � 〈�[[[t2]]]〉term

〈C[S[[[A(0, t2)]]]]〉add � 〈C[S[[[t2]]]]〉term
〈C[A([[[A(0, t2)]]], t′2)]〉add � 〈C[[[A(t2, t

′
2)]]]〉add

〈�[[[A(S(t1), t2)]]]〉add � 〈�[S[[[A(t1, t2)]]]]〉add
〈C[S[[[A(S(t1), t2)]]]]〉add � 〈C[S[S[[[A(t1, t2)]]]]]〉add

〈C[A([[[A(S(t1), t2)]]], t′2)]〉add � 〈C[[[A(S(A(t1, t2)), t′2)]]]〉add
〈C[[[A(A(t11, t12), t2)]]]〉add � 〈C[A([[[A(t11, t12)]]], t2)]〉add

〈�[[[tnf ]]]〉cont � tnf

〈C[S[[[tnf ]]]]〉cont � 〈C[[[S(tnf)]]]〉cont
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The effect of backtracking can be seen in the third and sixth transitions of the
second intermediate state, where contraction in an addition context gives rise to
a new redex above the position of the contractum. In these cases, the machine
peels off a context constructor until it reaches the position of the new redex.

5 Backtracking

5.1 Identifying the number of backtracking steps

In our example, it is sufficient to backtrack one step after each contraction. In
general, it may be necessary to backtrack further in order to discover a new
potential redex and enable refocusing.

For each contractum, the number of steps to backtrack can be determined by
analyzing the reduction rules for backward overlaps, i.e., by identifying which
subterms of left-hand sides the contractum unifies with. The number of steps
to backtrack is the depth of the unifying subterm, i.e., the depth of the hole
in the context C of Definition 2. This analysis can be performed statically
because the depth of the hole is a property of the reduction rules, not of the
reduction strategy. In other words, the analysis is neither performed over the
constitutive elements of the normalization function (so no case-by-case semantic
manipulation is required) nor during the normalization process (so no extra
overhead is introduced).

Determining the existence of backward overlaps is local and mechanical,
and hence, so is determining the necessary number of backtracking steps for
each contractum. However, rather than determining the number of backtrack-
ing steps for each reduction rule, we can obtain a conservative estimate of the
necessary number of backtracking steps for all reduction rules by

• always using the maximum depth of the left-hand sides of the reduction
rules of the system; or by

• always using the maximum depth of the unifying subterms in the backward
overlap analysis.

5.2 The effect of backtracking on the abstract machine

In practice, the choice of analysis (one precise number of backtracking steps
for each reduction rule or one conservative number of backtracking steps for
all reduction rules) has little impact on the resulting abstract machine. The
reason is that any superfluous backtracking steps introduced in the abstract
machine by an overly conservative analysis can be removed by the subsequent
transition compressions. The contract function pattern-matches on terms, so
after it is inlined, the abstract machine knows a number of term constructors
of the contractum. The backtrack function pattern-matches on contexts, so
after it is inlined, the abstract machine knows a number of context constructors
of the immediate context. Within the window between the top-most known
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context constructor and the bottom-most known term constructor, transition
compression makes the abstract machine move directly to the earliest position
(according to the reduction strategy) at which the next redex can be found.
Hence, if the context does not give rise to a redex, all the backtracking steps
into that context are removed by transition compression.

Still, avoiding superfluous backtracking has two beneficial consequences;
first, it simplifies transition compression because lowering the number of back-
tracking steps reduces the number of cases that need to be considered in the
abstract machine. Second, it ensures that backtracking is only performed one
new redex pattern at a time, thereby limiting the depth of pattern matching on
the context.

5.3 Backward overlaps without the need for backtracking

In some cases, the combination of backward overlaps and outermost reduction
can be dealt with without backtracking. Two examples in the literature illus-
trate cases where backtracking is not needed:

• The call-by-name λ-calculus [2, 10]. In this case, the contractum that
gives rise to a backward overlap is in normal form: it is a λ-abstraction
that occurs on the left of an application node; this application node forms
a new β-redex. Decomposing the contractum therefore does not yield a
potential redex inside the contractum, and thus the decomposition process
moves outwards in the term and finds the newly formed potential redex.

• Outermost tree flattening [5]. In this case, the backward overlap only
occurs when contracting a redex which is not outermost, so backtracking
is not needed.

6 Foretracking

Symmetrically to backtracking, one could envision foretracking as a symmetric
solution to innermost reduction in reduction systems with forward overlaps, i.e.,
where the contraction may construct a new redex at a lower position than the
contractum. However, refocusing is defined as resuming decomposition in the
context of the contractum, so the newly constructed redex will be found in due
time without using a separate foretracking function.

Additionally, one might envision that foretracking would result in a more
efficient abstract machine, because unnecessary decomposition steps could be
eliminated by a forward overlap analysis. However, the same superfluous steps
are eliminated by transition compression of the abstract machine derived with-
out foretracking.

So all in all, foretracking is not needed to go from an innermost reduction
semantics to an abstract machine.
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7 Related work

Refocusing has mainly be applied for weak reduction in the λ-calculus, for nor-
mal order, applicative order, etc. For full reduction in the λ-calculus, a backward
overlap exists. As analyzed in Section 3, this overlap is only problematic for
outermost reduction, e.g., normal order. We are aware of two previous appli-
cations of refocusing to full normal-order reduction of the λ-calculus: one by
Danvy, Millikin and Munk [9, 24, 25], in the mid-2000’s, and a recent one by
Garćıa-Pérez and Nogueira [17, 16]:

• Danvy, Millikin and Munk overcome the backward overlap (without iden-
tifying it as such) by backtracking after applying the refocus function.
In a more general setting, backtracking after refocusing would change the
reduction order, so this solution does not scale. Our solution does not
change the reduction order, and therefore it applies in a more general
setting.

• Garćıa-Pérez and Nogueira overcome the backward overlap (without iden-
tifying it as such) by developing a notion of hybrid strategy and by inte-
grating backtracking in the refocus function. Our solution is more mini-
malistic and remains mechanical: we simply analyze the reduction rules
to detect backward overlaps when the reduction strategy is outermost,
and in that case, we backtrack accordingly after contraction and before
refocusing.

Backward and forward overlaps have been considered for some 30 years in
relation to termination and confluence properties of term rewriting systems [12,
19, 20, 13, 18], and more recently in Jiresch’s thesis [21]. Whereas term rewriting
studies normalization relations, where any potential redex in the term may
be contracted, we consider normalization operationally as functions, where a
deterministic reduction strategy determines which potential redex to contract
next.

As mentioned in Section 5, refocusing can in some cases be applied without
backtracking, even if the reduction semantics contains backward overlaps. A
formal definition of backward overlaps for which backtracking is needed would
be similar to the definition of narrowable terms [32], which is a concept used in
term rewriting [22, 31]. However, narrowing is used to solve equations [23], and
hence it is unrelated to our goal here.

8 Conclusion

We have considered refocusing for reduction semantics with an outermost reduc-
tion strategy, and we have discovered that in that case, the original conditions for
refocusing [10] are not satisfied. We have then singled out backward-overlapping
rules as the only stumbling block towards reduction-free normalization, and we
have outlined how to overcome this stumbling block in a systematic way, by
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analyzing the backward overlaps in the reduction rules. In particular, we have
shown how to implement the backtracking function, how to incorporate the
backtracking function into the derivation, and how to statically determine the
minimal number of backtracking steps, be it relative to each reduction rule or
to all of them. We have also shown how to determine whether backtracking is
actually necessary.

We have also analyzed all the other combinations (innermost / outermost
reduction strategy and forward / backward overlaps in the reduction rules) and
demonstrated how refocusing is a simple and effective way to go from reduction-
based normalization in the form of a reduction semantics to reduction-free nor-
malization in the form of an abstract machine.

Acknowledgments: We are grateful to the anonymous reviewers for their
comments. Thanks are also due to Ian Zerny and Lasse R. Nielsen for their
early feedback and kind encouragement.
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