

Georgia Southern University Digital Commons@Georgia Southern

Electronic Theses and Dissertations

Graduate Studies, Jack N. Averitt College of

Fall 2018

Survey of Results on the Schrodinger Operator with **Inverse Square Potential**

Richardson Saint Bonheur

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Part of the Analysis Commons, and the Harmonic Analysis and Representation

Commons

Recommended Citation

Saint Bonheur, Richardson, "Survey of Results on the Schrodinger Operator with Inverse Square Potential" (2018). Electronic Theses and Dissertations. 1847. https://digitalcommons.georgiasouthern.edu/etd/1847

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

SURVEY OF RESULTS ON THE SCHRÖDINGER OPERATOR WITH INVERSE

SQUARE POTENTIAL

by

RICHARDSON SAINT BONHEUR

(Under the Direction of Yi Hu)

ABSTRACT

In this paper we present a survey of results on the Schrödinger operator with Inverse Square

potential, $\mathcal{L}_a = -\Delta + \frac{a}{|x|^2}$, $a \geq -(\frac{d-2}{2})$. We briefly discuss the long-time behavior

of solutions to the inter-critical focusing NLS with an inverse square potential (proof not

provided). Later we present spectral multiplier theorems for the operator. For the case

when $a \ge$, we use Hebisch [12] as a template for our attempt at a proof using estimates and

results from [1], Sikora [3], [18] and [19]. The case when $0 > a \ge -(\frac{d-2}{2})$ was explored in

[1], and their proof will be presented for completeness. No improvements on the sharpness

of their proof as been obtained.

INDEX WORDS: Harmonic Analysis, Partial differential equations

2009 Mathematics Subject Classification: 42B37, 42B15

SURVEY OF RESULTS ON THE SCHRÖDINGER OPERATOR WITH INVERSE SQUARE POTENTIAL

by

RICHARDSON SAINT BONHEUR

B.S., Rutgers University 2014

B.A., Rutgers University 2014

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

©2018

RICHARDSON SAINT BONHEUR

All Rights Reserved

SURVEY OF RESULTS ON THE SCHRÖDINGER OPERATOR WITH INVERSE SQUARE POTENTIAL

by

RICHARDSON SAINT BONHEUR

Major Professor: Yi Hu

Committee: Shijun Zheng

Xianghong Chen

Electronic Version Approved: December 2018

TABLE OF CONTENTS

		Page
CHAPTER		
1 Int	troduction	3
	1.1 The operator	3
	1.1.1 \mathcal{L}_a° is a positive semi-definite Symmetric Operator	3
	1.1.2 General Theory of self-adjoint extensions	4
	1.1.3 Heat and Riesz Kernels	5
	1.1.4 Hardy Inequality	5
2 Ty	pe-setting in LaTeX	6
	2.1 Long-Time Behavior of Solutions to the Intercritical Focusing NLS with Inverse Square Potential	6
	2.1.1 Scattering / Blow-up Dichotomy	6
	2.1.2 Linear and Local Theory	7
	2.1.3 Harmonic Analysis adapted to \mathcal{L}_a	8
:	2.2 Multiplier Theorem for the Case when $a \ge 0$	9
	2.2.1 proof adapted to \mathcal{L}_a	10
	2.3 Mikhlin Multiplier Theorem for the case $-(\frac{d-2}{2})^2 \le a < 0$	15
	2.3.1 First Lemma	22
	2.3.2 Second Lemma (Leibniz Rule)	23
	2.3.3 Third Lemma	24
REFERENCE	s	30
APPENDIX	Notable Theorems	32

CHAPTER 1

INTRODUCTION

1.1 THE OPERATOR

The operator

$$\mathcal{L}_a = -\Delta + \frac{a}{|x|^2} \quad with, \quad a \ge -\left(\frac{d-2}{2}\right)^2 \tag{1.1}$$

in dimensions $d \geq 3$. This operator was first introduced to us in [1] as defined below. The following related results were proved in [1]. \mathcal{L}_a is the Friedrichs extension of the operator \mathcal{L}_a° , where \mathcal{L}_a° denotes the natural action of $-\Delta + \frac{a}{|x|^2}$ on $\mathbb{C}_c^{\infty}(\mathbb{R}^d \setminus \{0\})$.

1.1.1 \mathcal{L}_a° is a positive semi-definite Symmetric Operator

If we let

$$\sigma := \frac{d-2}{2} - \frac{1}{2}\sqrt{(d-2)^2 + 4a}$$

[1] shows that \mathcal{L}_a° can be seen to be positive via the factorization

$$\mathcal{L}_a^{\circ} = \left(-\nabla + \sigma \frac{x}{|x|^2}\right) \left(\nabla + \sigma \frac{x}{|x|^2}\right) = -\Delta + \sigma^2 \frac{1}{|x|^2} = -\Delta + \sigma (d - 2 - \sigma) \frac{1}{|x|^2}.$$

If we pick $\theta \in \mathbb{C}_c^{\infty}(\mathbb{R}^d \setminus \{0\})$, then by functional calculus and the previous factorization of \mathcal{L}_a°

$$\langle \theta, \mathcal{L}_{a}^{\circ} \theta \rangle = \langle \theta, \left(-\nabla + \sigma \frac{x}{|x|^{2}} \right) \left(\nabla + \sigma \frac{x}{|x|^{2}} \right) \theta \rangle$$
$$= \|\theta(x) \left(\nabla + \sigma \frac{x}{|x|^{2}} \right) \|^{2}$$
$$= \int_{\mathbb{R}^{d}} \left| \nabla \theta(x) + \sigma \frac{x}{|x|^{2}} \theta(x) \right|^{2} \ge 0.$$

Hence, \mathcal{L}_a° is positive semi-definite as needed.

1.1.2 General Theory of Self-Adjoint extensions

Below we present a version of Friedrich's Extension Theorem and Kato's Theorem from [8] (without proof). The Authors in in [1] used similar theorems to find a self-adjoint extension to the operator \mathcal{L}_a° (See [9, §X.3]).

Theorem 1.1. Friedrich's Extension Theorem Let T_0 be a symmetric, semi-bounded Operator with domain $D(T_0)$ then, the quadratic form

$$QT_0(\Phi,\Theta) := \langle \Phi, T_0\Theta \rangle, \Phi, \Theta \in D(T_0)$$

is closable.

Theorem 1.2. Kato's Representation Theorem Let Q be a closed, semi-bounded quadratic form with domain D. Then it exists a unique, self-adjoint, semi-bounded operator T with domain $D(T) \subset D$ such that

$$Q(\Phi, \Theta) = \langle \Phi, \Theta \rangle \quad \forall \Phi \in D, \forall \Theta \in D(T).$$

The Theorems mentioned above guarantee the existence of a unique self-adjoint extension \mathcal{L}_a of \mathcal{L}_a° , whose form domain $Q(\mathcal{L}_a) = D(\sqrt{\mathcal{L}_a}) \subseteq L^2(\mathcal{R}^d)$ is given by the completion of $C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$ with respect to the norm

$$\|\Theta\|_{Q(\mathcal{L}_a)}^2 = \int_{\mathbb{R}^d} \left| \nabla \Theta \right|^2 + \left(1 + \frac{a}{|x^2|} \right) \left| \Theta \right|^2 dx = \int_{\mathbb{R}^d} \left| \nabla \Theta + \frac{\sigma x}{|x^2|} \Theta \right|^2 + \left| \Theta \right|^2 dx.$$

Theorem 1.3. (Equivalence of Sobolev norms) Suppose $d \geq 3$, $a \geq -\left(\frac{d-2}{2}\right)^2$, and 0 < s < 2. If $1 satisfies <math>\frac{s+\sigma}{d} < \frac{1}{p} < \min\left\{1, \frac{d-\sigma}{\sigma}\right\}$, then

$$\|(-\Delta)^{\frac{s}{2}}f\|_{L^{p}} \lesssim_{d,p,s} \|\mathcal{L}_{a}^{\frac{s}{2}}\|, \forall f \in C_{c}^{\infty}(\mathbb{R}^{d}).$$
(1.2)

If $max\left\{\frac{s}{d}, \frac{\sigma}{d}\right\} < \frac{1}{p} < min\left\{1, \frac{d-\sigma}{\sigma}\right\}$, then

$$\|\mathcal{L}_{a}^{\frac{s}{2}}f\|_{L^{p}} \lesssim \|(-\Delta)^{\frac{s}{2}}f\|_{L^{p}}, \forall f \in C_{c}^{\infty}(\mathbb{R}^{d})$$
(1.3)

1.1.3 HEAT AND RIESZ KERNELS

Theorem 1.4. (The Heat Kernel Bounds) Assume $d \geq 3$ and $a \geq \frac{-(d-2)}{2}$. Then there exist positive constants C_1, C_2 and c_1, c_2 such that for all t > 0 and all $x, y \in (\mathbb{R}^d \setminus \{0\})$,

$$C1\left(1 \vee \frac{\sqrt{t}}{|x|}\right)^{\sigma} \left(1 \vee \frac{\sqrt{t}}{|y|}\right)^{\sigma} t^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{c_1 t}} \leq e^{-t\mathcal{L}_a}(x,y)$$

$$\leq C2\left(1 \vee \frac{\sqrt{t}}{|x|}\right)^{\sigma} \left(1 \vee \frac{\sqrt{t}}{|y|}\right)^{\sigma} t^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{c_2 t}}$$

$$(1.4)$$

Theorem 1.5. (Riesz Kernels) Let $d \ge 3$ and suppose 0 < s < d and $d - s - 2\sigma$. Then the Riesz potentials

$$\mathcal{L}_a^{-\frac{s}{2}}(x,y) := \frac{1}{\Gamma(\frac{s}{2})} \int_0^\infty e^{-\mathcal{L}_a}(x,y) t^{\frac{s}{2}} \frac{dt}{t}$$

satisfy

$$\mathcal{L}_a^{-\frac{s}{2}}(x,y) \sim |x-y|^{s-d} \left(\frac{|x|}{|x-y|} \wedge \frac{|y|}{|x-y|} \wedge 1\right)^{-\sigma}.$$
 (1.5)

1.1.4 HARDY INEQUALITY

Theorem 1.6. (IV Hardy inequality for \mathcal{L}_a) Suppose $d \geq 3$, $a < s < d, d - s - 2\sigma > 0$, and 1 . Then

$$|||x|^{-s}f(x)||_{L^p(\mathbb{R}^d)} \lesssim ||\mathcal{L}_a^{\frac{s}{2}}f||_{L^p(\mathbb{R}^d)}$$
 (1.6)

holds, if and only if

$$s + \sigma < \frac{d}{p} < d - \sigma. \tag{1.7}$$

CHAPTER 2

TYPE-SETTING IN LATEX

2.1 Long-Time Behavior of Solutions to the Intercritical Focusing NLS with Inverse Square Potential

The results from this section originally appeared in [15], [16] and [17], which explored the long-time behavior of solutions to the intercritical NLS with inverse square potential:

$$i\partial_t u = \mathcal{L}_a u - |u|^p u, (2.1)$$

where $u: \mathbb{R}^d_t x \mathbb{R}^d_x \to \mathbb{C}$, $\frac{4}{d} and <math>d \ge 3$.

For $a \in \left(-\left(\frac{d-2}{2}\right)^2, 0\right]$, equation (1) admits a global but non-scattering solution of the form $u(t) = e^{it}P_a$, where P_a (the *ground state*) solves the elliptic problem

$$-\mathcal{L}_a P_a - P_a + |P_a|^p P_a = 0. (2.2)$$

2.1.1 SCATTERING / BLOW-UP DICHOTOMY

Theorem 2.1 (V). (Scattering/Blow-up Dichotomy) Suppose that $d \geq 3$, $\frac{4}{d} , and <math>a > -\left(\frac{d-2}{2}\right)^2$, and let $u_0 \in H^1(\mathbb{R}^d)$. There exists a unique maximal-lifespan solution u to (1) with $u|_{t=0} = u_0$. If u_0 is below the ground state threshold, in the sense that

$$M(u_0)^{\frac{4-p(d-2)}{dp-4}} E_a(u_0) < M(P_{a \wedge 0})^{\frac{4-p(d-2)}{dp-4}} E_{a \wedge 0}(P_{a \wedge 0}), \tag{2.3}$$

Then the following dichotomy holds: If

$$||u_0||_{L^2}^{\frac{4-p(d-2)}{dp-4}}||u_0||_{H_a^1} < ||P_{a\wedge 0}||_{L^2}^{\frac{4-p(d-2)}{dp-4}}||P_{a\wedge 0}||_{H_a^1},$$
(2.4)

Then u is global in time and scatters in both time directions; that is, there exist solutions v_{\pm} to the equation $i\partial_t v_{\pm} = \mathcal{L}_{a \wedge 0} v_{\pm}$ such that

$$\lim_{t \to \pm \infty} ||u(t) - v_{\pm}(t)||_{H^1} = 0.$$

Theorem 2.2 (VI cont'). If

$$\|u_0\|_{L^2}^{\frac{4-p(d-2)}{dp-4}}\|u_0\|_{H^1_a}>\|P_{a\wedge 0}\|_{L^2}^{\frac{4-p(d-2)}{dp-4}}\|P_{a\wedge 0}\|_{H^1_{a\wedge 0}},$$

and u_0 is radial or $xu_0 \in L^2$, then u blows up in finite time in both time directions.

2.1.2 LINEAR AND LOCAL THEORY

Theorem 2.3 (VII Strichartz Estimates). Let $a > -\left(\frac{d-2}{2}\right)^2$ and $d \ge 3$. Let (q, r) and (\tilde{q}, \tilde{r}) be such that

$$2 \le q, \tilde{q} \le \infty$$
 and $\frac{2}{q} + \frac{d}{r} = \frac{2}{q} + \frac{d}{r} = \frac{d}{2}$,

with $(q, \tilde{q}) \neq (2, 2)$. suppose $u: I \times \mathbb{R}^d \to \mathbb{C}$ solves

$$(i\partial_t - \mathcal{L}_a)u = F.$$

Then for any $t_0 \in I$, the following estimate holds:

$$||u||_{L_t^q L_x^r(Ix\mathbb{R}^d)} \lesssim ||u_0||_{L_x^2} + ||F||_{L_t^{\bar{q}'}L_x^{\bar{r}'}(Ix\mathbb{R}^d)}.$$

Theorem 2.4 (VIII Local Well-posedness). Let $t_0 \in \mathbb{R}$, $u_0 \in H^1$,

-There exist $T = T(\|u_0\|_{H_1}) > 0$ and a unique solution u to (1) on $(t_0 - T; t_0 + T)$ with $u(t_0) = u_0$. In particular, if u remains uniformly bounded in H^1 throughout its lifespan, then u extends to a global solution.

-Furthermore, there exists $\eta_0 > 0$ *so that if*

$$||e^{-i(t-t_0)\mathcal{L}}u_0||_{L^{q_0}_{t,x}((t_0,\infty)x\mathbb{R}^d)} < \eta.$$

The analogous statement holds backward in time and on all of \mathbb{R} .

-Finally, for any $\psi \in H^1$ there exists a solution to (1) that scatters to ψ as $t \to \infty$, and the analogous statement holds backwards in time.

Theorem 2.5 (IX Stability). Let \tilde{u} solve

$$i\partial_t \tilde{u} = \mathcal{L}_a \tilde{u} - |\tilde{u}|^p \tilde{u} + e$$

on an interval I for some function e. Suppose

$$||u_0||_{H^1} + ||\tilde{u}(t_0)||_{H^1} \le E, \quad ||\tilde{u}||_{L^{q_0}_{t,r}(Ix\mathbb{R}^d)} \le L.$$

There exists $\varepsilon_0(E, L > 0)$ so that if $0 < \varepsilon < \varepsilon_0$ and

$$||u_0 - \tilde{u}(t_0)||_{H^1} + |||\nabla|^{s_c} e||_{N(I)} < \varepsilon,$$

where $s_c = \frac{d}{2} - \frac{2}{p}$ and N is a sum of dual Strichartz spaces, the there exists a solution u to (1) with $u(t_0) = u_0$ satisfying

$$\|(\mathcal{L}_a)^{\frac{s_c}{2}}[u-\tilde{u}]\|_{S(I)} \lesssim \varepsilon, \quad \|(1+\mathcal{L}_a)^{\frac{1}{2}}u\|_{S(I)} \lesssim_{E,L} 1$$

for any Strichartz space S.

2.1.3 HARMONIC ANALYSIS ADAPTED TO \mathcal{L}_a

The following set of tool-kits were developed in [1] and summarized in [15].

We present the Little-Paley projections defined via the heat kernel:

$$P_N^a := e^{-\mathcal{L}_a/N^2} - e^{-4\mathcal{L}_a/N^2} \quad for \quad N \in 2^{\mathbb{Z}}.$$

Let

$$\tilde{q} := \begin{cases} \infty & \text{if } a \ge 0, \\ \frac{d}{\sigma} & \text{if } -\left(\frac{d-2}{2}\right)^2 < a < 0. \end{cases}$$

We write \tilde{q}' as the dual exponent to \tilde{q} . Using the previous definitions, we summarize the needed tools in the following:

Lemma 2.1.1 (Harmonic Analysis tools). For $\tilde{q}' < q \le r < \tilde{q}$,

$$f = \sum_{N \in 2^{\mathbb{Z}}} P_N^a f, \text{as elements of } L_x^r.$$

Furthermore, we have the following Bernstein estimates:

- 1. The operators P_N^a are bounded on L_x^r .
- 2. The operators P_N^a map L_x^q to L_x^r , with the norm $\mathcal{O}\left(N^{\frac{d}{q}-\frac{d}{r}}\right)$.
- 3. For any $s \in \mathbb{R}$,

$$N^{s} \| P_{N}^{a} f \|_{L_{x}^{r}} \sim \| \left(\mathcal{L}_{a} \right)^{\frac{s}{2}} P_{N}^{a} f \|_{L_{x}^{r}}.$$

Finally, for $0 \le s < 2$, we have the square function estimate

$$\left\| \left(\sum_{N \in 2^{\mathbb{Z}}} N^{2s} |P_N^a f|^2 \right)^{\frac{1}{2}} \right\|_{L_x^r} \sim \| (\mathcal{L}_a)^{\frac{s}{2}} f \|_{L_x^r}$$

2.2 Multiplier Theorem for the Case when $a \geq 0$

We present two multiplier theorems for the operator. We start with the case when $a \ge 0$. The theorem in part one was obtained from Hebicsh [12], we try to adapt the proof presented in the same paper to our operator. Some of the estimates used in the proof were obtained from [18] and [19]. For the purpose of completeness, we present a Mihklin-type multiplier theorem as presented in [1] for the case when $-(\frac{d-2}{2})^2 \le a < 0$. We offer a brief restatement of the proof offered by [1].

Let E be the spectral measure of \mathcal{L}_a . If F is a bounded Borel measurable function we write

$$F(\mathcal{L}_a)f = \int F(\lambda)dE(\lambda)f.$$

Let

$$F_t(a) = F(tx).$$

By the spectral theorem $F(\mathcal{L}_a)$ is bounded on L^2 .

Theorem 2.6. (Hebisch[12]) If for some $\epsilon > 0$, a non-zero $\phi \in C_c^{\infty}(R_+)$ and constant C, we have

$$\|\phi F_t\|_{H((d+1)/2+\epsilon)} \le C,$$
 (2.5)

then T is of weak type (1,1) and bounded on L^p for 1 .

2.2.1 Proof adapted to \mathcal{L}_a

From (2.5), we get that $\|F\|L^{\infty} \leq C'C$, then

$$||F(\mathcal{L}_a)||_{L^2,L^2} \le C'C.$$
 (2.6)

By interpolation and duality argument, it is enough to prove that $F(\mathcal{L}_a)$ is of weak type (1,1). Using the Trotter formula in [13] we obtain

$$0 \le e^{-t\mathcal{L}_a}(x,y) \lesssim p_t(x,y),\tag{2.7}$$

where $p_t(x,y) = C \left(1 \vee \frac{\sqrt{t}}{|x|}\right)^{\sigma} \left(1 \vee \frac{\sqrt{t}}{|y|}\right)^{\sigma} t^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{ct}}$. (2.7) implied the following

$$\int e^{-t\mathcal{L}_a} e^{s|x-y|} dx \lesssim C e^{Cs^2 t} \tag{2.8}$$

$$\int |e^{-t\mathcal{L}_a}(x,y)|^2 dx \lesssim Ct^{-\frac{d}{2}-\alpha} e^{2\lambda^2 t}$$
(2.9)

$$sup_{x,y}\left|e^{-t\mathcal{L}_a}(x,y)\right| \le Ct^{-\frac{d}{2}-\alpha}e^{2\lambda^2t}$$
(2.10)

for some constant C and all $s,t>0,y\in\mathbb{R}^d.$ We have

$$||K||_a = max \Big\{ sup_x \int |K(x,y)|(1+|x-y|)^a dy, sup_y \int |K(x,y)|(1+|x-y|)^a dx \Big\}.$$

Lemma 2.2.1. (see Hebisch [12] for proof) If $supp F \subset [1,4], \epsilon > 0, a \geq 0$, then

$$||F(\mathcal{L}_a)||_a \le C||F||_{H((d+1)/2+\epsilon+a)}$$

where C is independent of F and \mathcal{L}_a .

Proof. Set

$$K(\lambda) = F(-log(\lambda))\lambda^{-1}$$
.

We have that

$$||K||_{H((d+1)/2+\epsilon+a)} \le C_1 ||F||_{h((d+1)/2+\epsilon+a)}, supp K \subset [e^{-4}, e].$$

Let $K(\lambda) = \sum \widehat{K}(n)e^{in\lambda}$, $en = e^{ine^{-\mathcal{L}_a}}e^{-\mathcal{L}_a}$, then

$$F(\mathcal{L}_a) = K(e^{-\mathcal{L}_a})e^{-\mathcal{L}_a} = \sum \widehat{K}(n)e_n.$$

2.8 and 2.9 allows us to use (3.1) from [14] to obtain

$$||e_n||_a \le C_2(1+|n|)^{d/2+a}$$

so

$$||F||_{a} \leq C_{2} \sum |\widehat{K}(n)|(1+|n|)^{d/2+a}$$

$$\leq C_{2} \Big(\sum |\widehat{K}(n)|^{2}(1+|n|)^{d+2a+1+\epsilon}\Big)^{1/2} \Big(\sum (1+|n|)^{-1-\epsilon}\Big)^{1/2}$$

$$\leq C_{3} ||K||_{H((d+1+\epsilon)/2+a)} \leq C_{4} ||F||_{H((d+1)/2+\epsilon+a)},$$

which ends the proof of the lemma.

Lemma 2.2.2. (see Hebisch [12] for proof) For every $m \ge 0$ there exist N, C > 0 such that if $F \in H(N)$, $supp F \subset [-1, 4]$, then

$$|F(\mathcal{L}_a)(x,y)| \le C||F||_{H(N)}(1+|x-y|)^{-m}$$

for all x, y and \mathcal{L}_a

Proof. Let $G(\lambda) = F(\lambda)e^{\lambda}$, N = d/2 + m + 1. Of course $||G||_{H(N)} \le C_1||F||_{H(N)}$. By lemma 2.2.1, $||G(\mathcal{L}_a)||_m \le C_2||G||_{H(N)}$ and by 2.7 and 2.10,

$$|(1+|x-y|)^{m}F(\mathcal{L}_{a})(x,y)| = \left| \int G(\mathcal{L}_{a})(x,s)e^{-\mathcal{L}_{a}}(s,y)(1+|x-y|)^{m}ds \right|$$

$$\leq \int |G(\mathcal{L}_{a})(x,s)|(1+|x-s|)^{m}e^{-\mathcal{L}_{a}}(s,y)(1+|s-y|)^{m}ds$$

$$\leq ||G(\mathcal{L}_{a})||_{m}sup \quad p_{1}(x)(1+|x|)^{m}.$$

Then since, $G(\lambda) = F(\lambda)e^{\lambda}$

$$|F(\mathcal{L}_a)(x,y)| \le C||F||_{H(N)}(1+|x-y|)^{-m}$$

Let ϕ and ψ be in $C^{\infty}(\mathbb{R})$, where $supp\phi \subset [1/4,2]$, $\sum = 1$ for every x > 0, and $supp\psi \subset [-1,1]$, with $\psi(x) = 1$ for $x \in [0,1/2]$. Let

$$F_k(\lambda) = \phi(2^{2k}\lambda)F(\lambda), \quad \psi_k(\lambda) = \psi(2^{2k}\lambda).$$

Choose $a < \epsilon$. There exists C such that

$$\|\psi_k F_k(\mathcal{L}_a)\|_{L^1, L^1} \le C, \tag{2.11}$$

$$\int |F_k(\mathcal{L}_a)|(x,y)(1+2^{-k}|x-y|)^a dx \le C,$$
(2.12)

$$|\psi_k(\mathcal{L}_a)|(x,y) \le C2^{-kd}(1+2^{-k}|x-y|)^{-d-1}.$$
 (2.13)

The proof for (2.11), (2.12) and (2.13) can be found in Hebisch [12], and has not been reproduced here.

Let f be an integrable function. We use Calderón-Zygmund decomposition on f at height λ with functions f_i and g and cubes Q_i such that

$$f = g + \sum f_i, \quad supp f_i \subset Q_i, \quad \int |f_i| \le C\lambda |Q_i|,$$
$$|g| \le C\lambda, \quad Q_i \cap Q_j = \emptyset \quad for \quad i \ne j, \quad \sum |Q_i| \le C||f||_{L^1}/\lambda.$$

Let Q_i^* be the ball with the same center as Q_i and radius $2diamQ_i$. We put $k_i = [log_2(diamQ_i)]$. Let h be an integrable function such that $supph \subset \{x : |x| \le 1\} = B$. We have

$$\int_{|x|>2} |F_k(\mathcal{L}_a)h|(x)dx \leq ||h||_{L^1} \sup_{y\in B} \int_{|x|>2} |F_k(\mathcal{L}_a)|(x,y)dx
\leq ||h||_{L^1} \sup_y \int_{|x-y|>1} |F_k(\mathcal{L}_a)|(x,y)dx
\leq 2^{ka} ||h||_{L^1} \sup_y \int |F_k(\mathcal{L}_a)|(x,y)(1+2^{-k}|x-y|)^a dx
\leq C2^{ka} ||h||_{L^1}$$

and

$$\sum_{k<0} \int_{|x|>2} |F_k(\mathcal{L}_a)h|(x)dx \le C \sum_{k<0} 2^{ka} ||h||_{L^1} \le C_1 ||h||_{L^1}.$$

With the use of dilation we get

$$\sum_{j \le k_i} \int_{(Q_i^*)^c} |F_j(\mathcal{L}_a) f_i|(x) dx \le C ||f_i||_{L^1}. \tag{2.14}$$

Lemma 2.2.3. There exists C such that

$$\left\| \sum \psi_{k_i}(\mathcal{L}_a) f_i \right\|_{L^2}^2 \le C \lambda \|f\|_{L^1}.$$

Proof. First observe that there exists C_0 such that if $Q = \{x : max | x_i | \le 1\}$ then for all x

$$\sup_{y \in Q} (1 + |x - y|)^{-d - 1} \le C_0 \inf_{y \in Q} (1 + |x - y|)^{-d - 1}.$$

As a result of this and using dilations we obtain for all i

$$\sup_{y \in Q_i} (1 + 2^{-k_i} |x - y|)^{-d - 1} \le C_0 \in_{y \in Q_i} (1 + 2^{-k_i} |x - y|)^{-d - 1}. \tag{2.15}$$

Keeping i constant, let y_0 be the center of Q_i . By (2.15)

$$|\psi_{k_{i}}(\mathcal{L}_{a})f_{i}|(x) \leq \int 2^{-k_{i}d} (1 + 2^{-k_{i}}|x - y|)^{-d-1} |f_{i}|(y) dy$$

$$\leq \lambda C_{1} |Q_{i}| 2^{-k_{i}d} (1 + 2^{-k_{i}}|x - y_{0}|)^{-d-1}$$

$$\leq \lambda C_{2} \int 2^{-k_{i}d} (1 + 2^{-k_{i}}|x - y|)^{-d-1} \mathcal{X}_{Q_{i}}(y) dy$$

$$\leq \lambda C_{3} (2^{-k_{i}d} (1 + 2^{-k_{i}}|\cdot|)^{-d-1} * \mathcal{X}_{Q_{i}})(x).$$

If $h \in L^2$, then

$$\left| \left(h, 2^{-k_i d} (1 + 2^{-k_i} | \cdot |) \right)^{-d-1} * \mathcal{X}_{Q_i} \right| = \left| \left(2^{-k_i d} (1 + 2^{-k_i} | \cdot |) \right)^{-d-1}, h * \mathcal{X}_{Q_i} \right| \le C_4(Mh, \mathcal{X}_{Q_i})$$

where M is the Hardy-Littlewood maximal operator. Following is the Hardy-Littlewood maximal operator (Stein[11]). Since M is bounded on L^2 ,

$$\left| \left(h, \sum \psi_{k_i}(\mathcal{L}_a) f_i \right) \right| \le C_5 \left(Mh, \sum \lambda \mathcal{X}_{Q_i} \right) \le C_6 \|h\|_{L^2} \left\| \sum \lambda \mathcal{X}_{Q_i} \right\|_{L^2}.$$

But $\|\sum \lambda \mathcal{X}_{Q_i}\|_{L^2}^2 = \sum \lambda^2 |Q_i| \leq C\lambda \|f\|_{L^1}$, which ends the proof.

Clearly, if j < k, then $\psi_k F_j = 0$ so $\psi_k(\mathcal{L}_a) F_j(\mathcal{L}_a) = 0$. Similarly, if j > k then $\psi_k(\mathcal{L}_a) F_j(\mathcal{L}_a) = F_j(\mathcal{L}_a)$. Therefore

$$F(\mathcal{L}_{a}) = \sum_{i,j} F_{j}(\mathcal{L}_{a}) f_{i} + F(\mathcal{L}_{a}) g$$

$$= \sum_{i} \left(\sum_{j \leq k_{i}} F_{j}(\mathcal{L}_{a}) f_{i} + \sum_{j > k_{i}} F_{j}(\mathcal{L}_{a}) f_{i} \right) + F(\mathcal{L}_{a}) g$$

$$= \sum_{i} \sum_{j \leq k_{i}} F_{j}(\mathcal{L}_{a}) f_{i} + \sum_{i,j} F_{j}(\mathcal{L}_{a}) \psi_{k_{i}}(\mathcal{L}_{a}) f_{i} - \sum_{i} F_{k_{i}}(\mathcal{L}_{a}) \psi_{k_{i}}(\mathcal{L}_{a}) f_{i} + F(\mathcal{L}_{a}) g$$

$$= \sum_{i} \sum_{j \leq k_{i}} F_{j}(\mathcal{L}_{a}) f_{i} + F(\mathcal{L}_{a}) \left(\sum_{j \leq k_{i}} \psi_{k_{i}}(\mathcal{L}_{a}) f_{i} + g \right) - \sum_{j} F_{k_{i}}(\mathcal{L}_{a}) \psi_{k_{i}}(\mathcal{L}_{a}) f_{i}.$$

Putting $S=\cup Q_i^*$, by (2.14) and the properties of the Calderón-Zygmund decomposition we have

$$\left| \left\{ x : \left| \sum_{i} \sum_{j \le k_i} F_j(\mathcal{L}_a) f_i \right| > \lambda/3 \right\} \right| \le |S| + (3/\lambda) \int_{s^c} \left| \sum_{i} \sum_{j \le k_i} F_j(\mathcal{L}_a) f_i \right|$$

$$\le C \|f\|_{L^1} / \lambda + (C/\lambda) \sum_{i} \|f_i\|_{L^1}$$

$$\le C \|f\|_{L^1} / \lambda.$$

By lemma 2.23,

$$\left\| \sum \psi_{k_i}(\mathcal{L}_a) f_i + g \right\|_{L^2}^2 \le C \lambda \left\| f \right\|_{L^1}.$$

and by (2.6)

$$\left| \left\{ x : \left| F(\mathcal{L}_a) \left(\sum \psi_{k_i}(\mathcal{L}_a) f_i + g \right) \right| > \lambda/3 \right\} \right|$$

$$\leq \left| \left(C/\lambda^2 \right) \right| \left| \sum \psi_{k_i}(\mathcal{L}_a) f_i + g \right| \right|_{L^2}^2$$

$$\leq \left| C'\lambda \|f\|_{L^1}/\lambda^2 = C \|f\|_{L^1}/\lambda.$$

By (2.8),

$$\left|\left\{x: \left|\left(\sum F_{k_i}(\mathcal{L}_a)\psi_{k_i}(\mathcal{L}_a)f_i\right)\right| > \lambda/3\right\}\right| \leq 3\left\|\sum F_{k_i}(\mathcal{L}_a)\psi_{k_i}(\mathcal{L}_a)f_i\right\|_{L^1}/\lambda$$
$$\leq (C/\lambda)\sum \|f_i\|_{L^1} \leq C\|f\|_{L^1} \leq C\|f\|_{L^1}/\lambda,$$

This ends the proof of theorem 2.6.

2.3 Mikhlin Multiplier Theorem for the case $-(\frac{d-2}{2})^2 \leq a < 0$

Below, we present a multiplier theorem, and summary of its proof for the case when $-(\frac{d-2}{2})^2 \le a < 0$ Both the theorem and the major results of the proof were obtained from [1].

Theorem 2.7. (Mikhlin Multipliers) Fix $-\left(\frac{d-2}{2}\right)^2 \le a < 0$ and suppose that $m:[0,\infty) \to \mathbb{C}$ satisfies

$$|\partial m(\lambda)| \lesssim \lambda^{-j}$$
 for all $0 \le j \le 3 \left\lfloor \frac{d}{4} \right\rfloor + 3.$ (2.16)

Then $m(\sqrt{\mathcal{L}_a})$ which we define via the L^2 functional calculus, extends uniquely from $L^p(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ to a bounded operator on $L^p(\mathbb{R}^d)$ for all $r_0 .$

Proof. We present the major results of the proof provided by [1], a more complete proof can be found in said paper. By the Spectral theorem, the operator $T := m(\sqrt{\mathcal{L}_a})$ is bounded

on L^2 .) Thus using the Marcinkiewicz interpolation theorem and a duality argument, it suffices to show that T is of the weak-type (q,q)

$$|\{x: |Tf(x)| > h\}| \lesssim h^{-q} ||f||_{L^q}^q(\mathbb{R}^d) \text{ for all } h > 0.$$

The authors used Calderon-Zygmund decomposition to $|f|^q$ at height h^q to obtain a family of dyadic cubes $\{Q_k\}_k$, $Q_j \cap Q_k = \emptyset$, $\bigcup Q_j = \Omega$ if $j \neq k$ which allowed the original function f to be decomposed such that $f = g + b_k$, where $b = \sum_k b_k$ and $b_k = XQ_kf$ and $|g| \leq h$ almost everywhere. By construction,

$$h^{q} < \frac{1}{|Q_{k}|} \int_{Q_{k}} |f(x)|^{q} dx \leq 2^{n} h^{q}$$

$$h^{q} |Q_{k}| \leq \int_{Q_{k}} |f(x)|^{q} dx \leq 2^{n} |Q_{k}| h^{q}$$

$$|Q_{k}| \leq \frac{1}{h^{q}} \int_{Q_{k}} |f(x)|^{q} dx \leq 2^{n} |Q_{k}|$$
(2.17)

Multiplying (1.2) by h, we get

$$h|Q_k| \le h^{1-q} \int_{Q_k} |f(x)|^q dx$$

By Holder's inequality and (2.17),

$$\int_{Q_k} |f(x)| dx \lesssim ||f||_{L^q(Q_k)} |Q_k|^{\frac{1}{q'}} \lesssim h|Q_k| \lesssim h^{1-q} \int_{Q_k} |f(x)|^q dx \tag{2.18}$$

We further decompose $b_k = g_k + \tilde{b}_k$ according to the definition below

$$\tilde{b}_k := (1 - e^{-r_k^2})^{\mu} b_k$$
 and $gk := [1 - (1 - e^{r_k^2 \mathcal{L}_a})^{\mu}] b_k$

Using the Binomial Theorem we get that

$$(1 + (-e^{-r_k^2}))^{\mu} = \binom{\mu}{0} (-e^{-r_k^2 \mathcal{L}_a})^0 + \binom{\mu}{1} (-e^{-r_k^2 \mathcal{L}_a})^1 + \binom{\mu}{2} (-e^{-r_k^2 \mathcal{L}_a})^2 + \dots$$

$$+ \binom{\mu}{\mu - 1} (-e^{-r_k^2 \mathcal{L}_a})^{\mu - 1} + \binom{\mu}{\mu} (-e^{-r_k^2 \mathcal{L}_a})^{\mu}$$

$$= \sum_{\nu=0}^{\mu} \binom{\mu}{\nu} (-e^{-\nu r_k^2 \mathcal{L}_a})$$

$$= \sum_{\nu=0}^{\mu} \frac{\mu!}{\nu! (\mu - \nu)!} (-e^{-\nu r_k^2 \mathcal{L}_a})$$

$$= \sum_{\nu=1}^{\mu} c_{\nu} e^{-\nu r_k^2 \mathcal{L}_a}$$

Then,

$$g_k = \sum_{\nu=1}^{\mu} c_{\nu} e^{-\nu r_k^2 \mathcal{L}_a} b_k$$

Where r_k denotes the radius of Q_k and $\mu := \lfloor \frac{d}{4} \rfloor + 1$. Therefore,

$$f = g + b$$

$$= g + \sum_{k} b_{k}$$

$$= g + \sum_{k} g_{k} + \sum_{k} \tilde{b}_{k}$$

Applying the operator T to the above quantity, we get

$$Tf = Tg + \sum_{k} Tg_k + \sum_{k} T\tilde{b}_k.$$

By the Marcinkiewicz Interpolation Theorem

$$|Tf| \le |Tg| + |\sum_{k} Tg_k| + |\sum_{k} T\tilde{b}_k|.$$

Then

$$\{|Tf|>h\}\subset \left\{|Tg|>\frac{1}{3}h\right\}\cup \left\{|T\sum_k g_k|>\frac{1}{3}h\right\}\cup \left\{|T\sum_k \tilde{b}_k|>\frac{1}{3}h\right\}$$

By Chebyshev's inequality, and the boundedness of T in L^2 , and (2.17)

$$\left| \left\{ |Tg| > \frac{1}{3}h \right\} \right| \lesssim h^{-2} ||Tg||_{L^2}^2 \lesssim h^{-2} ||g||_{L^2}^2 \lesssim h^{-q} ||g||_{L^q}^q \lesssim h^{-q} ||f||_{L^q}^q$$

Using an argument similar to what was used above we obtain that

$$\left| \left\{ |T \sum_{k} g_{k}| > \frac{1}{3} h \right\} \right| \lesssim h^{-2} ||T \sum_{k} g_{k}||_{L^{2}}^{2} \lesssim h^{-2} ||\sum_{k} g_{k}||_{L^{2}}^{2}$$
 (2.19)

To control g_k

$$\left\| \sum_{k} g_{k} \right\|_{L^{2}}^{2} = \int \left| \sum_{k} g_{k} \right|^{2}$$

$$= \int \sum_{k} g_{k} \sum_{l} g_{l}$$

$$= \int \sum_{k} \sum_{\nu} c_{\nu} e^{-\nu r_{k}^{2} \mathcal{L}_{a}} b_{k} \sum_{l} \sum_{\nu'} c'_{\nu} e^{-\nu' r_{l}^{2} \mathcal{L}_{a}} b_{l}$$

$$= \int \sum_{\nu,\nu'} c_{\nu} c_{\nu'} \sum_{k} e^{-\nu r_{k}^{2} \mathcal{L}_{a}} b_{k} \sum_{l} e^{-\nu' r_{l}^{2} \mathcal{L}_{a}} b_{l}$$

$$= \sum_{\nu,\nu'} c_{\nu} c_{\nu'} \sum_{k,l} \int b_{k} e^{-(\nu r_{k}^{2} + \nu' r_{l}^{2}) \mathcal{L}_{a}} b_{l}$$

$$= \sum_{\nu,\nu'} c_{\nu} c_{\nu'} \sum_{k,l} \left\langle b_{k}, e^{-(\nu r_{k}^{2} + \nu' r_{l}^{2}) \mathcal{L}_{a}} b_{l} \right\rangle$$

$$\lesssim \sum_{k,l} \left\langle b_{k}, e^{-(\nu r_{k}^{2} + \nu' r_{l}^{2}) \mathcal{L}_{a}} b_{l} \right\rangle$$

$$(2.21)$$

Using the heat kernel in theorem 1.4 we obtain

$$\| \sum_{k} gk \|_{L^{2}}^{2} = \sum_{\nu,\nu'} c_{\nu} c_{\nu'} \sum_{k,l} \langle b_{k}, e^{-(\nu r_{k}^{2} + \nu' r_{l}^{2})} \rangle$$

$$\lesssim \sum_{r_{k} \geq r_{l}} r_{k}^{-d} \int_{Q_{l}} \int_{Q_{k}} \left(\frac{r_{k}}{|x|} \vee 1 \right)^{\sigma} |b_{k}(x)| e^{-\frac{|x-y|^{2}}{cr_{k}^{2}}} \left(\frac{r_{k}}{|y|} \vee 1 \right)^{\sigma} |b_{l}(y)| dx dy$$

$$(2.22)$$

Now, all that is needed is to show that the quantity on the far right is bounded. Integrating over Q_k and Q_l , we get

$$\sum_{l:r_k > r_l} \int_{Q_l} \int_{Q_k} r_k^{-d} \left(\frac{r_k}{|x|} \vee 1 \right)^{\sigma} |b_k(x)| e^{-\frac{|x-y|^2}{cr_k^2}} \left(\frac{r_k}{|y|} \vee 1 \right)^{\sigma} |b_l(y)| dx dy \tag{2.23}$$

From here, we freeze k, and $xc \in Q_k$ so we can focus on

$$\sum_{l:r_{l} \leq r_{k}} \int_{Q_{l}} e^{-\frac{|x-y|^{2}}{cr_{k}^{2}}} \left(\frac{r_{k}}{|y|} \vee 1\right)^{\sigma} |b_{l}(y)| dy \lesssim \sum_{l:r_{l} \leq r_{k}} \int_{Q_{l}} e^{-\frac{|x-y|^{2}}{cr_{k}^{2}}} |b_{l}(y)| dy + \sum_{l:Q_{l} \subset B(0,2r_{k})} \int_{Q_{l}} \left(\frac{r_{k}}{|y|}\right)^{\sigma} |b_{l}(y)| dy$$
(2.24)

We are assuming that $Q_l \cap B(0, 2r_k) \neq \emptyset$ implies $Q_l \subseteq B(0, 2r_k)$ because $r_l \leq r_k$. r_l is the radius of Q_l , and $r_l \leq r_k$, then $dima(Q_l) \leq 2r_k$. x has been fixed in Q_k . Pick a point y in Q_l , then $|x - y| \leq 2r_k$

$$|x - y| - 2r_k \le 0$$

 $(|x - y| - 2r_k)^2 = |x - y|^2 - 2r_k|x - y| + 4r_k^2 \ge 0$
 $|x - y|^2 \ge 2r_k|x - y| - 4r_k^2$

We find some $y' \in Q_l$ such that $|x-y'|^2 \le 2r_k|x-y|$. This is from the fact that $|x-y| \le 2r_k$ for any $y \in Q_l$, then

$$|x-y|^2 \ge \frac{1}{2}|x-y'|^2 - 4r_k^2$$

for all $y, y' \in Q_l$. Then

$$|b_l(y)| = ||b_l(y)||_{L^1} \lesssim h|Q_l|$$

And

$$\sum_{l:r_{l} \leq r_{k}} \int_{Q_{l}} e^{-\frac{|x-y'|^{2}}{cr_{k}^{2}}} |b_{l}(y)| dy \lesssim \sum_{l:r_{l} \leq r_{k}} \int_{Q_{l}} e^{-\frac{|x-y'|^{2}}{2cr_{k}^{2}}} |b_{l}(y)| dy$$

$$\lesssim \sum_{l:r_{l} \leq r_{k}} |b_{l}(y)| \int_{Q_{l}} e^{-\frac{|x-y'|^{2}}{2cr_{k}^{2}}} dy$$

$$\lesssim \sum_{l:r_{l} \leq r_{k}} ||b_{l}(y)||_{L^{1}} \frac{1}{|Q_{l}|} \int_{Q_{l}} e^{-\frac{|x-y'|^{2}}{2cr_{k}^{2}}} dy$$

$$\lesssim \sum_{l:r_{l} \leq r_{k}} h \int_{Q_{l}} e^{-\frac{|x-y'|^{2}}{2cr_{k}^{2}}} dy$$

$$\lesssim h \sum_{l:r_{l} \leq r_{k}} \int_{Q_{l}} e^{-\frac{|x-y'|^{2}}{2cr_{k}^{2}}} dy$$

$$\lesssim hr_{k}^{d}$$

On the other hand

$$\lesssim \left[\sum_{l:Q_{l}\subset B(0,2r_{k})} \int_{Q_{l}} \left(\frac{r_{k}}{|y|}\right)^{\sigma q'} \right]^{\frac{1}{q'}} \left[\sum_{l:Q_{l}\subset B(0,2r_{k})} \int_{Q_{l}} |b_{l}(y)|^{q} \right]^{\frac{1}{q}} \\
\lesssim \left[\sum_{B(0,2r_{k})} \int_{Q_{l}} \left(\frac{r_{k}}{|y|}\right)^{\sigma q'} \right]^{\frac{1}{q'}} \left[\sum_{l:Q_{l}\subset B(0,2r_{k})} h^{q} |Q_{l}| \right]^{\frac{1}{q}} \\
\lesssim \left[\sum_{B(0,2r_{k})} r^{\sigma q'} \frac{y}{(1-\sigma q')|y|^{\sigma q'}} \Big|_{B(0,2r_{k})} \right]^{\frac{1}{q'}} \left[\sum_{l:Q_{l}\subset B(0,2r_{k})} h^{q} |Q_{l}| \right]^{\frac{1}{q}} \\
\lesssim \left[\sum_{B(0,2r_{k})} r^{\sigma q'} \right]^{\frac{1}{q'}} \left[\sum_{l:Q_{l}\subset B(0,2r_{k})} h^{q} r_{k}^{d} \right]^{\frac{1}{q}} \\
\lesssim h r_{k}^{\frac{d}{q'}} r_{k}^{\frac{d}{q}} = h r_{k}^{d(\frac{1}{q} + \frac{1}{q'})} = h r_{k}^{d}$$

Using this new information, we obtain

$$\begin{split} \left\| \sum_{k} g_{k} \right\|_{L^{2}}^{2} &\lesssim h \sum_{k} \int_{Q_{k}} \left(\frac{r_{k}}{|x|} \vee 1 \right)^{\sigma} |b_{k}(x)| dx \\ &\lesssim h \left[\sum_{k} \int_{Q_{k}} \left(\frac{r_{k}}{|x|} \vee 1 \right)^{\sigma q'} dx \right]^{\frac{1}{q'}} h \left[\sum_{k} \int_{Q_{k}} |b_{k}(x)|^{q} dx \right]^{\frac{1}{q}} \\ &\lesssim h \left[\sum_{k} \int_{Q_{k}} \left(\frac{r_{k}}{|x|} \vee 1 \right)^{\sigma q'} dx \right]^{\frac{1}{q'}} h \left[\int_{Q_{k}} \sum_{k} |b_{k}(x)|^{q} dx \right]^{\frac{1}{q}} \\ &\lesssim h \left[\sum_{k} \int_{Q_{k}} (1)^{\sigma q'} dx \right]^{\frac{1}{q'}} h \left[\int_{Q_{k}} |f|^{q} dx \right]^{\frac{1}{q}} \\ &\lesssim h \left[\sum_{k} |Q_{k}| \right]^{\frac{1}{q'}} ||f||_{L_{q}} dx \\ &\lesssim h^{2-q} \int_{Q_{k}} |f(x)|^{q} dx \\ &\lesssim h^{2-q} ||f||_{L_{q}}^{q} \end{split}$$

At this point all that is required is to estimate $\{|T\sum_k \tilde{b}_k| > \frac{1}{3}h\}$. Define Q_k^* as the $2\sqrt{d}$ dilate of Q_k . As

$$\left| \left\{ \left| T \sum_{k} \tilde{b}_{k} \right| > \frac{1}{3} h \right| \right\} \right| \subset \cup_{j} Q^{*} \cup \left\{ x \in R^{d} \setminus \cup_{j} Q_{j}^{*} : \left| T \sum_{k} \tilde{b}_{k} \right| > \frac{1}{3} h \right\}.$$

Using Chebyshev's inequality

$$\left| \left\{ \left| T \sum_{k} \tilde{b}_{k} \right| > \frac{1}{3} h \right\} \right| \lesssim \sum_{j} |Q_{j}^{*}| + h^{-1} \sum_{k} ||T\tilde{b}_{k}||_{L^{1}(R^{d} \setminus Q_{k}^{*})}$$

$$\lesssim h^{-q} ||f||_{L^{q}}^{q} + h^{-1} \sum_{k} ||T\tilde{b}_{k}||_{L^{1}(\mathbb{R}^{d} \setminus Q_{k}^{*})}$$

In order to complete the proof, we need to show

$$||T\tilde{b}_k||_{L^1(R^d \setminus Q_L^*)} \lesssim h^{1-q} ||b_k||_{L^q}^q \tag{2.26}$$

To do this, we divide the region $\mathbb{R}^d \setminus Q_k^*$ into dyadic annuli of the form $R < dist\{x, Q_k\} \le 2R$ for $r_k \le R \in 2^{\mathbb{Z}}$. The following will be proved:

$$||T\tilde{b}_k||_{L^2(dist\{x,Q_k\}>R)} \lesssim \left(\frac{r_k}{R}\right)^{2\mu} R^{-d(\frac{1}{2} - \frac{1}{q'})} ||b_k||_{L^q}, \tag{2.27}$$

Claim (2.26) follows

$$||T\tilde{b}_{k}||_{L^{1}(R^{d}\backslash Q_{k}^{*})} = \sum_{R\geq r_{k}} ||T\tilde{b}_{k}||_{L^{1}(R< dist\{x, Q_{k}\}) \leq 2R}$$

$$\lesssim \sum_{R\geq r_{k}} R^{\frac{d}{2}} ||T\tilde{b}_{k}||_{L^{2}(dist\{x, Q_{k}\}) > R}$$

$$\lesssim \sum_{R\geq r_{k}} R^{\frac{d}{2}} \left(\frac{r_{k}}{R}\right)^{2\mu} R^{-d(\frac{1}{2} - \frac{1}{q'})} ||b_{k}||_{L^{q}}^{q}$$

$$\lesssim r_{k}^{\frac{d}{q'}} ||b_{k}||_{L^{q}} \lesssim h^{1-q} ||b_{k}||_{L^{q}}.$$

In order for the sum above to converge, we need $\frac{d}{q'} < 2\mu$, which is guaranteed under the hypothesis presented

To proved (2.27), we write

$$(T\tilde{b}_k)(x) = \int_{O_k} \left[m(\sqrt{\mathcal{L}_a})(1 - e^{-r_k^2 \mathcal{L}_a})^{\mu} \right] (x, y) b_k(y) dy$$
 (2.28)

The function defined below is extended to all of \mathbb{R} as an even function.

$$a(\lambda) := m(\lambda)(1 - e^{-r_k^2 \lambda^2})^{\mu}$$
(2.29)

We need to show that

$$|\partial^j a(\lambda)| \lesssim |\lambda|^{-j} \Big(1 \wedge r_k |\lambda| \Big)^{2\mu}. \tag{2.30}$$

To start the proof, we need to state the following lemmas.

2.3.1 FIRST LEMMA

Lemma 2.3.1. For s = 1, 2, 3, 4...

$$\partial_{\lambda}^{s}(e^{-r_{k}^{2}\lambda^{2}}) = \lambda^{-s}P_{2,s}(r\lambda)e^{-r_{k}^{2}\lambda^{2}}$$

Where $P_{2,s}$ is a polynomial of degree s.

$$P_k(\alpha) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0.$$

Proof. Induction If b = 0,

$$\partial_{\lambda}^{0}(e^{-r_{k}^{2}\lambda^{2}}) = e^{-r_{k}^{2}\lambda^{2}} = a_{0}e^{-r_{k}^{2}\lambda^{2}}, \ a_{0} = 1 \ LHS = RHS$$

Now suppose

$$\partial^{s-1}(e^{-r_k^2\lambda^2}) = \lambda^{-(s-1)}P_{2(s-1)}(r\lambda)e^{-r_k^2\lambda^2}$$

Then,

$$\begin{split} \partial^{s}(e^{-r_{k}^{2}\lambda^{2}}) &= \partial^{1}\partial^{s-1}(e^{-r_{k}^{2}\lambda^{2}}) \\ &= \partial^{1}\left[\lambda^{-(s-1)}*P_{2(s-1)}(r\lambda)*e^{-r_{k}^{2}\lambda^{2}}\right] \\ &= -(s-1)\lambda^{s}*P_{2(s-1)}(r\lambda)e^{-r_{k}^{2}\lambda^{2}} + \lambda^{-(s-1)}*r*P_{2(s-1)-1}(r\lambda)*e^{-r_{k}^{2}\lambda^{2}} \\ &+ \lambda^{-(s-1)}*P_{2(s-1)-1}(r\lambda)*e^{-r_{k}^{2}\lambda^{2}}(-r^{2}2\lambda) \\ &= \lambda^{-s}P_{2s}(r\lambda)e^{-r_{k}^{2}\lambda^{2}} \end{split}$$

2.3.2 SECOND LEMMA (LEIBNIZ RULE)

Lemma 2.3.2. (Leibniz rule)

$$\begin{array}{rcl} \partial^s(U*V) & = & \displaystyle\sum_{k=0}^s \binom{s}{k} \partial^k U * \partial^{s-k} V \\ & = & \displaystyle U*\partial^s V + s*\partial^1 U * \partial^{s-1} V + \ldots + \partial^s U * V \end{array}$$

2.3.3 THIRD LEMMA

Lemma 2.3.3.

$$\partial^{s} \left[\left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right] \lesssim |\lambda|^{-s} \left(1 \wedge r_{k} |\lambda| \right)^{2\mu}$$

Recall

$$a(\lambda) = m(\lambda) \left(1 - e^{-r_k^2 \lambda^2}\right)^{\mu}$$

$$\partial^{j} = \sum_{l=0}^{j} {j \choose l} \partial^{l} m(\lambda) \partial^{j-l} \left[\left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right]$$

$$\leq \sum_{l=0}^{j} {j \choose l} |\lambda|^{-l} |\lambda|^{-(j-l)} \left(1 \wedge r_{k} |\lambda| \right)^{2\mu}$$

$$\lesssim |\lambda|^{-j} \left(1 \wedge r_{k} |\lambda| \right)^{2\mu}$$

Proof. Case 1:

$$r_k|\lambda| < 1$$

We need to show

$$\partial^{s} \left[\left(1 - e^{-r_k^2 \lambda^2} \right) \right] \lesssim |\lambda|^{-s} (r_k |\lambda|)^{2\mu}$$

When s=0,

$$\left(1 - e^{-r_k^2 \lambda^2}\right)^{2\mu} \lesssim \left(r_k |\lambda|\right)^{2\mu}$$

Suppose

$$\partial^{s-1} \left[\left(1 - e^{-r_k^2 \lambda^2} \right)^{2\mu} \right] \lesssim |\lambda|^{-(s-1)} \left(r_k |\lambda| \right)^{2\mu}.$$

Then,

$$\begin{split} \partial^{s} &= \partial^{s-1} \partial^{1} \left[\left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right] \\ &= \partial^{s-1} \left[\mu \left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu-1} \left(+ e^{-r_{k}^{2} \lambda^{2}} r_{k}^{2} 2 \lambda \right) \right] \\ &= 2 \mu r_{k}^{2} \partial^{s-1} \left[\lambda e^{-r_{k}^{2} \lambda^{2}} \left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu-1} \right] \\ &= 2 \mu r_{k}^{2} \partial^{s-1} \left[\lambda \left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu-1} - \lambda \left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right] \\ &= 2 \mu r_{k}^{2} \left(\partial^{s-1} \left[\lambda \left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu-1} \right] - \partial^{s-1} \left[\lambda \left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right] \right) \end{split}$$

The first quantity in the RHS is then bounded by

$$\partial^{s-1} \left[\lambda \left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1} \right] = \lambda \partial^{s-1} \left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1} + (s - 1) \partial^{s-2} \left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1}$$

$$\lesssim \lambda |\lambda|^{-(s-1)} \left(r_k |\lambda| \right)^{2(\mu - 1)} + |\lambda|^{-(s-2)} \left(r_k |\lambda| \right)^{2(\mu - 1)}$$

$$\lesssim |\lambda|^{-s+2} \left(r_k |\lambda| \right)^{2(\mu - 1)}$$

The second quantity is bounded by

$$\partial^{s-1} \left[\lambda \left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1} \right] \lesssim |\lambda|^{-s+2} \left(r_k |\lambda| \right)^{2\mu}$$

So,

$$\partial^{s} \left[\left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right] \lesssim 2\mu r_{k}^{2} |\lambda|^{-s+2} \left(r_{k} |\lambda| \right)^{2(\mu-1)}$$

$$\lesssim |\lambda|^{-s} \left(r_{k} |\lambda| \right)^{2} \left(r_{k} |\lambda| \right)^{2(\mu-1)}$$

$$\lesssim |\lambda|^{-s} \left(r_{k} |\lambda| \right)^{2\mu}$$

Case 2: $r_k|\lambda| \geqslant 1$.

We need to show

$$\partial^s \left[\left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu} \right] \lesssim |\lambda|^{-s}.$$

When s = 0,

$$\partial^s \left[\left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu} \right] \lesssim 1^{\mu} \lesssim |\lambda|^0 = 1.$$

Then,

$$\begin{split} \partial^{s} \Big[\Big(1 - e^{-r_{k}^{2} \lambda^{2}} \Big)^{\mu} \Big] &= \partial^{s-1} \Big[\mu \Big(1 - e^{-r_{k}^{2} \lambda^{2}} \Big)^{\mu-1} \Big(+ e^{-r_{k}^{2} \lambda^{2}} r_{k}^{2} 2\lambda \Big) \Big] \\ &= 2 \mu r_{k}^{2} \partial^{s-1} \Big[\lambda e^{-r_{k}^{2} \lambda^{2}} \Big(1 - e^{-r_{k}^{2} \lambda^{2}} \Big)^{\mu-1} \Big] \\ &= 2 \mu r_{k}^{2} \Big\{ \lambda \partial^{s-1} \Big[e^{-r_{k}^{2} \lambda^{2}} \Big(1 - e^{-r_{k}^{2} \lambda^{2}} \Big)^{\mu-1} \Big] + (s-1) \partial^{s-2} \Big[e^{-r_{k}^{2} \lambda^{2}} \Big(1 - e^{-r_{k}^{2} \lambda^{2}} \Big)^{\mu-1} \Big] \Big\} \end{split}$$

To bound the first half of the quantity on the RHS we see that

$$\partial^{s-1} \left[e^{-r_k^2 \lambda^2} \left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1} \right] = \sum_{l=0}^{s-1} \binom{s-1}{l} \partial^l \left(e^{-r_k^2 \lambda^2} \right) \partial^{s-1-l} \left[\left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1} \right]$$

$$\lesssim \sum_{l=0}^{s-1} \binom{s-1}{l} |\lambda|^{-l} P_{2l}(r_k \lambda) e^{-r_k^2 \lambda^2} |\lambda|^{-(s-1-l)}$$

$$\lesssim |\lambda|^{-(s-1)} P_{2(s-2)}(r_k \lambda) e^{-r_k^2 \lambda^2}$$

Similarly, the second quantity on the RHS can be bounded by

$$\partial^{s-2} \left[e^{-r_k^2 \lambda^2} \left(1 - e^{-r_k^2 \lambda^2} \right)^{\mu - 1} \right] \lesssim |\lambda|^{-(s-2)} P_{2(s-2)}(r_k \lambda) e^{-r_k^2 \lambda^2}$$

Then the whole thing can be bounded. And we have

$$\partial^{s} \left[\left(1 - e^{-r_{k}^{2} \lambda^{2}} \right)^{\mu} \right] \lesssim r_{k}^{2} |\lambda|^{-s+2} P_{2(s-1)}(r_{k}\lambda) e^{-r_{k}^{2} \lambda^{2}}$$

$$\lesssim |\lambda|^{-s} (r_{k}|\lambda|)^{2} P_{2(s-1)}(r_{k}\lambda) e^{-r_{k}^{2} \lambda^{2}}$$

$$\lesssim |\lambda|^{-s} P_{2s}(r_{k}|\lambda|) e^{-r_{k}^{2} \lambda^{2}}$$

$$\lesssim |\lambda|^{-s}$$

Define φ to be a smooth, positive, even function supported on $[-\frac{1}{2},\frac{1}{2}]$, and such that $\varphi(\tau)=1$ for $|\tau|<\frac{1}{4}$. Then the Fourier transform of φ is

$$\hat{\varphi}(\lambda) = \int e^{-i\lambda\tau} \varphi(\tau) d\tau$$

and,

$$\check{\varphi}(\lambda) = \frac{1}{2\pi} \int e^{i\lambda\tau} \varphi(\tau) d\tau$$

Now, let R be a number such that $\left[-\frac{1}{2},\frac{1}{2}\right]\subseteq \left[-\frac{R}{2},\frac{R}{2}\right]$,

$$\begin{split} \check{\varphi}_R(\lambda) &= R \check{\varphi}(R\lambda) \\ &= \frac{R}{2\pi} \int e^{i\lambda R\tau} \varphi(\frac{R\tau}{R}) \frac{d\tau}{R} \\ Letting \; \tau &= R\tau \\ \check{\varphi}_R(\lambda) &= \frac{1}{2\pi} \int e^{i\lambda \tau} \varphi\Big(\frac{\tau}{R}\Big) d\tau, \end{split}$$

Both a and φ are even by definition, then convolution

$$a_{1}(\lambda) := (a * \check{\varphi}_{R})(\lambda) = \int_{-\infty}^{\infty} a(\tau) \check{\varphi}_{R}(\lambda - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} a(\tau) \check{\varphi}_{R}(\lambda - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(\tau) \check{\varphi}_{R}(\lambda - \tau) d\tau e^{-i\lambda\tilde{\tau}} d\lambda$$

$$= \int_{-\infty}^{\infty} a(\tau) \int_{-\infty}^{\infty} \check{\varphi}_{R}(\tilde{\tau}) d\tau e^{-i(\lambda + \tilde{\lambda})\tilde{\tau}} d\tilde{\lambda}$$

$$= \int_{-\infty}^{\infty} a(\tau) e^{-i\lambda\tilde{\tau}} d\tau \int_{-\infty}^{\infty} \check{\varphi}_{R}(\tilde{\tau}) d\tau e^{-i\tilde{\lambda}\tilde{\tau}} d\tilde{\lambda}$$

$$= \int_{-\infty}^{\infty} a(\tau) e^{-i\lambda\tilde{\tau}} d\tau \varphi\left(\frac{\tau}{R}\right)$$

Now applying an inverse Fourier transform we get

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{a}(\tau) e^{i\lambda\tilde{\tau}} d\tau \varphi\left(\frac{\tau}{R}\right)$$
 (2.31)

$$= \frac{1}{\pi} \int_0^\infty \cos(\lambda \tau) \hat{a}(\tau) \varphi\left(\frac{\tau}{R}\right) d\tau \tag{2.32}$$

(2.33)

since the function is even, and letting $\tau = \tilde{\tau}$.

[3] shows that the wave equation with inverse-square potential $u_{tt} + \mathcal{L}_a u = 0$ obeys finite speed of propagation. Noting that $\phi(\frac{\tau}{R})$ is supported on the set $\{\tau : |\tau| \leq \frac{R}{2}\}$, the following is obtained

$$supp\Big(a_1(\sqrt{\mathcal{L}_a})\delta_y\Big)\subseteq\bigcup_{\tau\leq\frac{R}{2}}supp\Big(cos\big(\tau\sqrt{\mathcal{L}_a}\big)\delta_y\Big)\subseteq B\Big(y,\frac{1}{2}R\Big).$$

Thus, this part of the multiplier a does not contribute to (2.27).

The remaining part of a is shown to be bounded. Define

$$a_2(\lambda) := a_1(\lambda) - a(\lambda) = \int [a(\theta) - a(\lambda)] \check{\varphi}_R(\lambda - \theta) d\theta$$

When $|\lambda| \leq R^{-1}$

$$|a_2(\lambda)| \lesssim \left(1 \wedge r_k |\lambda|\right)^{2\mu} \left(|\lambda|R\right)^{-2\mu}$$
 (2.34)

and when $|\lambda| \ge R^{-1}$

$$|a_2(\lambda)| \lesssim \int |\varepsilon(\theta)| |\check{\varphi}_R(\lambda - \theta)| d\theta \lesssim (1 \wedge r_k |\lambda|)^{2\mu} (|\lambda|R)^{-j}.$$
 (2.35)

Combining (2.34) and (2.35) with the assumption that $R \geq r_k$

$$|a_2(\lambda)| \lesssim \left(1 \wedge r_k |\lambda|\right)^{2\mu} \left((|\lambda|R)^{-2\mu} + (|\lambda|R)^{-j} \right) = \left(\frac{1 \wedge r_k |\lambda|}{|\lambda|R}\right)^{2\mu} \left(1 + R^2 \lambda^2\right)^{\frac{2\mu - j}{2}}$$
(2.36)

The first part of the quantity on the far right can be controlled by $\left(\frac{r_k}{R}\right)^{2\mu}$, and the remaining can be decomposed into the following

$$\left(1+R^2\lambda^2\right)^{\frac{2\mu-j}{2}} \approx \int_0^\infty \left(\frac{t}{R^2}\right)^{\frac{j-2\mu}{2}} e^{\frac{-t(1+R^2\lambda^2)}{R^2}} \frac{dt}{t}$$

Combining the two gives equation (2.37)

$$|a_2(\lambda)| \lesssim \left(\frac{1 \wedge r_k |\lambda|}{|\lambda|R}\right)^{2\mu} \left(1 + R^2 \lambda^2\right)^{\frac{2\mu - j}{2}} \lesssim \left(\frac{r_k}{R}\right)^{2\mu} \int_0^\infty \left(\frac{t}{R^2}\right)^{\frac{j - 2\mu}{2}} e^{\frac{-t(1 + R^2 \lambda^2)}{R^2}} \frac{dt}{t}$$
 (2.37)

By the spectral theorem (Appendix A.2) and the triangle inequality, we obtain the next result.

$$||a_2(\sqrt{\mathcal{L}_a})||_{L^2(\mathbb{R})} \lesssim \left(\frac{r_k}{R}\right)^{2\mu} \int_0^\infty \left(\frac{t}{R^2}\right)^{\frac{j-2\mu}{2}} e^{-\frac{t}{R^2}} ||e^{-t\mathcal{L}_a}b_k||_{L^2} \frac{dt}{t}$$
 (2.38)

We state the following quantity without proof. The proof can be found in [1]:

$$\left\| e^{-t\mathcal{L}_a} b_k \right\|_{L^2} \lesssim t^{-\frac{d}{4}} (t + r_k^2)^{\frac{d}{2q'}} \|b_k\|_{L^q}$$
 (2.39)

Which leads to

$$||a_{2}(\sqrt{\mathcal{L}_{a}})b_{k}||_{L^{2}(\mathbb{R}^{d})} \lesssim \left(\frac{r_{k}}{R}\right)^{2\mu} R^{-d(\frac{1}{2}-\frac{1}{q'})} ||b_{k}||_{L^{q}} \int_{0}^{\infty} \left(\frac{t}{R^{2}}\right)^{\frac{j-2\mu}{2}-\frac{d}{4}} \left(1+\frac{t}{R^{2}}\right)^{\frac{d}{2q'}} e^{-\frac{t}{R^{2}}} \frac{dt}{t}$$
$$\lesssim \left(\frac{r_{k}}{R}\right)^{2\mu} R^{-d(\frac{1}{2}-\frac{1}{q'})} ||b_{k}||_{L^{q}},$$

for any $R \ge r_k$. This completes the proof of theorem 2.7.

REFERENCES

- [1] Killip, R., Miao, C., Visan, M. et al., Sobolev Spaces Adapted to The Schrödinger operator with inverse-square potential, Math. Z. (2018) 288: 1273. https://doi.org/10.1007/s00209-017-1934-8
- [2] T. Coulhon and A. Sikora, Gaussian Heat Kernel Upper Bounds via Phragmén-Lindelöf Theorem, Proc. London Math. Soc. 96 (2008), 507-544.
- [3] Adam Sikora, *Riesz transform, Gaussian bounds and the method of the wave equation*, Math. Z. 247 (2004), no. 3, 643-662.
- [4] E. Brian Davies, *Heat Kernel Bounds for Higher Order Elliptic Operators*, Journées Équations aux Dérivées Partielles 247 (2004), no. 3, 643-662.
- [5] A. Pankov, *introduction to Spectral Theory of Schrödinger Operators*, Dep. of Math. Vinnitsa State Pedagogical University (Ukraine) (2000)
- [6] K. Ishige, Y. Kabeya, E. M. Ouhabaz, *The Heat Kernel of a Schrödinger Operator with inverse square potential*, Proc. London Math. Soc. 115 (2017), 381-410.
- [7] S. Zheng, Spectral Multiplier for the Schrödinger Operator with Pöschl-Teller Potential, Illinois J. Math. 54-2 (2010), 621-647.
- [8] A. Ibort, J. Pérez-Pardo, On the theory of self-adjoint extensions of symmetric operators and its applications to Quantum Physics, Int.Journal Geom. Meth. Mod. Phys. (2015) 12.1560005. 10.1142/S0219887815600051.
- [9] M. Reed, B. Simon, *Methods of Modern Mathematical Physics, I-IV*, Acad. Press, New York, 1980, 1975, 1979, 1978.
- [10] W. Hebisch, A multiplier Theorem for Schrödinger Operators, Coll. Math, 60/61 (1990), no.2, 659-664.
- [11] Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press. (Princeton) (1970).

- [12] T. Kato, Trotter's formula for an arbitrary pair of selfadjoint contraction semigroups,in: Topics in Functional Analysis, Gohberg and M. Kac ()eds Adv. in Math. Suppl. Stud. 3, Acad. Press, New York 1978, 185-195
- [13] W. Hebisch, *Almost everywhere summability of eigenfunction expansions associated to elliptic operators*, Studia. Math, 96 (1990)
- [14] J. Murphy, *The nonlinear Schrodinger equation with an inverse-square potential*, Top appear in AMS contemporary Mathematics
- [15] J. Lu, C. Miao, and J. Murphy, *Scattering in H1 for the intercritical NLS with an inverse square potential*, J. of Differential Equations 264 (2018), no.5, 3174-3211
- [16] R. Killip, J. Murphy, M. Visan and J Zheng, *The focusing cubic NLS with inverse-square potential in three space dimensions*, J. of Differential Equations 30 (2017), n0. 3-4, 161-206
- [17] K. Ishige, Y. Kabeya, E. M. Ouhabaz, *The heat kernel of a Schrdinger operator with inverse square potential*, Proceedings of the London Mathematical Society, London Mathematical Society, 2018.
- [18] G. Barbatis, S. Filippas and A. Tertikas, *Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities*, J. Funct. Anal. 208 (2004), 130.

APPENDIX A

NOTABLE THEOREMS

Here we present a short selection of harmonic analysis theorems that were useful in our work, either explicitly or implicitly.

Theorem A.1. (Calderon-Zygmund). Let $f \in L^1(\mathbb{R}^n)$, and let h > 0. There exists a countable collection of cubes with sides parallel to the axes, Q_j with disjoint interiors, such that, for each j,

$$h < \frac{1}{|Q_j|} \int_{Q_j} |f| dx \le 2^n h.$$

Consider $\Omega = \bigcup Q_j$ and $F = \mathbb{R} \setminus \Omega$. Then,

$$|\Omega| \le h^{-1}||f||_{L^1(\mathbb{R}^n)}.$$

Moreover,

$$|f(x)| \le h$$

holds almost everywhere for $x \in F$. There exist a decomposition

$$f(x) = g(x) + b(x)$$

such that $|g(x)| \le 2^n h$ almost everywhere, moreover, for 1 ,

$$||g||_{L^p(\mathbb{R}^n)} \le h^{\frac{p-1}{p}} (1 + 2^{np})^{\frac{1}{p}} ||f||_{L^1(\mathbb{R}^n)}^{\frac{1}{p}}$$

Theorem A.2. (Chebyshev Theorem) Let (X, \sum, μ) be measurable space, and let f be an extended real-valued measurable function defined on X. Then for any real number h>0 and $0< q<\infty$,

$$\mu\{x \in X : |f(x)| \ge h\} \le \frac{1}{t^q} \int_{|f| \ge h} |f|^q d\mu.$$

Theorem A.3. (Spectral Theorem) Suppose that \mathcal{L}_a is a self-adjoint positive definite operator acting on $L^2(TX, \mu)$. Such an operator admits a spectral decomposition $E_L(\lambda)$ and for

any bounded Borel function $F:[0,\infty)\to \mathbb{C}$, we define the operator $F(\mathcal{L}_a):L^2(TX)\to L^2(TX)$ by the formula

$$F(\mathcal{L}_a) = \int_0^\infty F(\lambda) dE_{\mathcal{L}_a}(\lambda.)$$

Suppose that S is a bounded operator from $L^p(TX)$ to $L^q(TX)$. We write $||S||_{L^p(TX)\to L^q(TX)}$ for the usual operator norm of S. If S is of the weak type (1,1), i.e., if

$$\mu(x \in X : |Sf(x)| > \lambda) \le C \frac{\|f\|_{L^1(TX)}}{\lambda} \quad \forall \lambda \in \mathbb{R}^+ \quad \forall f \in L^1(TX),$$

where the least possible of C is $||S||_{L^1 \to L^{1,\infty}}$.

Theorem A.4. (Marcinkiewicz interpolation Theorem, Stein 21) Suppose that $1 \le r \le \infty$. If T is a sub-additive mapping from $L^1(\mathbb{R}^n) + L^r(\mathbb{R}^n)$ to the space of measurable functions on (\mathbb{R}^n) which is simultaneously of weak type (1,1) and weak type (r,r), then T is also of type (p,p), for all p such that $1 . More explicitly: Suppose that for all <math>f,g \in L^1(\mathbb{R}^n) + L^r(\mathbb{R}^n)$

(i)
$$|T(f+g)(x)| \le |Tf(x)| + |Tg(x)|$$

(ii)
$$m\{: |Tf(x)| > h\} \le \frac{A_1}{h} ||f||_1, f \in L^1(\mathbb{R}^n)$$

(iii)
$$m\{x: |Tf(x)| > h\} \le \left(\frac{A_r}{h}||f||_r\right)^r, f \in L^r(\mathbb{R}^n)$$

Then

$$||Tf(x)||_p \le A_p||f||_p, f \in L^p(\mathbb{R}^n)$$

for all $1 , where <math>A_p$ depends only on A_1, A_2 , pand r.

Theorem A.5. (Holder's Inequality) Let (S, σ, μ) be a measure space and let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then, for all measurable real, or complex-valued functions f and g on S

$$||fg||_1 \le ||f||_p ||g||_q.$$

If in addition $p,q\in (1,\infty)$ and $f\in L^p(\mu)$ and $g\in L^q(\mu)$, then Holder's inequality becomes an equality $iff\ |f|^p$ and $|g|^q$ are linearly dependent in $L^1(\mu)$, meaning that there exist real numbers, $\alpha,\beta\geq 0$, not both of them zero, such that $\alpha|f|^p=\beta|g|^q$ on μ almost everywhere.