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by
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ABSTRACT

In this paper we present a survey of results on the Schrödinger operator with Inverse Square

potential, La = −∆ + a
|x|2 , a ≥ −(d−2

2
). We briefly discuss the long-time behavior

of solutions to the inter-critical focusing NLS with an inverse square potential (proof not

provided). Later we present spectral multiplier theorems for the operator. For the case

when a ≥, we use Hebisch [12] as a template for our attempt at a proof using estimates and

results from [1], Sikora [3], [18] and [19]. The case when 0 > a ≥ −(d−2
2

) was explored in

[1], and their proof will be presented for completeness. No improvements on the sharpness

of their proof as been obtained.
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CHAPTER 1

INTRODUCTION

1.1 THE OPERATOR

The operator

La = −∆ +
a

|x|2
with, a ≥ −

(d− 2

2

)2
(1.1)

in dimensions d ≥ 3. This operator was first introduced to us in [1] as defined below. The

following related results were proved in [1]. La is the Friedrichs extension of the operator

L◦a, where L◦a denotes the natural action of −∆ + a
|x|2 on C∞c (Rd\{0}).

1.1.1 L◦a IS A POSITIVE SEMI-DEFINITE SYMMETRIC OPERATOR

If we let

σ :=
d− 2

2
− 1

2

√
(d− 2)2 + 4a

[1] shows that L◦a can be seen to be positive via the factorization

L◦a =
(
−∇+ σ

x

|x|2
)(
∇+ σ

x

|x|2
)

= −∆ + σ2 1

|x|2
= −∆ + σ(d− 2− σ)

1

|x|2
.

If we pick θ ∈ C∞c (Rd\{0}), then by functional calculus and the previous factorization of

L◦a

〈θ,L◦aθ〉 = 〈θ,
(
−∇+ σ

x

|x|2
)(
∇+ σ

x

|x|2
)
θ〉

= ‖θ(x)
(
∇+ σ

x

|x|2
)
‖2

=

∫
Rd

∣∣∣∇θ(x) + σ
x

|x|2
θ(x)

∣∣∣2 ≥ 0.

Hence, L◦a is positive semi-definite as needed.
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1.1.2 GENERAL THEORY OF SELF-ADJOINT EXTENSIONS

Below we present a version of Friedrich’s Extension Theorem and Kato’s Theorem from [8]

(without proof). The Authors in in [1] used similar theorems to find a self-adjoint extension

to the operator L◦a (See [9, §X.3]).

Theorem 1.1. Friedrich’s Extension Theorem Let T0 be a symmetric, semi-bounded Oper-

ator with domain D(T0) then, the quadratic form

QT0(Φ,Θ) := 〈Φ, T0Θ〉,Φ,Θ ∈ D(T0)

is closable.

Theorem 1.2. Kato’s Representation Theorem Let Q be a closed, semi-bounded quadratic

form with domain D. Then it exists a unique, self-adjoint, semi-bounded operator T with

domain D(T ) ⊂ D such that

Q(Φ,Θ) = 〈Φ,Θ〉 ∀Φ ∈ D, ∀Θ ∈ D(T ).

The Theorems mentioned above guarantee the existence of a unique self-adjoint exten-

sionLa ofL◦a, whose form domainQ(La) = D(
√
La) ⊆ L2(Rd) is given by the completion

of C∞c (Rd\{0}) with respect to the norm

‖Θ‖2Q(La) =

∫
Rd

∣∣∣∇Θ
∣∣∣2 +

(
1 +

a

|x2|

)∣∣∣Θ∣∣∣2dx =

∫
Rd

∣∣∣∇Θ +
σx

|x2|
Θ
∣∣∣2 +

∣∣∣Θ∣∣∣2dx.
Theorem 1.3. (Equivalence of Sobolev norms) Suppose d ≥ 3, a ≥ −

(
d−2
2

)2
, and 0 <

s < 2. If 1 < p <∞ satisfies s+σ
d
< 1

p
< min

{
1, d−σ

σ

}
, then

‖(−∆)
s
2f‖Lp .d,p,s ‖L

s
2
a ‖,∀f ∈ C∞c (Rd). (1.2)

If max
{
s
d
, σ
d

}
< 1

p
< min

{
1, d−σ

σ

}
, then

‖L
s
2
a f‖Lp . ‖(−∆)

s
2f‖Lp , ∀f ∈ C∞c (Rd) (1.3)
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1.1.3 HEAT AND RIESZ KERNELS

Theorem 1.4. (The Heat Kernel Bounds) Assume d ≥ 3 and a ≥ −(d−2)
2

. Then there exist

positive constants C1, C2 and c1, c2 such that for all t > 0 and all x, y ∈ (Rd\{0}),

C1
(

1 ∨
√
t

|x|

)σ(
1 ∨
√
t

|y|

)σ
t−

d
2 e
− |x−y|

2

c1t ≤ e−tLa(x, y)

≤ C2
(

1 ∨
√
t

|x|

)σ(
1 ∨
√
t

|y|

)σ
t−

d
2 e
− |x−y|

2

c2t (1.4)

Theorem 1.5. (Riesz Kernels) Let d ≥ 3 and suppose 0 < s < d and d− s− 2σ. Then the

Riesz potentials

L−
s
2

a (x, y) :=
1

Γ( s
2
)

∫ ∞
0

e−La(x, y)t
s
2
dt

t

satisfy

L−
s
2

a (x, y) ∼ |x− y|s−d
( |x|
|x− y|

∧ |y|
|x− y|

∧ 1
)−σ

. (1.5)

1.1.4 HARDY INEQUALITY

Theorem 1.6. (IV Hardy inequality for La) Suppose d ≥ 3, a < s < d, d − s − 2σ > 0,

and 1 < p <∞. Then

‖|x|−sf(x)‖Lp(Rd) . ‖L
s
2
a f‖Lp(Rd) (1.6)

holds, if and only if

s+ σ <
d

p
< d− σ. (1.7)
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CHAPTER 2

TYPE-SETTING IN LATEX

2.1 LONG-TIME BEHAVIOR OF SOLUTIONS TO THE INTERCRITICAL FOCUSING

NLS WITH INVERSE SQUARE POTENTIAL

The results from this section originally appeared in [15], [16] and [17], which explored the

long-time behavior of solutions to the intercritical NLS with inverse square potential:

i∂tu = Lau− |u|pu, (2.1)

where u : Rd
txRd

x → C, 4
d
< p < 4

d−2 and d ≥ 3.

For a ∈
(
−
(
d−2
2

)2
, 0
]
, equation (1) admits a global but non-scattering solution of the

form u(t) = eitPa, where Pa (the *ground state*) solves the elliptic problem

−LaPa − Pa + |Pa|pPa = 0. (2.2)

2.1.1 SCATTERING / BLOW-UP DICHOTOMY

Theorem 2.1 (V). (Scattering/Blow-up Dichotomy) Suppose that d ≥ 3, 4
d
< p < 4

d−2 , and

a > −
(
d−2
2

)2
, and let u0 ∈ H1(Rd). There exists a unique maximal-lifespan solution u to

(1) with u|t=0 = u0. If u0 is below the ground state threshold, in the sense that

M(u0)
4−p(d−2)
dp−4 Ea(u0) < M(Pa∧0)

4−p(d−2)
dp−4 Ea∧0(Pa∧0), (2.3)

Then the following dichotomy holds: If

‖u0‖
4−p(d−2)
dp−4

L2 ‖u0‖H1
a
< ‖Pa∧0‖

4−p(d−2)
dp−4

L2 ‖Pa∧0‖H1
a
, (2.4)

Then u is global in time and scatters in both time directions; that is, there exist solutions

v± to the equation i∂tv± = La∧0v± such that

lim
t→±∞

‖u(t)− v±(t)‖H1 = 0.
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Theorem 2.2 (VI cont’). If

‖u0‖
4−p(d−2)
dp−4

L2 ‖u0‖H1
a
> ‖Pa∧0‖

4−p(d−2)
dp−4

L2 ‖Pa∧0‖H1
a∧0
,

and u0 is radial or xu0 ∈ L2, then u blows up in finite time in both time directions.

2.1.2 LINEAR AND LOCAL THEORY

Theorem 2.3 (VII Strichartz Estimates). Let a > −
(
d−2
2

)2
and d ≥ 3. Let (q, r) and (q̃, r̃)

be such that

2 ≤ q, q̃ ≤ ∞ and
2

q
+
d

r
=

2

q
+
d

r
=
d

2
,

with (q, q̃) 6= (2, 2). suppose u : I × Rd → C solves

(i∂t − La)u = F.

Then for any t0 ∈ I , the following estimate holds:

‖u‖LqtLrx(IxRd) . ‖u0‖L2
x

+ ‖F‖
Lq̄
′
t L

r̄′
x (IxRd).

Theorem 2.4 (VIII Local Well-posedness). Let t0 ∈ R, u0 ∈ H1,

-There exist T = T (‖u0‖H1) > 0 and a unique solution u to (1) on (t0 − T ; t0 + T ) with

u(t0) = u0. In particular, if u remains uniformly bounded in H1 throughout its lifespan,

then u extends to a global solution.

-Furthermore, there exists η0 > 0 so that if

‖e−i(t−t0)Lu0‖Lq0t,x((t0,∞)xRd) < η.

The analogous statement holds backward in time and on all of R.

-Finally, for any ψ ∈ H1 there exists a solution to (1) that scatters to ψ as t→∞, and the

analogous statement holds backwards in time.
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Theorem 2.5 (IX Stability). Let ũ solve

i∂tũ = Laũ− |ũ|pũ+ e

on an interval I for some function e. Suppose

‖u0‖H1 + ‖ũ(t0)‖H1 ≤ E, ‖ũ‖Lq0t,x(IxRd) ≤ L.

There exists ε0(E,L > 0) so that if 0 < ε < ε0 and

‖u0 − ũ(t0)‖H1 + ‖|∇|sce‖N(I) < ε,

where sc = d
2
− 2

p
and N is a sum of dual Strichartz spaces, the there exists a solution u to

(1) with u(t0) = u0 satisfying

‖(La)
sc
2 [u− ũ]‖S(I) . ε, ‖(1 + La)

1
2u‖S(I) .E,L 1

for any Strichartz space S.

2.1.3 HARMONIC ANALYSIS ADAPTED TO La

The following set of tool-kits were developed in [1] and summarized in [15].

We present the Little-Paley projections defined via the heat kernel:

P a
N := e−La/N

2 − e−4La/N2

for N ∈ 2Z.

Let

q̃ :=

 ∞ if a ≥ 0,

d
σ

if −
(
d−2
2

)2
< a < 0.

We write q̃′ as the dual exponent to q̃. Using the previous definitions, we summarize the

needed tools in the following:

Lemma 2.1.1 (Harmonic Analysis tools). For q̃′ < q ≤ r < q̃,

f =
∑
N∈2Z

P a
Nf, as elements of Lrx.

Furthermore, we have the following Bernstein estimates:
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1. The operators P a
N are bounded on Lrx.

2. The operators P a
N map Lqx to Lrx, with the norm O

(
N

d
q
− d
r

)
.

3. For any s ∈ R,

N s‖P a
Nf‖Lrx ∼ ‖

(
La
) s

2
P a
Nf‖Lrx .

Finally, for 0 ≤ s < 2, we have the square function estimate∥∥∥( ∑
N∈2Z

N2s|P a
Nf |2

) 1
2
∥∥∥
Lrx

∼ ‖(La)
s
2f‖Lrx

2.2 MULTIPLIER THEOREM FOR THE CASE WHEN a ≥ 0

We present two multiplier theorems for the operator. We start with the case when a ≥

0. The theorem in part one was obtained from Hebicsh [12], we try to adapt the proof

presented in the same paper to our operator. Some of the estimates used in the proof were

obtained from [18] and [19]. For the purpose of completeness, we present a Mihklin-type

multiplier theorem as presented in [1] for the case when−(d−2
2

)2 ≤ a < 0. We offer a brief

restatement of the proof offered by [1].

Let E be the spectral measure of La. If F is a bounded Borel measurable function we

write

F (La)f =

∫
F (λ)dE(λ)f.

Let

Ft(a) = F (tx).

By the spectral theorem F (La) is bounded on L2.

Theorem 2.6. (Hebisch[12]) If for some ε > 0, a non-zero φ ∈ C∞c (R+) and constant C,

we have
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‖φFt‖H((d+1)/2+ε) ≤ C, (2.5)

then T is of weak type (1,1) and bounded on Lp for 1 < p <∞.

2.2.1 PROOF ADAPTED TO La

From (2.5), we get that ‖F‖L∞ ≤ C ′C, then

‖F (La)‖L2,L2 ≤ C ′C. (2.6)

By interpolation and duality argument,it is enough to prove that F (La) is of weak type

(1, 1). Using the Trotter formula in [13] we obtain

0 ≤ e−tLa(x, y) . pt(x, y), (2.7)

where pt(x, y) = C
(

1 ∨
√
t
|x|

)σ(
1 ∨

√
t
|y|

)σ
t−

d
2 e−

|x−y|2
ct . (2.7) implied the following

∫
e−tLaes|x−y|dx . CeCs

2t (2.8)∫
|e−tLa(x, y)|2dx . Ct−

d
2
−αe2λ

2t (2.9)

supx,y

∣∣∣e−tLa(x, y)
∣∣∣ ≤ Ct−

d
2
−αe2λ

2t (2.10)

for some constant C and all s, t > 0, y ∈ Rd. We have

‖K‖a = max
{
supx

∫
|K(x, y)|(1 + |x− y|)ady, supy

∫
|K(x, y)|(1 + |x− y|)adx

}
.

Lemma 2.2.1. (see Hebisch [12] for proof) If suppF ⊂ [1, 4], ε > 0, a ≥ 0, then

‖F (La)‖a ≤ C‖F‖H((d+1)/2+ε+a)

where C is independent of F and La.
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Proof. Set

K(λ) = F (−log(λ))λ−1.

We have that

‖K‖H((d+1)/2+ε+a) ≤ C1‖F‖h((d+1)/2+ε+a), suppK ⊂ [e−4, e].

Let K(λ) =
∑
K̂(n)einλ, en = eine

−La
e−La , then

F (La) = K(e−La)e−La =
∑

K̂(n)en.

2.8 and 2.9 allows us to use (3.1) from [14] to obtain

‖en‖a ≤ C2(1 + |n|)d/2+a

so

‖F‖a ≤ C2

∑
|K̂(n)|(1 + |n|)d/2+a

≤ C2

(∑
|K̂(n)|2(1 + |n|)d+2a+1+ε

)1/2(∑
(1 + |n|)−1−ε

)1/2
≤ C3‖K‖H((d+1+ε)/2+a) ≤ C4‖F‖H((d+1)/2+ε+a),

which ends the proof of the lemma.

Lemma 2.2.2. (see Hebisch [12] for proof) For every m ≥ 0 there exist N,C > 0 such

that if F ∈ H(N), suppF ⊂ [−1, 4], then

|F (La)(x, y)| ≤ C‖F‖H(N)(1 + |x− y|)−m

for all x, y and La

Proof. Let G(λ) = F (λ)eλ, N = d/2 + m + 1. Of course ‖G‖H(N) ≤ C1‖F‖H(N). By

lemma 2.2.1, ‖G(La)‖m ≤ C2‖G‖H(N) and by 2.7 and 2.10,

|(1 + |x− y|)mF (La)(x, y)| =
∣∣∣ ∫ G(La)(x, s)e−La(s, y)(1 + |x− y|)mds

∣∣∣
≤

∫
|G(La)(x, s)|(1 + |x− s|)me−La(s, y)(1 + |s− y|)mds

≤ ‖G(La)‖msup p1(x)(1 + |x|)m.
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Then since, G(λ) = F (λ)eλ

|F (La)(x, y)| ≤ C‖F‖H(N)(1 + |x− y|)−m

Let φ and ψ be in C∞(R), where suppφ ⊂ [1/4, 2],
∑

= 1 for every x > 0, and

suppψ ⊂ [−1, 1], with ψ(x) = 1 for x ∈ [0, 1/2]. Let

Fk(λ) = φ(22kλ)F (λ), ψk(λ) = ψ(22kλ).

Choose a < ε. There exists C such that

‖ψkFk(La)‖L1,L1 ≤ C, (2.11)∫
|Fk(La)|(x, y)(1 + 2−k|x− y|)adx ≤ C, (2.12)

|ψk(La)|(x, y) ≤ C2−kd(1 + 2−k|x− y|)−d−1. (2.13)

The proof for (2.11), (2.12) and (2.13) can be found in Hebisch [12], and has not been

reproduced here.

Let f be an integrable function. We use Calderón-Zygmund decomposition on f at

height λ with functions fi and g and cubes Qi such that

f = g +
∑

fi, suppfi ⊂ Qi,

∫
|fi| ≤ Cλ|Qi|,

|g| ≤ Cλ, Qi ∩Qj = ∅ for i 6= j,
∑
|Qi| ≤ C‖f‖L1/λ.

LetQ∗i be the ball with the same center asQi and radius 2diamQi. We put ki = [log2(diamQi)].

Let h be an integrable function such that supph ⊂ {x : |x| ≤ 1} = B. We have
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∫
|x|>2

|Fk(La)h|(x)dx ≤ ‖h‖L1supy∈B

∫
|x|>2

|Fk(La)|(x, y)dx

≤ ‖h‖L1supy

∫
|x−y|>1

|Fk(La)|(x, y)dx

≤ 2ka‖h‖L1supy

∫
|Fk(La)|(x, y)(1 + 2−k|x− y|)adx

≤ C2ka‖h‖L1

and ∑
k≤0

∫
|x|>2

|Fk(La)h|(x)dx ≤ C
∑
k≤0

2ka‖h‖L1 ≤ C1‖h‖L1 .

With the use of dilation we get

∑
j≤ki

∫
(Q∗i )

c

|Fj(La)fi|(x)dx ≤ C‖fi‖L1 . (2.14)

Lemma 2.2.3. There exists C such that∥∥∥∑ψki(La)fi
∥∥∥2
L2
≤ Cλ‖f‖L1 .

Proof. First observe that there exists C0 such that if Q = {x : max|xi| ≤ 1} then for all x

sup
y∈Q

(1 + |x− y|)−d−1 ≤ C0 inf
y∈Q

(1 + |x− y|)−d−1.

As a result of this and using dilations we obtain for all i

sup
y∈Qi

(1 + 2−ki |x− y|)−d−1 ≤ C0 ∈y∈Qi (1 + 2−ki |x− y|)−d−1. (2.15)

Keeping i constant, let y0 be the center of Qi. By (2.15)

|ψki(La)fi|(x) ≤
∫

2−kid(1 + 2−ki |x− y|)−d−1|fi|(y)dy

≤ λC1|Qi|2−kid(1 + 2−ki |x− y0|)−d−1

≤ λC2

∫
2−kid(1 + 2−ki |x− y|)−d−1XQi(y)dy

≤ λC3(2
−kid(1 + 2−ki | · |)−d−1 ∗ XQi)(x).
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If h ∈ L2, then

∣∣∣(h, 2−kid(1+2−ki |·|)
)−d−1

∗XQi
∣∣∣ =

∣∣∣(2−kid(1+2−ki |·|)
)−d−1

, h∗XQi
)∣∣∣ ≤ C4(Mh,XQi)

where M is the Hardy-Littlewood maximal operator. Following is the Hardy-Littlewood

maximal operator (Stein[11]). Since M is bounded on L2,∣∣∣(h,∑ψki(La)fi
)∣∣∣ ≤ C5

(
Mh,

∑
λXQi

)
≤ C6‖h‖L2

∥∥∥∑λXQi
∥∥∥
L2
.

But ‖
∑
λXQi‖2L2 =

∑
λ2|Qi| ≤ Cλ‖f‖L1 , which ends the proof.

Clearly, if j < k, then ψkFj = 0 so ψk(La)Fj(La) = 0. Similarly, if j > k then

ψk(La)Fj(La) = Fj(La). Therefore

F (La) =
∑
i,j

Fj(La)fi + F (La)g

=
∑
i

(∑
j≤ki

Fj(La)fi +
∑
j>ki

Fj(La)fi
)

+ F (La)g

=
∑
i

∑
j≤ki

Fj(La)fi +
∑
i,j

Fj(La)ψki(La)fi −
∑
i

Fki(La)ψki(La)fi + F (La)g

=
∑
i

∑
j≤ki

Fj(La)fi + F (La)
(∑

ψki(La)fi + g
)
−
∑
i

Fki(La)ψki(La)fi.

Putting S = ∪Q∗i , by (2.14) and the properties of the Calderón-Zygmund decomposition

we have

∣∣∣{x :
∣∣∣∑

i

∑
j≤ki

Fj(La)fi
∣∣∣ > λ/3

}∣∣∣ ≤ |S|+ (3/λ)

∫
sc

∣∣∣∑
i

∑
j≤ki

Fj(La)fi
∣∣∣

≤ C‖f‖L1/λ+ (C/λ)
∑
‖fi‖L1

≤ C‖f‖L1/λ.

By lemma 2.23,
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∥∥∥∑ψki(La)fi + g‖2L2 ≤ Cλ
∥∥∥f‖L1 .

and by (2.6)∣∣∣{x :
∣∣∣F (La)

(∑
ψki(La)fi + g

)∣∣∣ > λ/3
}∣∣∣
≤ (C/λ2)

∥∥∥∑ψki(La)fi + g
∥∥∥2
L2

≤ C ′λ‖f‖L1/λ2 = C‖f‖L1/λ.

By (2.8),

∣∣∣{x :
∣∣∣(∑Fki(La)ψki(La)fi

)∣∣∣ > λ/3
}∣∣∣ ≤ 3

∥∥∥∑Fki(La)ψki(La)fi
∥∥∥
L1
/λ

≤ (C/λ)
∑
‖fi‖L1 ≤ C‖f‖L1 ≤ C‖f‖L1/λ,

This ends the proof of theorem 2.6.

2.3 MIKHLIN MULTIPLIER THEOREM FOR THE CASE −(d−2
2

)2 ≤ a < 0

Below, we present a multiplier theorem, and summary of its proof for the case when

−(d−2
2

)2 ≤ a < 0 Both the theorem and the major results of the proof were obtained

from [1].

Theorem 2.7. (Mikhlin Multipliers) Fix−
(
d−2
2

)2
≤ a < 0 and suppose thatm : [0,∞)→

C satisfies

|∂m(λ)| . λ−j for all 0 ≤ j ≤ 3
⌊d

4

⌋
+ 3. (2.16)

Then m(
√
La) which we define via the L2 functional calculus, extends uniquely from

Lp(Rd) ∩ L2(Rd) to a bounded operator on Lp(Rd) for all r0 < p < r′0 := d
σ

.

Proof. We present the major results of the proof provided by [1], a more complete proof

can be found in said paper. By the Spectral theorem, the operator T := m(
√
La) is bounded
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on L2.) Thus using the Marcinkiewicz interpolation theorem and a duality argument, it

suffices to show that T is of the weak-type (q,q)

|{x : |Tf (x )| > h}| . h−q ||f ||qLq (Rd) for all h > 0 .

The authors used Calderon-Zygmund decomposition to |f |q at height hq to obtain a family

of dyadic cubes {Qk}k, Qj

⋂
Qk = ∅,

⋃
Qj = Ω if j 6= k which allowed the original

function f to be decomposed such that f = g + bk, where b =
∑

k bk and bk = XQkf and

|g| ≤ h almost everywhere. By construction,

hq <
1

|Qk|

∫
Qk

|f(x)|qdx ≤ 2nhq

hq|Qk| ≤
∫
Qk

|f(x)|qdx ≤ 2n|Qk|hq

|Qk| ≤
1

hq

∫
Qk

|f(x)|qdx ≤ 2n|Qk| (2.17)

Multiplying (1.2) by h, we get

h|Qk| ≤ h1−q
∫
Qk

|f(x)|qdx

By Holder’s inequality and (2.17),∫
Qk

|f(x)|dx . ||f ||Lq(Qk)|Qk|
1
q′ . h|Qk| . h1−q

∫
Qk

|f(x)|qdx (2.18)

We further decompose bk = gk + b̃k according to the definition below

b̃k := (1− e−r2
k)µbk and gk := [1− (1− er2

kLa )µ]bk
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Using the Binomial Theorem we get that

(1 + (−e−r2
k))µ =

(
µ

0

)
(−e−r2

kLa )0 +

(
µ

1

)
(−e−r2

kLa )1 +

(
µ

2

)
(−e−r2

kLa )2 + ....

+

(
µ

µ− 1

)
(−e−r2

kLa )µ−1 +

(
µ

µ

)
(−e−r2

kLa )µ

=

µ∑
ν=0

(
µ

ν

)
(−e−νr2

kLa )

=

µ∑
ν=0

µ!

ν!(µ− ν)!
(−e−νr2

kLa )

=

µ∑
ν=1

cνe
−νr2

kLa

Then,

gk =

µ∑
ν=1

cνe
−νr2

kLa bk

Where rk denotes the radius of Qk and µ := bd
4
c+ 1. Therefore,

f = g + b

= g +
∑
k

bk

= g +
∑
k

gk +
∑
k

b̃k

Applying the operator T to the above quantity, we get

Tf = Tg +
∑
k

Tgk +
∑
k

T b̃k.

By the Marcinkiewicz Interpolation Theorem

|Tf | ≤ |Tg|+ |
∑
k

Tgk|+ |
∑
k

T b̃k|.

Then
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{|Tf | > h} ⊂
{
|Tg| > 1

3
h

}
∪
{
|T
∑
k

gk| >
1

3
h

}
∪
{
|T
∑
k

b̃k| >
1

3
h

}
By Chebyshev’s inequality, and the boundedness of T in L2, and (2.17)∣∣∣∣{|Tg| > 1

3
h

}∣∣∣∣ . h−2||Tg||2L2 . h−2||g||2L2 . h−q||g||qLq . h−q||f ||qLq

Using an argument similar to what was used above we obtain that

∣∣∣∣{|T∑
k

gk| >
1

3
h

}∣∣∣∣ . h−2||T
∑
k

gk||2L2 . h−2||
∑
k

gk||2L2 (2.19)

To control gk ∥∥∥∑
k

gk

∥∥∥2
L2

=

∫ ∣∣∣∑
k

gk

∣∣∣2 (2.20)

=

∫ ∑
k

gk
∑
l

gl

=

∫ ∑
k

∑
ν

cνe
−νr2

kLa bk
∑
l

∑
ν′

c′νe
−ν′r2

l La bl

=

∫ ∑
ν,ν′

cνcν′
∑
k

e−νr
2
kLa bk

∑
l

e−ν
′r2
l La bl

=
∑
ν,ν′

cνcν′
∑
k,l

∫
bke
−(νr2

k+ν
′r2
l )La bl

=
∑
ν,ν′

cνcν′
∑
k,l

〈
bk, e

−(νr2
k+ν

′r2
l )La bl

〉
.

∑
k,l

〈
bk, e

−(νr2
k+ν

′r2
l )La bl

〉
(2.21)

Using the heat kernel in theorem 1.4 we obtain

‖
∑
k

gk‖2L2 =
∑
ν,ν′

cνcν′
∑
k,l

〈bk, e−(νr
2
k+ν

′r2
l )〉 (2.22)

.
∑
rk≥rl

r−dk

∫
Ql

∫
Qk

( rk
|x|
∨ 1
)σ
|bk(x)|e

− |x−y|
2

cr2
k

( rk
|y|
∨ 1
)σ
|bl(y)|dxdy
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Now, all that is needed is to show that the quantity on the far right is bounded. Integrating

over Qk and Ql, we get

∑
l:rk≥rl

∫
Ql

∫
Qk

r−dk

( rk
|x|
∨ 1
)σ
|bk(x)|e

− |x−y|
2

cr2
k

( rk
|y|
∨ 1
)σ
|bl(y)|dxdy (2.23)

From here, we freeze k, and xc ∈ Qk so we can focus on

∑
l:rl≤rk

∫
Ql

e
− |x−y|

2

cr2
k

( rk
|y|
∨ 1
)σ
|bl(y)|dy .

∑
l:rl≤rk

∫
Ql

e
− |x−y|

2

cr2
k |bl(y)|dy (2.24)

+
∑

l:Ql⊂B(0,2rk)

∫
Ql

( rk
|y|

)σ
|bl(y)|dy

(2.25)

We are assuming that Ql ∩B(0, 2rk) 6= ∅ implies Ql ⊆ B(0, 2rk) because rl ≤ rk.

rl is the radius of Ql, and rl ≤ rk, then dima(Ql) ≤ 2rk. x has been fixed in Qk. Pick a

point y in Ql, then |x− y| ≤ 2rk

|x− y| − 2rk ≤ 0

(|x− y| − 2rk)
2 = |x− y|2 − 2rk|x− y|+ 4r2k ≥ 0

|x− y|2 ≥ 2rk|x− y| − 4r2k

We find some y′ ∈ Ql such that |x−y′|2 ≤ 2rk|x−y|. This is from the fact that |x−y| ≤ 2rk

for any y ∈ Ql, then

|x− y|2 ≥ 1

2
|x− y′|2 − 4r2k

for all y, y′ ∈ Ql. Then

|bl(y)| = ||bl(y)||L1 . h|Ql|
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And

∑
l:rl≤rk

∫
Ql

e
− |x−y|

2

cr2
k |bl(y)|dy .

∑
l:rl≤rk

∫
Ql

e
− |x−y

′|2

2cr2
k |bl(y)|dy

.
∑
l:rl≤rk

|bl(y)|
∫
Ql

e
− |x−y

′|2

2cr2
k dy

.
∑
l:rl≤rk

||bl(y)||L1

1

|Ql|

∫
Ql

e
− |x−y

′|2

2cr2
k dy

.
∑
l:rl≤rk

h

∫
Ql

e
− |x−y

′|2

2cr2
k dy

. h
∑
l:rl≤rk

∫
Ql

e
− |x−y

′|2

2cr2
k dy

. hrdk

On the other hand

.
[ ∑
l:Ql⊂B(0,2rk)

∫
Ql

( rk
|y|

)σq′] 1
q′
[ ∑
l:Ql⊂B(0,2rk)

∫
Ql

|bl(y)|q
] 1
q

.
[ ∑
B(0,2rk)

∫
Ql

( rk
|y|

)σq′] 1
q′
[ ∑
l:Ql⊂B(0,2rk)

hq|Ql|
] 1
q

.
[ ∑
B(0,2rk)

rσq
′ y

(1− σq′)|y|σq′
∣∣∣
B(0,2rk)

] 1
q′
[ ∑
l:Ql⊂B(0,2rk)

hq|Ql|
] 1
q

.
[ ∑
B(0,2rk)

rσq
′
] 1
q′
[ ∑
l:Ql⊂B(0,2rk)

hqrdk

] 1
q

. hr
d
q′

k r
d
q

k = hr
d( 1
q
+ 1
q′ )

k = hrdk
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Using this new information, we obtain∥∥∥∑
k

gk

∥∥∥2
L2

. h
∑
k

∫
Qk

( rk
|x|
∨ 1
)σ
|bk(x)|dx

. h
[∑

k

∫
Qk

( rk
|x|
∨ 1
)σq′

dx
] 1
q′
h
[∑

k

∫
Qk

|bk(x)|qdx
] 1
q

. h
[∑

k

∫
Qk

( rk
|x|
∨ 1
)σq′

dx
] 1
q′
h
[ ∫

Qk

∑
k

|bk(x)|qdx
] 1
q

. h
[∑

k

∫
Qk

(1)σq
′
dx
] 1
q′
h
[ ∫

Qk

|f |qdx
] 1
q

. h
[∑

k

|Qk|
] 1
q′ ||f ||Lqdx

. h|Qk|
1
q′ ||f ||Lqdx

. h2−q
∫
Qk

|f(x)|qdx

. h2−q||f ||qLq

At this point all that is required is to estimate {|T
∑

k b̃k| >
1
3
h}. Define Q∗k as the

2
√
d dilate of Qk. As∣∣∣{∣∣∣T∑

k

b̃k| >
1

3
h
∣∣∣}∣∣∣ ⊂ ∪jQ∗ ∪ {x ∈ Rd \ ∪jQ∗j :

∣∣∣T∑
k

b̃k

∣∣∣ > 1

3
h
}
.

Using Chebyshev’s inequality∣∣∣{∣∣∣T∑
k

b̃k

∣∣∣ > 1

3
h
}∣∣∣ .

∑
j

|Q∗j |+ h−1
∑
k

||T b̃k||L1(Rd\Q∗k)

. h−q||f ||qLq + h−1
∑
k

||T b̃k||L1(Rd\Q∗k)

In order to complete the proof, we need to show

‖T b̃k‖L1(Rd\Q∗k) . h1−q||bk||qLq (2.26)

To do this, we divide the region Rd \Q∗k into dyadic annuli of the form R < dist{x,Qk} ≤

2R for rk ≤ R ∈ 2Z. The following will be proved:

‖T b̃k‖L2(dist{x,Qk}>R) .
(rk
R

)2µ
R
−d( 1

2
− 1
q′ )‖bk‖Lq , (2.27)
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Claim (2.26) follows

‖T b̃k‖L1(Rd\Q∗k) =
∑
R≥rk

‖T b̃k‖L1(R<dist{x,Qk})≤2R

.
∑
R≥rk

R
d
2‖T b̃k‖L2(dist{x,Qk})>R

.
∑
R≥rk

R
d
2

(rk
R

)2µ
R
−d( 1

2
− 1
q′ )‖bk‖qLq

. r
d
q′

k ‖bk‖Lq . h1−q‖bk‖Lq .

In order for the sum above to converge, we need d
q′
< 2µ, which is guaranteed under the

hypothesis presented

To proved (2.27), we write

(T b̃k)(x) =

∫
Qk

[
m(
√
La)(1− e−r

2
kLa)µ

]
(x, y)bk(y)dy (2.28)

The function defined below is extended to all of R as an even function.

a(λ) := m(λ)(1− e−r2
kλ

2

)µ (2.29)

We need to show that

|∂ja(λ)| . |λ|−j
(

1 ∧ rk|λ|
)2µ

. (2.30)

To start the proof, we need to state the following lemmas.

2.3.1 FIRST LEMMA

Lemma 2.3.1. For s = 1, 2, 3, 4....

∂sλ(e
−r2

kλ
2

) = λ−sP2,s(rλ)e−r
2
kλ

2



23

Where P2,s is a polynomial of degree s.

Pk(α) = akx
k + ak−1x

k−1 + ....+ a1x+ a0.

Proof. Induction If b = 0,

∂0λ(e
−r2

kλ
2

) = e−r
2
kλ

2

= a0e
−r2

kλ
2

, a0 = 1 LHS = RHS

Now suppose

∂s−1(e−r
2
kλ

2

) = λ−(s−1)P2(s−1)(rλ)e−r
2
kλ

2

Then,

∂s(e−r
2
kλ

2

) = ∂1∂s−1(e−r
2
kλ

2

)

= ∂1
[
λ−(s−1) ∗ P2(s−1)(rλ) ∗ e−r2

kλ
2
]

= −(s− 1)λs ∗ P2(s−1)(rλ)e−r
2
kλ

2

+ λ−(s−1) ∗ r ∗ P2(s−1)−1(rλ) ∗ e−r2
kλ

2

+ λ−(s−1) ∗ P2(s−1)−1(rλ) ∗ e−r2
kλ

2

(−r22λ)

= λ−sP2s(rλ)e−r
2
kλ

2

2.3.2 SECOND LEMMA (LEIBNIZ RULE)

Lemma 2.3.2. (Leibniz rule)

∂s(U ∗ V ) =
s∑

k=0

(
s

k

)
∂kU ∗ ∂s−kV

= U ∗ ∂sV + s ∗ ∂1U ∗ ∂s−1V + .....+ ∂sU ∗ V



24

2.3.3 THIRD LEMMA

Lemma 2.3.3.

∂s
[(

1− e−r2
kλ

2
)µ]

. |λ|−s
(

1 ∧ rk|λ|
)2µ

Recall

a(λ) = m(λ)
(

1− e−r2
kλ

2
)µ

∂j =

j∑
l=0

(
j

l

)
∂lm(λ)∂j−l

[(
1− e−r2

kλ
2
)µ]

≤
j∑
l=0

(
j

l

)
|λ|−l|λ|−(j−l)

(
1 ∧ rk|λ|

)2µ
. |λ|−j

(
1 ∧ rk|λ|

)2µ
Proof. Case 1:

rk|λ| < 1

We need to show

∂s
[(

1− e−r2
kλ

2
)]

. |λ|−s(rk|λ|)2µ

When s=0,

(
1− e−r2

kλ
2
)2µ

.
(
rk|λ|

)2µ
Suppose

∂s−1
[(

1− e−r2
kλ

2
)2µ]

. |λ|−(s−1)
(
rk|λ|

)2µ
.



25

Then,

∂s = ∂s−1∂1
[(

1− e−r2
kλ

2
)µ]

= ∂s−1
[
µ
(

1− e−r2
kλ

2
)µ−1(

+ e−r
2
kλ

2

r2k2λ
)]

= 2µr2k∂
s−1
[
λe−r

2
kλ

2
(

1− e−r2
kλ

2
)µ−1]

= 2µr2k∂
s−1
[
λ
(

1− e−r2
kλ

2
)µ−1

− λ
(

1− e−r2
kλ

2
)µ]

= 2µr2k

(
∂s−1

[
λ
(

1− e−r2
kλ

2
)µ−1]

− ∂s−1
[
λ
(

1− e−r2
kλ

2
)µ])

The first quantity in the RHS is then bounded by

∂s−1
[
λ
(

1− e−r2
kλ

2
)µ−1]

= λ∂s−1
(

1− e−r2
kλ

2
)µ−1

+ (s− 1)∂s−2(1− e−r2
kλ

2
)µ−1

. λ|λ|−(s−1)
(
rk|λ|

)2(µ−1)
+ |λ|−(s−2)

(
rk|λ|

)2(µ−1)
. |λ|−s+2

(
rk|λ|

)2(µ−1)
The second quantity is bounded by

∂s−1
[
λ
(

1− e−r2
kλ

2
)µ−1]

. |λ|−s+2
(
rk|λ|

)2µ
So,

∂s
[(

1− e−r2
kλ

2
)µ]

. 2µr2k|λ|−s+2
(
rk|λ|

)2(µ−1)
. |λ|−s

(
rk|λ|

)2(
rk|λ|

)2(µ−1)
. |λ|−s

(
rk|λ|

)2µ
Case 2: rk|λ| > 1.

We need to show

∂s
[(

1− e−r2
kλ

2
)µ]

. |λ|−s.

When s = 0,

∂s
[(

1− e−r2
kλ

2
)µ]

. 1µ . |λ|0 = 1.
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Then,

∂s
[(

1− e−r2
kλ

2
)µ]

= ∂s−1
[
µ
(

1− e−r2
kλ

2
)µ−1(

+ e−r
2
kλ

2

r2k2λ
)]

= 2µr2k∂
s−1
[
λe−r

2
kλ

2
(

1− e−r2
kλ

2
)µ−1]

= 2µr2k

{
λ∂s−1

[
e−r

2
kλ

2
(

1− e−r2
kλ

2
)µ−1]

+ (s− 1)∂s−2
[
e−r

2
kλ

2
(

1− e−r2
kλ

2
)µ−1]}

To bound the first half of the quantity on the RHS we see that

∂s−1
[
e−r

2
kλ

2
(

1− e−r2
kλ

2
)µ−1]

=
s−1∑
l=0

(
s− 1

l

)
∂l
(
e−r

2
kλ

2
)
∂s−1−l

[(
1− e−r2

kλ
2
)µ−1]

.
s−1∑
l=0

(
s− 1

l

)
|λ|−lP2l(rkλ)e−r

2
kλ

2|λ|−(s−1−l)

. |λ|−(s−1)P2(s−2)(rkλ)e−r
2
kλ

2

Similarly, the second quantity on the RHS can be bounded by

∂s−2
[
e−r

2
kλ

2
(

1− e−r2
kλ

2
)µ−1]

. |λ|−(s−2)P2(s−2)(rkλ)e−r
2
kλ

2

Then the whole thing can be bounded. And we have

∂s
[(

1− e−r2
kλ

2
)µ]

. r2k|λ|−s+2P2(s−1)(rkλ)e−r
2
kλ

2

. |λ|−s(rk|λ|)2P2(s−1)(rkλ)e−r
2
kλ

2

. |λ|−sP2s(rk|λ|)e−r
2
kλ

2

. |λ|−s

Define ϕ to be a smooth, positive, even function supported on [−1
2
, 1
2
], and such that

ϕ(τ) = 1 for |τ | < 1
4
. Then the Fourier transform of ϕ is

ϕ̂(λ) =

∫
e−iλτϕ(τ)dτ
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and,

ϕ̌(λ) =
1

2π

∫
eiλτϕ(τ)dτ

Now, let R be a number such that
[
− 1

2
, 1
2

]
⊆
[
− R

2
, R
2

]
,

ϕ̌R(λ) = Rϕ̌(Rλ)

=
R

2π

∫
eiλRτϕ(

Rτ

R
)
dτ

R

Letting τ = Rτ

ϕ̌R(λ) =
1

2π

∫
eiλτϕ

( τ
R

)
dτ,

Both a and ϕ are even by definition, then convolution

a1(λ) := (a ∗ ϕ̌R)(λ) =

∫ ∞
−∞

a(τ)ϕ̌R(λ− τ)dτ

=

∫ ∞
−∞

a(τ)ϕ̌R(λ− τ)dτ

=

∫ ∞
−∞

∫ ∞
−∞

a(τ)ϕ̌R(λ− τ)dτe−iλτ̃dλ

=

∫ ∞
−∞

a(τ)

∫ ∞
−∞

ϕ̌R(τ̃)dτe−i(λ+λ̃)τ̃dλ̃

=

∫ ∞
−∞

a(τ)e−iλτ̃dτ

∫ ∞
−∞

ϕ̌R(τ̃)dτe−iλ̃τ̃dλ̃

=

∫ ∞
−∞

a(τ)e−iλτ̃dτϕ
( τ
R

)
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Now applying an inverse Fourier transform we get

=
1

2π

∫ ∞
−∞

â(τ)eiλτ̃dτϕ
( τ
R

)
(2.31)

=
1

π

∫ ∞
0

cos(λτ)â(τ)ϕ
( τ
R

)
dτ (2.32)

(2.33)

since the function is even, and letting τ = τ̃ .

[3] shows that the wave equation with inverse-square potential utt + Lau = 0 obeys

finite speed of propagation. Noting that φ( τ
R

) is supported on the set {τ : |τ | ≤ R
2
}, the

following is obtained

supp
(
a1
(√
La
)
δy

)
⊆
⋃
τ≤R

2

supp
(
cos
(
τ
√
La
)
δy

)
⊆ B

(
y,

1

2
R
)
.

Thus, this part of the multiplier a does not contribute to (2.27).

The remaining part of a is shown to be bounded. Define

a2(λ) := a1(λ)− a(λ) =

∫
[a(θ)− a(λ)]ϕ̌R(λ− θ)dθ

When |λ| ≤ R−1

|a2(λ)| .
(

1 ∧ rk|λ|
)2µ(

|λ|R
)−2µ

(2.34)

and when |λ| ≥ R−1

|a2(λ)| .
∫ ∣∣∣ε(θ)∣∣∣∣∣∣ϕ̌R(λ− θ)

∣∣∣dθ . (1 ∧ rk|λ|
)2µ(

|λ|R
)−j

. (2.35)

Combining (2.34) and (2.35) with the assumption that R ≥ rk

|a2(λ)| .
(

1∧rk|λ|
)2µ(

(|λ|R)−2µ+(|λ|R)−j
)

=
(1 ∧ rk|λ|
|λ|R

)2µ(
1+R2λ2

) 2µ−j
2

(2.36)

The first part of the quantity on the far right can be controlled by
(
rk
R

)2µ
, and the remaining

can be decomposed into the following
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(
1 +R2λ2

) 2µ−j
2 ≈

∫ ∞
0

( t

R2

) j−2µ
2
e
−t(1+R2λ2)

R2
dt

t

Combining the two gives equation (2.37)

|a2(λ)| .
(1 ∧ rk|λ|
|λ|R

)2µ(
1 +R2λ2

) 2µ−j
2

.
(rk
R

)2µ ∫ ∞
0

( t

R2

) j−2µ
2
e
−t(1+R2λ2)

R2
dt

t
(2.37)

By the spectral theorem (Appendix A.2) and the triangle inequality, we obtain the next

result.

‖a2(
√
La)‖L2(R) .

(rk
R

)2µ ∫ ∞
0

( t

R2

) j−2µ
2
e−

t
R2

∥∥∥e−tLabk∥∥∥
L2

dt

t
(2.38)

We state the following quantity without proof. The proof can be found in [1]:∥∥∥e−tLabk∥∥∥
L2

. t−
d
4 (t+ r2k)

d
2q′ ‖bk‖Lq (2.39)

Which leads to

‖a2(
√
La)bk‖L2(Rd) .

(rk
R

)2µ
R
−d( 1

2
− 1
q′ )‖bk‖Lq

∫ ∞
0

( t

R2

) j−2µ
2
− d

4
(

1 +
t

R2

) d
2q′
e−

t
R2
dt

t

. (
rk
R

)2µR
−d( 1

2
− 1
q′ )‖bk‖Lq,

for any R ≥ rk. This completes the proof of theorem 2.7.
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APPENDIX A

NOTABLE THEOREMS

Here we present a short selection of harmonic analysis theorems that were useful in our 

work, either explicitly or implicitly.

Theorem A.1. (Calderon-Zygmund). Let f ∈ L1(Rn), and let h > 0. There exists a 

countable collection of cubes with sides parallel to the axes, Qj with disjoint interiors, such

that, for each j,

h <
1

|Qj|

∫
Qj

|f |dx ≤ 2nh.

Consider Ω =
⋃

Qj and F = R \ Ω. Then,

|Ω| ≤ h−1||f ||L1(Rn).

Moreover,

|f(x)| ≤ h

holds almost everywhere for x ∈ F . There exist a decomposition

f(x) = g(x) + b(x)

such that |g(x)| ≤ 2nh almost everywhere, moreover, for 1 < p <∞,

||g||Lp(Rn) ≤ h
p−1
p (1 + 2np)

1
p ||f ||

1
p

L1(Rn)

Theorem A.2. (Chebyshev Theorem) Let (X,
∑
, µ) be measurable space, and let f be an

extended real-valued measurable function defined on X . Then for any real number h > 0

and 0 < q <∞,

µ{x ∈ X : |f(x)| ≥ h} ≤ 1

tq

∫
|f |≥h
|f |qdµ.

Theorem A.3. (Spectral Theorem) Suppose that La is a self-adjoint positive definite opera-

tor acting on L2
(
TX, µ

)
. Such an operator admits a spectral decomposition EL(λ) and for
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any bounded Borel function F : [0,∞) → C, we define the operator F (La) : L2(TX) →

L2(TX) by the formula

F (La) =

∫ ∞
0

F (λ)dELa(λ.)

Suppose that S is a bounded operator fromLp(TX) toLq(TX). We write ‖S‖Lp(TX)→Lq(TX)

for the usual operator norm of S. If S is of the weak type (1, 1), i.e., if

µ(x ∈ X : |Sf(x)| > λ) ≤ C
‖f‖L1(TX)

λ
∀λ ∈ R+ ∀f ∈ L1(TX),

where the least possible of C is ‖S‖L1→L1,∞ .

Theorem A.4. (Marcinkiewicz interpolation Theorem, Stein 21) Suppose that 1 ≤ r ≤ ∞.

If T is a sub-additive mapping from L1(Rn)+Lr(Rn) to the space of measurable functions

on (Rn) which is simultaneously of weak type (1, 1) and weak type (r, r), then T is also

of type (p, p), for all p such that 1 < p < r. More explicitly: Suppose that for all f, g ∈

L1(Rn) + Lr(Rn)

(i) |T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|

(ii) m{: |Tf(x)| > h} ≤ A1

h
||f ||1, f ∈ L1(Rn)

(iii) m{x : |Tf(x)| > h} ≤
(
Ar
h
||f ||r

)r
, f ∈ Lr(Rn)

Then

||Tf(x)||p ≤ Ap||f ||p, f ∈ Lp(Rn)

for all 1 < p < r, where Ap depends only on A1, A2, pand r.

Theorem A.5. (Holder’s Inequality) Let (S, σ, µ) be a measure space and let p, q ∈ [1,∞]

with 1
p

+ 1
q

= 1.Then, for all measurable real, or complex-valued functions f and g on S

||fg||1 ≤ ||f ||p||g||q.
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If in addition p, q ∈ (1,∞) and f ∈ Lp(µ) and g ∈ Lq(µ), then Holder’s inequality

becomes an equality iff |f |p and |g|q are linearly dependent in L1(µ), meaning that there

exist real numbers, α, β ≥ 0, not both of them zero, such that α|f |p = β|g|q on µ almost

everywhere.
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