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Nucleation near the spinodal: Limitations of mean field density
functional theory

Gerald Wilemski and Jin-Song Li
Department of Physics and Cloud and Aerosol Sciences Laboratory, University of Missouri-Rolla, Rolla,
Missouri 65409-0640

~Received 9 June 2004; accepted 6 August 2004!

We investigate the diverging size of the critical nucleus near the spinodal using the gradient theory
~GT! of van der Waals and Cahn and Hilliard and mean field density functional theory~MFDFT!.
As is well known, GT predicts that at the spinodal the free energy barrier to nucleation vanishes
while the radius of the critical fluctuation diverges. We show numerically that the scaling behavior
found by Cahn and Hilliard for these quantities holds quantitatively for both GT and MFDFT. We
also show that the excess number of moleculesDg satisfies Cahn-Hilliard scaling near the spinodal
and is consistent with the nucleation theorem. From the latter result, it is clear that the divergence
of Dg is due to the divergence of the mean field isothermal compressibility of the fluid at the
spinodal. Finally, we develop a Ginzburg criterion for the validity of the mean field scaling relations.
For real fluids with short-range attractive interactions, the near-spinodal scaling behavior occurs in
a fluctuation dominated regime for which the mean field theory is invalid. Based on the nucleation
theorem and on Wang’s treatment of fluctuations near the spinodal in polymer blends, we infer a
finite size for the critical nucleus at the pseudospinodal identified by Wang. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1801273#

I. INTRODUCTION

Because of its simplicity and ease of use, classical nucle-
ation theory1–3 is frequently used to explain and interpret a
wide range of nucleation phenomena. Despite its shortcom-
ings, the classical approach has been quite successful in pre-
dicting critical supersaturations for many vapors. It is far less
successful in predicting absolute nucleation rates and their
variation with temperature. In recent years, efforts to im-
prove this situation have led to new theoretical approaches
that attempt in different ways to treat nonclassical effects due
to the small size and inhomogeneous nature of the
nucleus.4–29 Among these approaches, mean field density
functional theory~MFDFT! ~Refs. 4 and 5! is a powerful
technique that has been extensively used to explore various
systems. Although less accurate, an even more approximate
form of density functional theory, known as gradient theory
~GT!,30–36 is easier to apply because of its semiempirical
character and is also of interest.

Several recent papers have been concerned, at least
partly, with nucleation near the mean field spinodal in vapor-
liquid systems.22–29 In our earlier work on this topic,26 we
found close numerical agreement between GT and MFDFT
near the spinodal. Here, we extend that study by examining
several issues concerning nucleation near the spinodal that
have not received much attention in the vapor-liquid nucle-
ation community. It is well-known that the classical theory
predicts a finite nucleation barrier and a small critical size at
the spinodal, while the nonclassical MFDFT and GT predict
that the barrier vanishes, as Gibbs37 had anticipated. The GT
also predicts that the spatial size of the critical fluctuation
diverges at the spinodal.32,38Similar behavior is expected for
DFT since, as shown, e.g., by Evans,39 it reduces to GT

whenever spatial density gradients are small, as near the
spinodal. Here, we investigate this problem explicitly using
MFDFT for both droplet and bubble nucleation in a hard
sphere Yukawa fluid.4,26 We characterize the size of the criti-
cal fluctuation by the excess number of molecules it con-
tains, and examine its behavior using a scaling approach first
suggested by Cahn and Hilliard.32 We show that a size diver-
gence formally identical to that of GT is found. We also
show that this behavior is consistent with the nucleation
theorem.40–42Finally, we develop a Ginzburg criterion43,44to
establish the limits of validity of this mean field approach
near the spinodal. For real fluids with short range interac-
tions, this Ginzburg criterion is violated near the spinodal.
Thus, MFDFT is not self-consistent for simple fluids near the
spinodal. Since its predictions there are unreliable, earlier
studies that rely heavily on MFDFT or GT near the spinodal
may require reassessment.

Following summaries of the DFT and GT approaches in
Sec. II, we present the scaling analysis, numerical results,
connection to the nucleation theorem, and the Ginzburg cri-
terion in Sec. III. We conclude the paper by drawing some
connections to earlier work and discussing some practical
implications of this work.

II. SUMMARY OF BASIC FORMALISM

A. Density functional theory

Consider a system with a spherical nucleus centered at
the origin. Far from the interfacial region the bulk fluid den-
sity is rB and the pressure ispB . The distribution of matter
within the nucleus and through the interfacial zone is de-
scribed by the density profiler(r ), where r is the radial
distance from the origin. Following the perturbative ap-
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proach of Oxtoby and Evans,4 the grand potential for the
nonuniform system is written as the functional

V@r~r !#5E $ f @r~r !#2mBr~r !%dr . ~1!

Here, f is the Helmholtz free energy density of the inhomo-
geneous fluid,

f @r~r !#5 f h@r~r !#1 1
2r~r !E r~r 8!w2~ ur2r 8u!dr 8, ~2!

f h(r) is the Helmholtz free energy density of a uniform hard
sphere fluid of densityr, andmB is the chemical potential of
the uniform bulk phase. Equation~2! has the classic form of
the van der Waals model,45,46 reflecting the use of a local
density approximation for the effects of the short-range re-
pulsive forces and a mean field treatment of the weak, long-
range attractive forces.4,5,47 For the attractive pair potential
w2 we use the Yukawa function

w2~r !52al2 exp~2lr !/~4pr !, ~3!

where the parametera governs the strength of the interaction
andl is the inverse range parameter. Starting with Sullivan’s
seminal treatment of adsorption,47 the model defined by Eqs.
~2! @or ~4!# and ~3! has been used for over two decades to
describe successfully many interfacial phenomena including
wetting,48–50 capillary condensation,51 liquid-liquid52 and
liquid-vapor52,53 interfacial structure, and nucleation4,8,9,14,26

of droplets and bubbles.
After functional differentiation of Eq.~1!, the density

profile that makesV an extremum is the solution to the in-
tegral Euler-Lagrange equation,

mh@r~r !#5mB2E r~r 8!w2~ ur2r 8u!dr 8, ~4!

where mh(r) is the chemical potential of the hard sphere
fluid at densityr. Alternatively, since the Yukawa function is
essentially the Green’s function of the Helmholtz equation,
we can act with¹2 on Eq. ~4! to obtain the second-order
differential equation8,14,26,47

¹2mh5l2~mh2mB2ar!, ~5!

whose solution also yieldsr(r ), but is much easier to solve
numerically than Eq.~4!.

The reversible work of droplet formationW is defined as
the difference of the grand potentials for the nonuniform sys-
tem and the initial uniform systemV(rB) with densityrB

and pressurepB ,

W5DV5V@r~r !#2V~rB!, ~6!

where4 for a system of uniform density and volumeV

2V~r!/V5p~r!5ph~r!2ar2/2, ~7!

and ph(r) is the pressure of a hard sphere system. Using
Eqs.~1! and ~7!, Eq. ~6! becomes

W5E $ f @r~r !#2 f 0~rB!2~r~r !2rB!mB%dr , ~8!

where the Helmholtz free energy density of the uniform
fluid, f 0, is expressed either as

f 0~r!5rm02p ~9!

or

f 0~r!5 f h~r!2ar2/2, ~10!

and m0(r)[] f 0 /]r is the chemical potential of the homo-
geneous fluid at densityr,

m0~r![mh~r!2ar. ~11!

Note thatmB5m0(rB). Explicit expressions forf h , ph , and
mh as functions ofr are available elsewhere.5,8,26,54

B. Gradient theory

In gradient theory, instead of Eq.~2!, the Helmholtz free
energy density of the inhomogeneous fluid is now given as
the weakly nonlocal form30–35

f 5 f 0~r!1
c

2
~¹r!2. ~12!

The influence parameterc is a weak function of density that
is assumed to be a constant at a given temperature.33 Under
this assumption,f becomes purely local andc can be calcu-
lated from the known surface tension of the planar interface
of the two-phase equilibrium system.55 The formal expres-
sion, Eq.~8!, for W is, of course, still applicable. The equi-
librium density profiler corresponding to an extremum of
the reversible work functional is determined by the Euler-
Lagrange equation,32,33

mB5m0~r!2c¹2r. ~13!

The mean field equation of state for the hard sphere-
Yukawa fluid is given by Eq.~7!, and the corresponding
Helmholtz free energy densityf 0(r) and chemical potential
m0(r) are given by Eqs.~10! and ~11!, respectively.

C. Numerical analysis

As described in greater detail elsewhere,26 we solved
Eqs. ~5! and ~13! using an iterative central finite difference
scheme. For calculations at bulk densities very close to the
spinodal value, we took care to enlarge the spatial domain
over which the equations are solved and to increase the num-
ber of grid points in the differencing scheme. Close to the
spinodal, the density profile decays very slowly, and if the
outer boundary conditions are not imposed at sufficiently
larger, the calculated density profile decays too quickly. Ul-
timately these finite domain effects limit how closely the
bulk density can approach the spinodal value before the nu-
merical results deviate from the expected scaling behavior
discussed below. Due to the nonlinearity of the differential
equations, an iterative solution procedure beginning with a
guessed trial solution was used. Convergence was usually
rapid ~,10 iterations!, and continued iteration for hundreds
of cycles showed that the solutions were stable, unlike those
found by solving the integral equation.4
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III. CAHN-HILLIARD SCALING ANALYSIS

A. Gradient theory

Cahn and Hilliard32 developed their theory for nucle-
ation in an incompressible binary fluid, but the theory for a
one-component compressible fluid is formally identical to it.
In their analysis of the properties of a spherical critical
nucleus, Cahn and Hilliard32 found it useful to rewrite Eq.
~8! for W as

W5E H D f 82
1

2
~r2rB!

]D f 8

]r J dr , ~14!

by assuming thatc was independent ofr and definingD f 8 as

D f 85 f 0~r!2 f 0~rB!2~r2rB!mB . ~15!

Near the spinodal densityrS , D f 8 may be accurately ap-
proximated by a third-order Taylor series expansion,32

D f 85z@3~rS2rB!~r2rB!22~r2rB!3#, ~16!

where 6z52(]3D f 8/]r3)r5rS
. Using the dimensionless

variables Y5(r2rB)/(rS2rB) and R5r @2z(rS

2rB)/c#1/2, and Eqs.~14! and ~16!, Cahn and Hilliard32

showed thatW scales as the 3/2 power of the density differ-
ence,

W5pI 3~2z!21/2c3/2~rS2rB!3/2. ~17!

Here, I 3 is the value of the dimensionless integralI p for p
53,

I p5E
0

`

YpR2dR. ~18!

The function Y is the solution to a scaled form32 for the
Euler-Lagrange equation, Eq.~13!, for a spherically symmet-
ric drop, asymptotically valid near the spinodal, which we
write compactly as

d2~RY!/dR253R~2Y2Y2!/2. ~19!

As Cahn and Hilliard noted, forrB sufficiently close torS ,
the dimensionless density profileY will be independent of
rB . They also characterized the size of the critical nucleus in
terms of r 1/2, defined by the requirement thatr(r 1/2)5(r0

1rB)/2, wherer0[r(0) is the density at the center of the
nucleus. It follows from the definition ofR that

r 1/25R1/2~c/2z!1/2~rS2rB!21/2, ~20!

whereR1/2 is a constant. As the bulk density approaches the
spinodal value,r 1/2 diverges.32

The size of the critical nucleus can also be viewed in
terms of the excess number of molecules in the nucleus,Dg,
defined for spherical nuclei as

Dg54pE
0

`

@r~r !2rB#r 2dr. ~21!

Using the dimensionless variablesY and R, it follows from
Eq. ~21! that Dg diverges with the density difference in the
same manner asr 1/2,

Dg54pI 1~c/2z!3/2~rS2rB!21/2, ~22!

where I 1 is another dimensionless integral defined by Eq.
~18!.

B. Density functional theory

As shown, e.g., by Evans in Sec. VI of his comprehen-
sive review,39 DFT rigorously reduces to GT when the den-
sity gradients are small everywhere. Thus, it follows that as
the spinodal is approached DFT will display the same Cahn-
Hilliard scaling behavior as GT. Moreover, the two theories
can be made to agree quantitatively by evaluating the influ-
ence parameterc using Eq.~73! of Evans39 or Eq. ~11.1.24!
of Davis.55 It follows that c5a/l2. An explicit demonstra-
tion of these points, based on the asymptotic behavior of Eq.
~5!, is given in the Appendix.

C. Numerical results

To confirm the accuracy of our numerical solutions and
to explore the range of validity of these scaling laws, we
calculated density profiles by numerically solving Eqs.~5!
and~13! at several values ofrB , both near and far from the

FIG. 1. Density profiles of hard sphere Yukawa droplets calculated using
gradient theory~GT! and density functional theory~DFT! for various rB

plotted using regular variables. Also marked is the value of the bulk equi-
librium denshityr l .

FIG. 2. Density profiles of hard sphere Yukawa droplets calculated using
gradient theory for variousrB plotted using scaled variables.
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spinodal density,r̃S5s3rS50.09248 atT/TC50.7. ~The
hard sphere diameter iss; TC is the critical temperature.!
These are shown in Fig. 1 using regular variables. The gra-
dient theory profiles are shown again in Fig. 2 using the
scaled variablesY and R. In Fig. 1, at r5s3rS50.09,
which is very close tor̃S, the flatness of the profile is appar-
ent. In Fig. 2, the lower five profiles are indistinguishable
from the numerical solution to Eq.~19!. With our improved
numerical technique, we can cite more accurate values for
several quantities reported by Cahn and Hilliard.32 Rounded
to three figures, these areY(0)58.38, R1/250.704, andI 3

532.1. The respective values of Cahn and Hilliard, 8.1, 0.73,
and 31.4, obtained on an analog computer, are in fair agree-
ment with our results. As an independent check of the accu-
racy of our solution, we numerically integrated Eq.~19! us-
ing a fourth-order Runge-Kutta method starting atR50. The
behavior ofY at largeR is actually quite sensitive to the
value ofY(0), and inthis way we verified the cited value.

The gradient theory results forW and Dg, calculated
with the numerical density profiles, are shown in Figs. 3

and 4. The bulk density differenceDr̃([r̃S2 r̃B), at which
scaling behavior begins to hold varies slightly with the prop-
erty, starting for W at log10Dr̃'22.5 and for Dg at
log10Dr̃'23.

Quantitative verification of this scaling behavior for den-
sity functional theory is demonstrated in Figs. 5–9. Several
droplet density profiles, shown using regular variables in Fig.
1, are replotted using scaled variablesY andR in Fig. 5. The
density profiles clearly obey the Cahn-Hilliard scaling be-
havior as the spinodal is approached. The scaling behavior of
W and Dg is illustrated in Figs. 6 and 7, respectively, for
droplets. The scaling region begins at larger values ofDr̃
than for GT, starting forW at log10Dr̃'22 and forDg at
log10Dr̃'22.2. Similar results for bubbles are shown in
Figs. 8 and 9. Note that the scaling region for bubbles begins
at larger values ofuDr̃u than for droplets, starting forW at
log10uDr̃u'21.3 and forDg at log10uDr̃u'22, although the
numerical results slightly undershoot the scaling behavior
beginning at log10uDr̃u'21.4. Other asymmetries between
droplet and bubble behavior have been noted in earlier

FIG. 3. Cahn-Hilliard scaling behavior of the reversible work found using
gradient theory.

FIG. 4. Cahn-Hilliard scaling behavior of the excess numberDg found
using gradient theory.

FIG. 5. Density profiles of hard sphere Yukawa fluid droplets calculated
using density functional theory for variousrB plotted using scaled variables.

FIG. 6. Cahn-Hilliard scaling behavior of the reversible work for hard
sphere Yukawa droplets found using density functional theory.
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work.4,16,25,36Excellent agreement is again found in the scal-
ing regions. For all results shown, any deviations from scal-
ing at very small values ofuDr̃u are due to the finite domain
effects discussed earlier.

D. Scaling and the nucleation theorem

The nucleation theorem40–42allows one to determineDg
rigorously from the equation

Dg52S ]W

]mB
D

T

. ~23!

From Figs. 3 and 6 we see that the Cahn and Hilliard scaling
law accurately givesW as a function ofrB . From the chain
rule and a familiar thermodynamic identity, we may write
Eq. ~23! as

Dg52S ]W

]rB
D

T
S ]rB

]mB
D

T

52S ]W

]rB
D

T

rB
2k, ~24!

wherek is the isothermal compressibility. Near the spinodal,
the well-known result1

S ]rB

]mB
D

T

5rB
2k5@6z~rS2rB!#21, ~25!

follows from Eq. ~16! @or from Eqs.~11! and ~A2!#. Then,
from Eqs.~17!, ~24!, and~25!, we obtain

Dg5
p

2 S c

2z D 3/2

I 3~rS2rB!21/2. ~26!

This result reproduces the divergent behavior found in Eq.
~22!, whose physical origin is now seen to lie in the diver-
gence ofk(;urS2rBu21) for mean field theories of fluid
phase equilibrium.1 The connection withk is quite under-
standable in view of that property’s role in regulating density
fluctuations in a fluid1,42 and the recognition that the critical
nucleus is itself a density fluctuation in a metastable fluid.
The magnitude ofDg given by Eq.~26! also agrees with Eq.
~22! since it can be shown analytically or numerically that
I 358I 1 .

E. Ginzburg criterion

Levanyuk43 and Ginzburg44 developed a test for the self-
consistency of mean field theory near a critical point. The
first application to nucleation was made by Binder,56 who
developed a Ginzburg criterion based on the temperature dif-
ference from the spinodal. Very recently these ideas were
used by Wood and Wang57 and generalized by Wang58 to
include compositional fluctuations in polymer blends. Here
we develop a different kind of Ginzburg criterion to assess
the singular behavior of density fluctuations near the spin-
odal. The idea is simply that for the mean field predictions to
be valid, fluctuations in the order parameter should be small
on the scale of the correlation lengthj. More precisely, fol-
lowing Goldenfeld59 we may formulate the Ginzburg crite-
rion in a d-dimensional space as

u*VddrG~r !u

*Vddr ~h~r !!2
!1, ~27!

FIG. 7. Cahn-Hilliard scaling behavior of the excess numberDg for hard
sphere Yukawa droplets found using density functional theory.

FIG. 8. Cahn-Hilliard scaling behavior of the reversible work for hard
sphere Yukawa bubbles found using density functional theory.

FIG. 9. Cahn-Hilliard scaling behavior of the excess numberDg for hard
sphere Yukawa bubbles found using density functional theory.
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whereG is the two-point correlation function for fluctuations
in the order parameterh, and the integrals are taken over the
correlation volumeV5jd. The relevant order parameter is
the difference in density between the nucleus and the bulk
vapor phase,h(r )5r(r )2rB , and near the spinodal this is
well approximated byDr, whereDr[rS2rB . The correla-
tion lengthj is proportional tor 1/2. To show this, we pro-
ceed roughly in the manner of Goldenfeld59 to find an equa-
tion for G(r ) in the vicinity of the spinodal. Since the two
Euler-Lagrange equations~5! and ~13! are asymptotically
equivalent near the spinodal, we work with the latter, simpler
equation. First, we expandm0 to second-order or, equiva-
lently, differentiate Eq.~16! to find

m0~r!2mB56zDrh~r !23z@h~r !#2, ~28!

and substitute this into Eq.~13!. Then we multiply the result-
ing differential equation byh~r 8!, average~^¯&! over all
fluctuations, and approximate ^h2(r )h(r 8)& as
^h~r !h~r 8!&Dr, which is acceptable near the spinodal where
r~r ! varies slowly. We obtain

¹2G23z~Dr/c!G50, ~29!

whereG(r2r 8)5^h(r )h(r 8)&. It follows from Eq.~29! that
the correlation length is

j5~3zDr/c!21/2, ~30!

which is essentially the same as Eq.~20!. The same expres-
sion holds for DFT upon replacingc by a/l2.

We now evaluate Eq.~27!. From the static susceptibility
sum rule,59 the numerator equalskTrB

2k, while the denomi-
nator is simplyjd(Dr)2, since the density varies slowly
within the nucleus. Thus, for the mean field predictions to be
valid near the spinodal, the inequalitykTrB

2k!jd(Dr)2

must be satisfied. With the use of Eqs.~25! and ~30!, this
inequality takes the explicit form,

kT

6z S 3z

c D 3/2

~Dr!2~32d/2!!1. ~31!

It is clear that this inequality cannot be satisfied asDr→0
unless d.6. This result, in agreement with earlier
studies,58,60–62 defines the upper critical dimension beyond
which mean field theory is valid. Thus, in three dimensions
the specific scaling predictions of GT and MFDFT cannot be
correct near the spinodal. For critical phenomena in fluid
systems, the upper critical dimension is 4. The increase to 6
indicates that fluctuations are even more important near the
spinodal than near the critical point, and accurate results in
this region can only be obtained from a theory that properly
treats fluctuations.58 A related question is the size of the fluc-
tuation dominated region, or how closely can the spinodal be
approached before mean field theory breaks down? An esti-
mate can be found by evaluating more precisely the denomi-
nator of Eq.~27! in the asymptotic Cahn and Hilliard scaling
regime. Restricting ourselves tod53 and introducing the
scaled variablesY andR, @cf. Eq. ~A4!# we rewrite Eq.~27!
as

l3

4pI 2

kT

6z S 2z

a D 3/2

~Dr!23/2!1, ~32!

whereI 2 is defined by Eq.~18!. The only essential difference
between Eqs.~31! and~32! is the improved numerical preci-
sion of the latter. After introducing dimensionless densities
r̃5rs3 and numerically evaluating the relevant quantities63

at T/Tc50.7, we find the explicit inequalities,

3.1231024~ls!3~Dr̃!vap
23/2!1 ~33!

for droplet nucleation near the vapor spinodal (r̃S

50.0925), and

1.7731024~ls!3~ uDr̃u liq!23/2!1 ~34!

for bubble nucleation near the liquid spinodal (r̃S50.521).
The minimum values ofDr̃ that satisfy these inequalities
clearly depend on the specific value used forls, i.e., on the
range of the potential. Let us consider the inequality to be
satisfied when the left side of either Eq.~33! or ~34! equals
0.1. For ls51, we then see that MFDFT is valid for
log10(Dr̃)vap.21.67 and log10uDr̃u liq.21.84. For droplet
nucleation in Figs. 6 and 7, the entire scaling region lies at
smaller values ofDr̃ for which the MFDFT is invalid. For
bubble nucleation in Figs. 8 and 9, the scaling region lies
partially within the acceptable density range, but ifls52 is
used, the range of acceptable densities changes to
log10uDr̃u liq.21.23, which now excludes the entire scaling
region. Only if we make the Yukawa potential very long
ranged, by insisting thatls!1, will the Ginzburg criterion
be satisfied for values ofDr that lie well within the scaling
region. Even in this case, the mean field scaling predictions
will eventually become invalid asDr→0, unless we first go
to the limit of infinitely long-range forces,l50. This behav-
ior merely confirms what has long been known, namely, that
mean field theory improves as either the system dimension or
the range of the force increases, and it becomes exact for
forces of infinite range. To properly model simple fluid sys-
tems using realistic values fors, Oxtoby and Evans4 found
that ls.1.5 was typical. In our own recent work, we found
semiquantitative, qualitatively reasonable results for the ther-
modynamic properties of bulk mixtures of water and pen-
tanol using the valuesls52.967 for water and 4.544 for
pentanol. Thus, for values ofls needed to simulate the prop-
erties of real fluids, GT and MFDFT will be valid generally
only for densities lying outside of the scaling region.

IV. DISCUSSION

Limitations and characteristics of MFDFT and GT near
the spinodal have been noted in previous studies. In recent
work on polymer phase separation, Wang58 developed a Gin-
zburg criterion based on both composition and temperature
considerations to establish limits for the validity of mean
field theory near the spinodal. Wang58 also showed that a
mean field spinodal, defined by the divergence of the static
susceptibility, does not exist ford,4. It is replaced by a
pseudospinodal, lying outside of the mean field spinodal, at
which the susceptibilityk reaches a finite maximum. The
pseudospinodal is associated with a small nucleation barrier,
W;kT. Thus, it defines a region in which phase separation
may exhibit characteristics of both nucleation and spinodal
decomposition, establishing a link to the original ideas of
Binder.56 See Ref. 1, pp. 209–216 for an illuminating sum-
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mary. Related behavior was found in important pioneering
work by Klein and Unger,61,62 who investigated magnetic
systems usingc4 field theory with a Landau-Ginzburg model
free energy functional. They showed that for systems with
weak long-range attractive forces~WLRF!, the critical fluc-
tuation is a ramified droplet of diverging size. They also
found sharp spinodals whend,6 only for WLRF. Sharp
spinodals are, thus, artifacts of mean field equations of state
for physical systems with short-range forces. The scaling be-
havior ofW and the critical radius was identical to that found
here. Since the Yukawa potential gives rise to WLRF as
ls→0, it is not surprising that the behavior of the critical
nucleus predicted by MFDFT and GT for fluid and magnetic
systems are the same, since these systems belong to the same
universality class. In short, mean field theories are qualita-
tively acceptable descriptions of metastability for WLRF
systems near the spinodal only in the long-range limit.64

Some other interesting theoretical consequences arise if
we examine the dependence ofW andDg on l andDr in the
scaling region near the spinodal for systems of different di-
mensionality. We can generalize Eqs.~14! and ~21! to d di-
mensions for spherically symmetric nuclei simply by replac-
ing dr with vdr d21dr, wherevd is ad-dependent geometric
factor. After introducing the scaled densityY and lengthR,
Eq. ~A4!, into these expressions, we easily find the
asymptotic dependence to beW;l2d(Dr)32d/2 and Dg
;l2d(Dr)12d/2. The critical radius, which is directly pro-
portional tor 1/2, Eq. ~20!, has the same asymptotic depen-
dence in all dimensions:r 1/2;l21(Dr)21/2. It is curious
that r 1/2, which measures the spatial extent of the critical
fluctuation, diverges in all dimensions, whereasDg, which
measures the amount of material in the nucleus, only di-
verges ford.2. Note that the dependence ofW andDg on l
andDr is consistent with the nucleation theorem discussed in
Sec. III D. Ford,6 andlÞ0, we find thatW→0 asDr→0,
in agreement with Klein and Unger and in accord with
Gibbs’s expectations37 for the limit of metastability. In con-
trast, ford.6 we find, as did Klein and Unger, thatW and
Dg diverge asDr→0. In systems of high dimensionality, the
spinodal, thus, acts as a quasibinodal with nucleation becom-
ing increasingly more difficult as the spinodal is approached.
In this case, Klein and Unger actually showed that the life-
time of the metastable stable state became infinite at the
spinodal. This behavior, of course, only pertains to an instan-
taneous quench to the spinodal density; in a gradual quench
starting farther from the spinodal, the system would first un-
dergo nucleation whereW was smaller, and this would de-
stroy the metastable state. Now note what happens asl→0,
i.e., as the range of the potential becomes infinite, butDrÞ0.
In this case,W diverges everywhere: Nucleation does not
occur anywhere in a system with infinitely long-range weak
attractive forces. Note that this behavior is independent of
the dimensionality of the system and is valid throughout the
entire metastable region, since dimensional analysis of Eq.
~8! also yields the resultW;l2d. The divergence ofW im-
plies that the fluid remains in a single homogeneous phase as
its density varies continuously throughout the metastable re-
gion. It is the type of behavior inferred from the mean field
equation of state.

We conclude with a few comments of a more practical
nature. The main challenge to applicability of the mean field
scaling results to nucleation in simple fluids is that real gas-
liquid systems are characterized by short-range interactions.
As noted earlier, the Ginzburg criterion is not satisfied in the
asymptotic scaling region for systems with short-range
forces. Thus, the asymptotic scaling results are not likely to
be applicable to these systems. For guidance as to what to
expect instead, we can turn first to Wang’s recent fluctuation
theory.58 The combination of the nucleation theorem, Eq.
~24!, and Wang’s result for the susceptibilityk implies that
the excess number and, hence, the critical size will not be
divergent at the pseudospinodal. This agrees with the recent
experimental results of Lefebvreet al.65 on nucleation in
polymer blends. We would expect similar behavior in vapor-
liquid nucleation for which, at present, there is no experi-
mental indication for an increasingDg with increasing
supersaturation S. At the highest nucleation rates
('1017cm23 s21) measured in vapor systems, i.e., those
made with supersonic nozzles,66–69only small critical cluster
sizes~5–10 molecules! that decrease with increasingS have
been found.69 Although these results are not definitive be-
cause the measurement conditions still lie far from the esti-
mated mean field spinodal,69 the prospects for a closer ap-
proach to the vapor spinodal appear dim. In nozzle
expansions, the very high nucleation rates already cause the
collapse of the metastable state well before reaching the
spinodal. Alternative methods with significantly higher cool-
ing rates, such as free jet expansions, are available, but these
rapidly produce nearly collisionless vapors in which cluster
growth kinetics is effectively terminated. Experiments on
bubble nucleation may be more successful in approaching
spinodal conditions.70
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APPENDIX

We consider the behavior of Eq.~5! near the spinodal to
show that MFDFT asymptotically obeys Cahn-Hilliard scal-
ing. First, it follows from Eqs.~10! and ~15! that ]D f 8/]r
5mh2mB2ar, which simplifies the right side of Eq.~5!.
Next, we use the chain rule to rewrite¹2mh in terms of
density derivatives and use this result to express Eq.~5! as

]mh

]r

]2r

]r 2
1

]2mh

]r2 S ]r

]r D 2

1
2

r

]mh

]r

]r

]r
5l2

]D f 8

]r
. ~A1!

Now, close to the spinodal the density profile is very flat, and
]mh /]r is well approximated by a Taylor series expansion
about the spinodal density. This gives

]mh

]r
5a26z~r2rS!, ~A2!
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wherea5(]mh /]r)r5rS
and 6z52(]2mh /]r2)r5rS

.
With Eqs.~A2! and~16! and the use of the scaled density

variableY, Eq. ~A1! can then be written as

@11~6z/a!~rS2rB!~12Y!#@]2~rY!/]r 2#

2~6z/a!~rS2rB!r ~]Y/]r !2

5 3
2~2l2z/a!~rS2rB!r ~2Y2Y2!. ~A3!

The form of this equation suggests that the appropriate
scaled length variableR should be

R5r @2l2z~rS2rB!/a#1/2, ~A4!

which is identical toR of Cahn and Hilliard aside from the
replacement ofc by a/l2. After introducingR into Eq.~A3!
and taking the limitrB→rS , we recover Eq.~19!, the scaled
Euler-Lagrange equation of Cahn and Hilliard. This
asymptotic convergence of the GT and DFT Euler-Lagrange
equations implies that the C-H scaling behavior should be
obeyed. It follows from the analysis of Evans39 that Eq.~8!
can be written in the form of Eq.~14! near the spinodal.
Thus, the scaling results forW, r 1/2, and Dg are obtained
from Eqs. ~17!, ~20!, and ~22! simply by replacingc with
a/l2.
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