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Nucleation near the spinodal: Limitations of mean field density
functional theory

Gerald Wilemski and Jin-Song Li
Department of Physics and Cloud and Aerosol Sciences Laboratory, University of Missouri-Rolla, Rolla,
Missouri 65409-0640

(Received 9 June 2004; accepted 6 August 2004

We investigate the diverging size of the critical nucleus near the spinodal using the gradient theory
(GT) of van der Waals and Cahn and Hilliard and mean field density functional tlipGFipFT).

As is well known, GT predicts that at the spinodal the free energy barrier to nucleation vanishes
while the radius of the critical fluctuation diverges. We show numerically that the scaling behavior
found by Cahn and Hilliard for these quantities holds quantitatively for both GT and MFDFT. We
also show that the excess number of moleclgssatisfies Cahn-Hilliard scaling near the spinodal
and is consistent with the nucleation theorem. From the latter result, it is clear that the divergence
of Ag is due to the divergence of the mean field isothermal compressibility of the fluid at the
spinodal. Finally, we develop a Ginzburg criterion for the validity of the mean field scaling relations.
For real fluids with short-range attractive interactions, the near-spinodal scaling behavior occurs in
a fluctuation dominated regime for which the mean field theory is invalid. Based on the nucleation
theorem and on Wang's treatment of fluctuations near the spinodal in polymer blends, we infer a
finite size for the critical nucleus at the pseudospinodal identified by Wang20@ American
Institute of Physics.[DOI: 10.1063/1.1801273

I. INTRODUCTION whenever spatial density gradients are small, as near the
spinodal. Here, we investigate this problem explicitly using
Because of its simplicity and ease of use, classical nucleMFDFT for both droplet and bubble nucleation in a hard
ation theory 2 is frequently used to explain and interpret a sphere Yukawa fluid:?® We characterize the size of the criti-
wide range of nucleation phenomena. Despite its shortcomeal fluctuation by the excess number of molecules it con-
ings, the classical approach has been quite successful in prrins, and examine its behavior using a scaling approach first
dicting critical supersaturations for many vapors. It is far lesssuggested by Cahn and Hillia?@We show that a size diver-
successful in predicting absolute nucleation rates and thetgjence formally identical to that of GT is found. We also
variation with temperature. In recent years, efforts to im-show that this behavior is consistent with the nucleation
prove this situation have led to new theoretical approachegheorent’®-*?Finally, we develop a Ginzburg criteritt**to
that attempt in different ways to treat nonclassical effects duestablish the limits of validity of this mean field approach
to the small size and inhomogeneous nature of thenear the spinodal. For real fluids with short range interac-
nucleust™® Among these approaches, mean field densitytions, this Ginzburg criterion is violated near the spinodal.
functional theory(MFDFT) (Refs. 4 and bis a powerful  Thus, MFDFT is not self-consistent for simple fluids near the
technique that has been extensively used to explore variouspinodal. Since its predictions there are unreliable, earlier
systems. Although less accurate, an even more approximaggtudies that rely heavily on MFDFT or GT near the spinodal
form of density functional theory, known as gradient theorymay require reassessment.
(GT),*>*is easier to apply because of its semiempirical  Following summaries of the DFT and GT approaches in
character and is also of interest. Sec. Il, we present the scaling analysis, numerical results,
Several recent papers have been concerned, at leasénnection to the nucleation theorem, and the Ginzburg cri-
partly, with nucleation near the mean field spinodal in vapor+erion in Sec. Ill. We conclude the paper by drawing some
liquid systemg?~2 In our earlier work on this topi& we  connections to earlier work and discussing some practical
found close numerical agreement between GT and MFDFTmplications of this work.
near the spinodal. Here, we extend that study by examining
several issues concerning nucleation near the spinodal that SUMMARY OF BASIC FORMALISM
have not received much attention in the vapor-liquid nucle-A Densitv functional th
ation community. It is well-known that the classical theory "™ enstly functional theory
predicts a finite nucleation barrier and a small critical size at  Consider a system with a spherical nucleus centered at
the spinodal, while the nonclassical MFDFT and GT predictthe origin. Far from the interfacial region the bulk fluid den-
that the barrier vanishes, as GiBbbkad anticipated. The GT sity is pg and the pressure isg. The distribution of matter
also predicts that the spatial size of the critical fluctuationwithin the nucleus and through the interfacial zone is de-
diverges at the spinoda:® Similar behavior is expected for scribed by the density profilp(r), wherer is the radial
DFT since, as shown, e.g., by Evalisit reduces to GT distance from the origin. Following the perturbative ap-
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proach of Oxtoby and Evarfsthe grand potential for the fo(p)=ppo—p (9)
nonuniform system is written as the functional
or
Qp(r)1= [ {flp()]- mop(r)}dr. @ tpmtip) apll2, 1
Here,f is the Helmholtz free energy density of the inhomo- and uq(p)=df,/dp is the chemical potential of the homo-
geneous fluid, geneous fluid at density,
ML= 1ol ()14 3o(r) [ p(rwr—rar’, @ (W)= smn(p)= un

Note thatug= uo(pg). Explicit expressions fof,, p,, and

fn(p) is the Helmholtz free energy density of a uniform hardluh as functions of are available elsewhepé:26:*

sphere fluid of density, and g is the chemical potential of
the uniform bulk phase. Equatid@) has the classic form of
the van der Waals mod&t;*® reflecting the use of a local
density approximation for the effects of the short-range reB. Gradient theory
pulsive forces and a mean field treatment of the weak, long-
range attractive forceés>*’ For the attractive pair potential
w, we use the Yukawa function

Wy(r)=—ar2exp(—\r)/(4mr), ®)

In gradient theory, instead of E(R), the Helmholtz free
energy density of the inhomogeneous fluid is now given as
the weakly nonlocal fori?—3°

c
where the parameter governs the strength of the interaction = Tfo(p)+ E(VP)Z- (12
andX is the inverse range parameter. Starting with Sullivan’s

seminal treatment of adsorpti6hthe model defined by Eqs. The influence parameteris a weak function of density that
(2) [or (4)] and (3) has been used for over two decades tois assumed to be a constant at a given temperatuseder
describe successfully many interfacial phenomena includinghis assumptionf becomes purely local antican be calcu-

wetting*®~%° capillary condensation; liquid-liquid®> and lated from the known surface tension of the planar interface
liquid-vaporP?°2 interfacial structure, and nucleatfbh®42¢  of the two-phase equilibrium systethThe formal expres-
of droplets and bubbles. sion, Eq.(8), for W is, of course, still applicable. The equi-

After functional differentiation of Eq(1), the density librium density profilep corresponding to an extremum of
profile that make<) an extremum is the solution to the in- the reversible work functional is determined by the Euler-
tegral Euler-Lagrange equation, Lagrange equatio?t-3

— 2
il o)1= o= [ plr =1’ @ reT DTV 9
The mean field equation of state for the hard sphere-
where un(p) is the chemical potential of the hard sphereyykawa fluid is given by Eq(7), and the corresponding
fluid at densityp. Alternatively, since the Yukawa function is Helmholtz free energy densitfg(p) and chemical potential

essentially the Green’s function of the Helmholtz equation,, ,(p) are given by Eqs(10) and(11), respectively.
we can act withV? on Eq. (4) to obtain the second-order

differential equatiofy'*2647

VZun=N\*(n— pg—ap), (5  C. Numerical analysis
whose solution also yields(r), but is much easier to solve As described in greater detail elsewhé&taye solved
numerically than Eq(4). Egs. (5) and (13) using an iterative central finite difference

The reversible work of droplet formatidiis defined as  scheme. For calculations at bulk densities very close to the
the difference of the grand potentials for the nonuniform sysspinodal value, we took care to enlarge the spatial domain
tem and the initial uniform systerf)(pg) with densitypg  over which the equations are solved and to increase the num-

and pressur@g, ber of grid points in the differencing scheme. Close to the
W=A0=0[o(r) -0 , 6 spinodal, the density profile decays very slowly, and if the
Lp(r)] (ps) © outer boundary conditions are not imposed at sufficiently
wheré for a system of uniform density and volunve larger, the calculated density profile decays too quickly. Ul-
—Q(p)/V= — —ap?l2, 7 timately these finite domain effects limit how closely the

() P(p)=Pn(p)—ap @ bulk density can approach the spinodal value before the nu-

and pp(p) is the pressure of a hard sphere system. Usingnerical results deviate from the expected scaling behavior
Egs.(1) and(7), Eq. (6) becomes discussed below. Due to the nonlinearity of the differential
equations, an iterative solution procedure beginning with a

W=J {flp(r)]—Tfo(pg) — (p(r)—pg)pp}dr, (8) guessed trial solution was used. Convergence was usually

rapid (<10 iteration$, and continued iteration for hundreds
where the Helmholtz free energy density of the uniformof cycles showed that the solutions were stable, unlike those
fluid, fo, is expressed either as found by solving the integral equatidn.
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IIl. CAHN-HILLIARD SCALING ANALYSIS ol s il lesaloaal,

A. Gradient theory i —

Cahn and Hilliard* developed their theory for nucle- 0.6 -
ation in an incompressible binary fluid, but the theory for a 1
one-component compressible fluid is formally identical toit. ™ N\
In their analysis of the properties of a spherical critical © 0.4 — -
nucleus, Cahn and Hilliafd found it useful to rewrite Eq.
(8) for W as T X

W‘f apr L aup ” 1 Nk, & —
= | {A1 =5 (0=pa) - dr, (14 I e

by assuming that was independent gf and definingA f' as

Af'=fo(p)—Tfolps) —(p—pB)1s- (19 Ar

Near the spinodal densitys, Af’ may be accurately ap- FIG. 1. Density profiles of hard sphere Yukawa droplets calculated using

; [l ; gradient theory(GT) and density functional theoryDFT) for various pg
prOXImated by a third-order Taylor Seres eXpan%n’ plotted using regular variables. Also marked is the value of the bulk equi-

Af'={[3(ps—pg)(p—ps)*—(p—pp)°l, (1)  librium denshityp,.

(93 Af//9.3 : ; ;
Whgre &=—(7°At19p") =g Using the dimensionless where |, is another dimensionless integral defined by Eq.
variables  Y=(p—pg)/(ps—ps) and R=r[2{(ps (18).
—pg)/c]*’?, and Egs.(14) and (16), Cahn and Hilliard?
showed thatV scales as the 3/2 power of the density differ- g pensity functional theory

ence, . :
As shown, e.g., by Evans in Sec. VI of his comprehen-

W=ml3(20) Y2c¥(ps— pg)¥2 (17 sive review?® DFT rigorously reduces to GT when the den-
sity gradients are small everywhere. Thus, it follows that as
the spinodal is approached DFT will display the same Cahn-
Hilliard scaling behavior as GT. Moreover, the two theories

I e can be made to agree quantitatively by evaluating the influ-

lp= Jo YPR%R. (18 ence parameter using Eq.(73) of Evans® or Eq. (11.1.24
of Davis™ It follows thatc= a/\2. An explicit demonstra-

The functionY is the solution to a scaled forthfor the  tion of these points, based on the asymptotic behavior of Eq.
Euler-Lagrange equation, E@.3), for a spherically symmet- (5), is given in the Appendix.
ric drop, asymptotically valid near the spinodal, which we
write compactly as C. Numerical results

Here, 15 is the value of the dimensionless integtglfor p
=3,

d?(RY)/dR?=3R(2Y - Y?)/2. (19 To confirm the accuracy of our numerical solutions and
. . to explore the range of validity of these scaling laws, we
As Cahn and Hilliard noted, fopg sufficiently close s,  cajculated density profiles by numerically solving E¢B)

the dimensionless dens_ity profilé.will be indgpendent of “and(13) at several values gfg, both near and far from the
pg . They also characterized the size of the critical nucleus in

terms ofr,,,, defined by the requirement thafr ) = (po

+pg)/2, wherep,=p(0) is the density at the center of the 12 =+ S 3 = '3' E—

nucleus. It follows from the definition dR that ] logyolpss -pgo )=-1.5 [

10 —

r 2= Ry c/20) Y ps—pg) 2, (20 ] C

whereR;, is a constant. As the bulk density approaches the 8 —

spinodal valuer 4, diverges> ] C

The size of the critical nucleus can also be viewed in > 6 C

terms of the excess number of molecules in the nucl&égs, ] C

defined for spherical nuclei as 4 n

_ ” 2 2 -

Ag=4m . [p(r)—pglredr. (21 ] -

0 ] rrri rrri rrri rrri -

Using the dimensionless variabl&sand R, it follows from 0.0 0'5 1'0 1'5 20
Eq. (21) that Ag diverges with the density difference in the R

same manner as,,
FIG. 2. Density profiles of hard sphere Yukawa droplets calculated using
Ag=4l 1(C/2§)3/2(ps— pB)_l/z, (22 gradient theory for varioupg plotted using scaled variables.
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FIG. 3. Cahn-Hilliard scaling behavior of the reversible work found using FIG. 5. Density profiles of hard sphere Yukawa fluid droplets calculated
gradient theory. using density functional theory for variopg plotted using scaled variables.

spinodal densityps=o0>ps=0.09248 atT/Tc=0.7. (The  and 4. The bulk density differencEp(=ps—pg), at which
hard sphere diameter is; T¢ is the critical temperature. scaling behavior begins to hold varies slightly with the prop-
These are shown in Fig. 1 using regular variables. The graerty, starting for W at logoAp~—2.5 and for Ag at
dient theory profiles are shown again in Fig. 2 using thelog,,Ap~—3.
scaled variablesy and R. In Fig. 1, at p=0°ps=0.09, Quantitative verification of this scaling behavior for den-
which is very close t@s, the flatness of the profile is appar- sity functional theory is demonstrated in Figs. 5-9. Several
ent. In Fig. 2, the lower five profiles are indistinguishable droplet density profiles, shown using regular variables in Fig.
from the numerical solution to Eq19). With our improved 1, are replotted using scaled variab¥andR in Fig. 5. The
numerical technique, we can cite more accurate values failensity profiles clearly obey the Cahn-Hilliard scaling be-
several quantities reported by Cahn and Hilli¥r®Rounded havior as the spinodal is approached. The scaling behavior of
to three figures, these aM(0)=8.38, R;,=0.704, andl; W and Ag is illustrated in Figs. 6 and 7, respectively, for
=32.1. The respective values of Cahn and Hilliard, 8.1, 0.73droplets. The scaling region begins at larger values\pf
and 31.4, obtained on an analog computer, are in fair agreghan for GT, starting foW at logoAp~—2 and forAg at
ment with our results. As an independent check of the accuog;oAp~—2.2. Similar results for bubbles are shown in
racy of our solution, we numerically integrated Ef9) us-  Figs. 8 and 9. Note that the scaling region for bubbles begins
ing a fourth-order Runge-Kutta method startindRat 0. The  at larger values ofA’p| than for droplets, starting fow at
behavior ofY at largeR is actually quite sensitive to the 10g;dAp|~—1.3 and forAg at loggAp|~—2, although the
value ofY(0), and inthis way we verified the cited value. numerical results slightly undershoot the scaling behavior
The gradient theory results fo and Ag, calculated beginning at logAp|~—1.4. Other asymmetries between
with the numerical density profiles, are shown in Figs. 3droplet and bubble behavior have been noted in earlier

5- A 4 ||||I|||||||||I|||||||||I||||||||I|
] TIT,=07 I {1 TiT,=07 1
. — - 1 —oFT -
4 GT _ _ . N
i -~ CH Scaling h _ 2 i -~ CH Scaling T
T ] - - - Binodal T > 1 --- Binodal Al
o ] ' F z Vb
«23— :— 8 = [N .
g g § 1 i
=] [ g J Tk
2 s -2~ '
\I - 1
] o ] 3!
i A i [
1
1 LA RN RRRANLARRERERRN LERRRRRERN LARLE) -4 |||||||||||||||||||||||||||||||||'|
-4.5 -3.5 2.5 -1.5 45 35 25 1.5
3 3 3 3
logso(psS - Pgo ) logso(pse - Peo )

FIG. 4. Cahn-Hilliard scaling behavior of the excess numher found FIG. 6. Cahn-Hilliard scaling behavior of the reversible work for hard
using gradient theory. sphere Yukawa droplets found using density functional theory.
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FIG. 7. Cahn-Hilliard scaling behavior of the excess numbgrfor hard
sphere Yukawa droplets found using density functional theory.

work.+16:25:3¢gxcellent agreement is again found in the scal-
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FIG. 9. Cahn-Hilliard scaling behavior of the excess numbgrfor hard
sphere Yukawa bubbles found using density functional theory.

wherek is the isothermal compressibility. Near the spinodal,
the well-known resutt

ing regions. For all results shown, any deviations from scal-

ing at very small values dfA’p| are due to the finite domain
effects discussed earlier.

D. Scaling and the nucleation theorem

The nucleation theoreth*2allows one to determinAg
rigorously from the equation

so-[ 22

g
From Figs. 3 and 6 we see that the Cahn and Hilliard scalin
law accurately give®V as a function ofpg. From the chain
rule and a familiar thermodynamic identity, we may write
Eq. (23) as

(23

o[l [t (Tl e 0
9=—|-—] |5 ] ==|5-] P,
dpg);\dus/ ¢ dpg/; °

4 . IIIIIIIIIIIIIIIIIIIIIIIIIIIIII -
] 1 F
] Bubbles .
3] [
i1 TmM,=07 N
£ 23 DFT ' B
=< 1 - CH Scaling .
,,E 1 --- Binodal '
2 '3 L E
e rE
8 04 y F
3 .
. [
-1 A
] " F
] 1 F

'2 IIIIIIIIIIIIIIIIIIIIIIIIIIIII
-35 -30 -25 -20 -15 -1.0 -05

3 3
l0g40(Pas - PO )

FIG. 8. Cahn-Hilliard scaling behavior of the reversible work for hard
sphere Yukawa bubbles found using density functional theory.
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) =pgr=[6{(ps—pe)] %,
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follows from Eg.(16) [or from Egs.(11) and (A2)]. Then,
from Egs.(17), (24), and(25), we obtain
c

=
This result reproduces the divergent behavior found in Eq.
(22), whose physical origin is now seen to lie in the diver-

ence ofk(~|ps—pg|~1) for mean field theories of fluid

hase equilibriunt. The connection withx is quite under-
standable in view of that property’s role in regulating density
fluctuations in a flui4*? and the recognition that the critical
nucleus is itself a density fluctuation in a metastable fluid.
The magnitude oA g given by Eq.(26) also agrees with Eq.
(22) since it can be shown analytically or numerically that
I 3= 8' 1-

w

32
Ag= > ) l3(ps—pg) 2 (26)

E. Ginzburg criterion

Levanyul® and Ginzburf developed a test for the self-
consistency of mean field theory near a critical point. The
first application to nucleation was made by Bincferho
developed a Ginzburg criterion based on the temperature dif-
ference from the spinodal. Very recently these ideas were
used by Wood and Wangand generalized by Warfgto
include compositional fluctuations in polymer blends. Here
we develop a different kind of Ginzburg criterion to assess
the singular behavior of density fluctuations near the spin-
odal. The idea is simply that for the mean field predictions to
be valid, fluctuations in the order parameter should be small
on the scale of the correlation lengéthMore precisely, fol-
lowing Goldenfeld® we may formulate the Ginzburg crite-
rion in ad-dimensional space as

drG(r
fdteml

(27)
Jyd®r(m(r))?

license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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whereG is the two-point correlation function for fluctuations wherel, is defined by Eq(18). The only essential difference
in the order parametey, and the integrals are taken over the between Eqs(31) and(32) is the improved numerical preci-
correlation volumeV=¢9. The relevant order parameter is sion of the latter. After introducing dimensionless densities
the difference in density between the nucleus and the bulk= po® and numerically evaluating the relevant quantftfes
vapor phasey(r)=p(r)—pg, and near the spinodal this is at T/T.=0.7, we find the explicit inequalities,

well approximated byAp, whereAp=ps—pg. The correla- i ~ 32

tion length ¢ is proportional tor,,. To show this, we pro- 31210 ()\U)g(Ap)Vap <1 (33
ceed roughly in the manner of Goldenf&do find an equa- for droplet nucleation near the vapor spinodaps(
tion for G(r) in the vicinity of the spinodal. Since the two =0.0925), and

Euler-Lagrange equation&) and (13) are asymptotically 4 3~ \—3/2

equivalent near the spinodal, we work with the latter, simpler L77x 10" (A o) (| Aplig) " <1 (34)
equation. First, we expanfl, to second-order or, equiva- for bubble nucleation near the liquid spinodalsE0.521).

lently, differentiate Eq(16) to find The minimum values of\p that satisfy these inequalities
_ ) clearly depend on the specific value usedXot i.e., on the
to(p) = ue=6{Apn(r) =34 n(r)]% (28 range of the potential. Let us consider the inequality to be

and substitute this into E¢13). Then we multiply the result- satisfied when the left side of either E3) or (34) equals

ing differential equation bysn(r’), average((---)) over all  0.1. Fore=1, we then see that MFDFT is valid for
fluctuations, and  approximate (7%(r)n(r')) as  1081(Ap)yay>—1.67 and logd Ap|iq>—1.84. For droplet
{(n(r)7(r"))Ap, which is acceptable near the spinodal wherenucleation in Figs. 6 and 7, the entire scaling region lies at

p(r) varies slowly. We obtain smaller values ofAp for which the MFDFT is invalid. For
5 bubble nucleation in Figs. 8 and 9, the scaling region lies
VG—3{(Ap/c)G=0, (29) partially within the acceptable density range, bukdif=2 is
whereG(r—r')=(n(r) n(r')). It follows from Eq.(29) that ~ used, the range of acceptable densities changes to
the correlation length is log Apljig>—1.23, which now excludes the entire scaling
region. Only if we make the Yukawa potential very long
£=(3¢Aplc) ™2, (300 ranged, by insisting thato<1, will the Ginzburg criterion

be satisfied for values afp that lie well within the scaling
region. Even in this case, the mean field scaling predictions
will eventually become invalid adp—0, unless we first go

sum rule®® the numerator equaleTp2x, while the denomi- to the limit of in_finitely long-range forcesy=0. This behav-

nator is simply &4(Ap)2, since the density varies slowly ior mer_ely conﬂrm.s what has Ior_19 been known, ngmely,_ that

within the nucleus. Thus, for the mean field predictions to pdnean field theory IMProves as either the.system dimension or

valid near the spinodal, the inequalilyTpéx<§d(Ap)2 the range of j[he force increases, and it be_comes gxact for

must be satisfied. With the use of Eq&5) and (30), this forces of |nf|n|tg range. To properly model simple fluid sys-

inequality takes the explicit form, tems using realistic yalues far, Oxtoby and Evarfsfound

thatAo>1.5 was typical. In our own recent work, we found

kT3¢ semiquantitative, qualitatively reasonable results for the ther-
6_4“(? modynamic properties of bulk mixtures of water and pen-

. o ) o tanol using the valuedo=2.967 for water and 4.544 for

It is clear that this inequality cannot be satisfiedgs~0  pentanol. Thus, for values air needed to simulate the prop-

unless gs>0_662 This result, in agreement with earlier gpjes of real fluids, GT and MFDFT will be valid generally
St“_d'e£ 7" defines the upper critical dimension beyond 4y for densities lying outside of the scaling region.
which mean field theory is valid. Thus, in three dimensions

the specific scaling predictions of GT and MFDFT cannot bgy, piscussioN

correct near the spinodal. For critical phenomena in fluid

systems, the upper critical dimension is 4. The increase to 6 Limitations and characteristics of MFDFT and GT near
indicates that fluctuations are even more important near thie spinodal have been noted in previous studies. In recent
spinodal than near the critical point, and accurate results i#/0rk on polymer phase separation, Walhgeveloped a Gin-
this region can only be obtained from a theory that properlyzburg criterion based on both composition and temperature
treats fluctuations8 A related question is the size of the fluc- considerations to establish limits for the validity of mean
tuation dominated region, or how closely can the spinodal b&eld theory near the spinodal. Watigalso showed that a
approached before mean field theory breaks down? An estinean field spinodal, defined by the divergence of the static
mate can be found by evaluating more precisely the denomgusceptibility, does not exist fad<<4. It is replaced by a
nator of Eq.(27) in the asymptotic Cahn and Hilliard scaling Pseudospinodal, lying outside of the mean field spinodal, at
regime_ Restricting Ourseh/es m):3 and introducing the Wh|Ch the Susceptib“ityK I‘eaCheS a f|n|te maximum. The

scaled variable¥ andR, [cf. Eq. (A4)] we rewrite Eq.(27)  Pseudospinodal is associated with a small nucleation barrier,
as W~KT. Thus, it defines a region in which phase separation

may exhibit characteristics of both nucleation and spinodal
decomposition, establishing a link to the original ideas of
Binder®® See Ref. 1, pp. 209-216 for an illuminating sum-

which is essentially the same as E90). The same expres-
sion holds for DFT upon replacingby a/\2.
We now evaluate Eq27). From the static susceptibility

3/2
(Ap)~(3-dR<q (31)

A KT (27)%°
m6—§<—) (Ap)_3/2<1, (32

a
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mary. Related behavior was found in important pioneering  We conclude with a few comments of a more practical
work by Klein and Ungef®? who investigated magnetic nature. The main challenge to applicability of the mean field
systems using/* field theory with a Landau-Ginzburg model scaling results to nucleation in simple fluids is that real gas-
free energy functional. They showed that for systems witHiquid systems are characterized by short-range interactions.
weak long-range attractive forc€®/LRF), the critical fluc-  As noted earlier, the Ginzburg criterion is not satisfied in the
tuation is a ramified droplet of diverging size. They alsoasymptotic scaling region for systems with short-range
found sharp spinodals wheth<6 only for WLRF. Sharp forces. Thus, the asymptotic scaling results are not likely to
spinodals are, thus, artifacts of mean field equations of statee applicable to these systems. For guidance as to what to
for physical systems with short-range forces. The scaling beexpect instead, we can turn first to Wang’s recent fluctuation
havior of W and the critical radius was identical to that found theory®® The combination of the nucleation theorem, Eq.
here. Since the Yukawa potential gives rise to WLRF ad24), and Wang’s result for the susceptibilityimplies that
Ao—0, it is not surprising that the behavior of the critical the excess number and, hence, the critical size will not be
nucleus predicted by MFDFT and GT for fluid and magneticdivergent at the pseudospinodal. This agrees with the recent
systems are the same, since these systems belong to the sagiperimental results of Lefebvret al®® on nucleation in
universality class. In short, mean field theories are qualitapolymer blends. We would expect similar behavior in vapor-
tively acceptable descriptions of metastability for WLRF liquid nucleation for which, at present, there is no experi-
systems near the spinodal only in the long-range Ifhit. mental indication for an increasindg with increasing
Some other interesting theoretical consequences arise $upersaturation S, At the highest nucleation rates
we examine the dependenceWwfandAg on\ andApinthe  (=107cm 3s™') measured in vapor systems, i.e., those
scaling region near the spinodal for systems of different dinade with supersonic nozzI&%;**only small critical cluster
mensionality. We can generalize Eq$4) and (21) to d di- sizes(5—10 moleculesthat decrease with increasighave
mensions for spherically symmetric nuclei simply by rep|ac-been found® Although these results are not definitive be-
ing dr with wyr9'dr, wherew, is ad-dependent geometric cause the measurement conditions still lie far from the esti-
factor. After introducing the scaled densi¥yand lengthR, ~ Mated mean field spinodé,the prospects for a closer ap-

Eq. (A4), into these expressions, we easily find theProach to the vapor spinodal appear dim. In nozzle
asymptotic dependence to B&¥~X"9Ap)3~ %2 and Ag  expansions, the very high nucleation rates already cause the

~N"9(Ap)1"92. The critical radius, which is directly pro- collapse of the metastable state well before reaching the
portional tor,, Eq. (20), has the same asymptotic depen- SPinodal. Alternative methods with significantly higher cool-
dence in all dimensionst;,~\~Y(Ap) Y2 1t is curious ing rates, such as free jet expansions, are available, but these
that r,;,, which measures the spatial extent of the criticalrapidly produce nearly collisionless vapors in which cluster
fluctuation, diverges in all dimensions, wheresg, which growth kinetics is effectively terminated. Experiments on
measures the amount of material in the nucleus, only diPubble nucleation may be more successful in approaching
verges ford> 2. Note that the dependence\dfandAg onx  Spinodal conditions?

andAp is consistent with the nucleation theorem discussed in

Sec. llID. Ford<6 and\+0, we find thatW—0 asAp—0, = ACKNOWLEDGMENTS

in agreement with Klein and Unger and in accord with

Gibbs’s expectatio_ﬁ% for the limit of metastability. In con-  program of the Division of Materials Sciences and Engineer-
trast, ford>6 we find, as did Klein and Unger, th# and g "Basic Energy Sciences, U.S. Department of Energy. The

Ag diverge as\p—0. In systems of high dimensionality, the 5 thors benefited greatly from discussions with R. Sknepnek,
spinodal, thus, acts as a quasibinodal with nucleation becony \Vojta, W. Klein, P. Rikvold, N. P. Balsara, R. Strey, S.

ing increasingly more difficult as the spinodal is approachedyyonczak, and B. Hale over the course of this work.
In this case, Klein and Unger actually showed that the life-

time of the metastable stable state became infinite at thﬁPPENDIX

spinodal. This behavior, of course, only pertains to an instan-

taneous quench to the spinodal density; in a gradual quench We consider the behavior of E(p) near the spinodal to
starting farther from the spinodal, the system would first un-Show that MFDFT asymptotically obeys Cahn-Hilliard scal-
dergo nucleation wher@/ was smaller, and this would de- ing. First, it follows from Eqs(10) and (15 that 9Af’/dp
stroy the metastable state. Now note what happens-a8, = #nh—us— @p, Which simplifies the right side of Ed5).
i.e., as the range of the potential becomes infinite Ap#0.  Next, we use the chain rule to rewrif€”uy, in terms of

In this caseW diverges everywhere: Nucleation does notdensity derivatives and use this result to express(&as
occur anywhere in a system with infinitely long-range weak ap)z 2 gundp IAF

This work was supported by the Engineering Physics

- ; L dun ®p P
attractive forces. Note that this behavior is independent of — _—— 4 +-———=\2——. (AD
the dimensionality of the system and is valid throughout the ~ 9P ar? ~ gp? \ dr r dp dr ap

entire metastable region, since dimensional analysis of Eqyqay, close to the spinodal the density profile is very flat, and

. 7d . .
(8) also yields the resulV~\"%. The divergence oWim- /5, is well approximated by a Taylor series expansion
plies that the fluid remains in a single homogeneous phase ag 4t the spinodal density. This gives

its density varies continuously throughout the metastable re-
gion. It is the type of behavior inferred from the mean field ~ dun _ _
equation of state. ap 64(p=ps), (A2)
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