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4'Received 21 May 1987)

%e report results of a theoretical investigation into the mutual annihilation of tight-binding ex-
citons. The results are in apparent contradiction with intuitive expectations and provide correc-
tions to expressions given by one of the present authors (V.M.K.) in an earlier analysis. A part of
that analysis was based on a mapping of the dynamics of two mobile, mutually annihilating exci-
tons onto the dynamics of a single exciton migrating in the presence of a fixed trap. %'e find that
while this equivalence is valid for incoherent, randomly walking particles in an ordered system, it
does not hold for an arbitrary degree of transport coherence. Any nonvanishing coherence makes
a "moving trap, " i.e., a second exciton, less effective than the corresponding stationary trap. For
realistic intersite interactions, the quantum yield for annihilation passes through a maximum, i.e.,
the fluorescence yield passes through a minimum„as the exciton motion becomes less coherent.
The earlier predictions are recovered in the incoherent limit.

I. INTRODUCTION II. BREAKDOWN OF THE CHAIN RULE

Luminescence observations of exciton annihilation
have served as a probe of Frenkel exciton dynamics in
molecular crystals and aggregates for a long time. In an
earlier paper Kenkre' gave a comprehensive theory of
the dynamics of the annihilation process with the help of
a generalized-master-equation (GME) approach. One of
the features of that theory was that, on the basis of the
memory functions in the GME, it addressed an arbitrary
degree of exciton-transport coherence and analyzed the
effects that such coherence would have on annihilation
observables such as the Auorescence quantum yield. %'c
have discovered that, while the general development and
most of the results of that theory are valid, one of the

procedures used in conjunction with those results, viz. ,
the so-called chain rule, is valid only in the incoherent
limit. The chain rule is thus useful only for systems with
cxciton lifetimes much larger than exciton scattering
times. One of the two purposes of the present study is
to point out the diSculties associated with that pro-
cedure and to provide prescriptions for correcting the
corresponding expressions given in Ref. 1. The other
purpose 1s to rclnvcstlgatc the effects of cxc1ton coher-
ence on the quantum yield in annihilation experiments
without the use of the chain rule. Surprising results
about thc aQIl11lllatlon cKC1cncy as a function of trans-
port coherence are reported, along with suggested appli-
cations of the theory.

The theory of Ref. 1 exploited the similarity between
the problem of two particles moving on a lattice and un-

dergoing mutual annihilation and that of a single parti-
cle moving on a higher-dimensional lattice and undergo-
ing capture at a 6xed trap. An exact solution was
presented for the two-particle problem on an ordered
lattice and was used to obtain the following expression
for the Auorescence yield in the presence of annihilation:

cP=1- y*g 1» i+F*4'(iver)

where ~ is the radiative lifetime, y* is the rate at which
annihilation proceeds for two particles located at the
same site, X is the number of sites or chromophores in
the system, and 4 (e) is the Laplace transform of a
two-particle propagator qi (t) giving the probability (in
the absence of annihilation) for two particles to be found
at the same site in the system at time t given that they
were both at the origin at time I; =0. Because of the in-
dependence of the particles in the absence of annihila-
tion, one obtains

'lt (t) = g p„(0)(t)g„(o)(t),

where P„( )(t) are the unperturbed single particle prop-a-

gators, assumed to obey an appropriate CTME, each giv-
ing the probability for a single particle to be at site n at
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time t if it was at site m at t =0. In a translationally in-
variant system these are functions only of the distance
m —n, and hence often written with a single subscript,
i.e., P„( )

——g „. Details of the derivation of (1) can
be found i.n Ref. 1. It is important to realize that for the
yield and many other observables, all information re-
garding exciton transport is contained in the propagator
4 (t) E.quation (1) is indeed an exact consequence of
the starting equations for arbitrary coherence.

For incoherent motion, the evaluation of the yield is
facilitated by use of the so-called chain rule, which
expresses the evolution of one-particle probabilities
through the relation

4.(o)(t]+t2)= g0 (ol(t] W. ( l(t2)

Use of this relation with t, =t2 allows the evaluation of
the propagator appearing in (1) as + (t)=lto(ol(2t)
Thus, through the use of the chain ruie the two-particle
propagator is expressed as a single-particle propagator
moving at twice the rate. Indeed, as was pointed out in
Ref. 1, when (2) and (3) are substituted into (1) the re-
sults are formally identical to those for a single particle
moving in the presence of a fixed trap of capture rate
y*. This result is appealing from a physical point of
view since it seems to agree with the intuitive idea of
transforming to center of mas-s -coordinates and thus
working only with the separation distance of the parti-
cles (clearly the relevant variable for the annihilation
problem). It was partially on the basis of this picture
that an extension of the analysis to coherent transport
was presented in Ref. 1. However, as we shall show
below, the chain rule, Eq. (3), is strictly valid only when
the memory functions which appear in the GME are
proportional to 5 functions, i.e., when the probabilities
obey a (Markovian) Pauli master equation (PME). We
find that, although the general results of Kenkre's
theory, such as Eq. (1), as well as their consequences for
incoherent motion are exact, that part of the analysis in
Ref. 1 which addresses highly coherent motion must be
viewed as an approximation whose validity must be
determined.

That the probability propagators corresponding to
solutions of a PME obey the chain rule is well known
and easily demonstrated. To show that the only solu-
tions of the GME which obey the chain rule are those
corresponding to 5-function kernels is slightly more
complicated but still straightforward. Let g „(t) be the
propagator solutions to a GME, which we may write in
the general form

where, in the interest of generality, we have not assumed
translational invariance, where A, „z(t) are memory
functions, and where g „(0)=5 „. Introducing matrix
notation we may write the Laplace transform of a nlatrix
G, whose (m„n)th element is g „,in the form

G(e)=[e+ A (e)]

where e is the Laplace variable conjugate to time and
the matrix A (t) has elements A, „~(t) as in Eq. (4).
Assume that the propagators g „(t) obey the chain rule,
which in matrix notation may be expressed as

6 (t)= G (t t—')6 (t') .

Let us now ask: %hat form can the memory functions
A (t) have, subject to the chain-rule condition (6)? To
find out, we integrate Eq. (6) over t' from 0 to t, obtain-
ing

tG(t)= J dt'G(t t')G(—t'), (7)

and then Laplace transform over t to find the following
difFerential equation in the Laplace variable e:

dG(e)
G( )2

cf6

On the left-hand side we have used the fact that
L[tf (t)]= df(e—)/de, in which X[ ] denotes the
Laplace transform of [ ], and on the right-hand side
the convolution theorem of Laplace-transform theory.

Substituting from (5) into (8) yields a trivial differential
equation for A (e), viz. , d A (e)/de=0, or A (e)= Ao, in-

dependent of e. Hence, A (t)= Ao5(t), the GME (4)
reduces to a PME, and the matrix G(t) can be written in
the form G(t)= exp( —Aot).

The results of the preceding paragraph are rather gen-
eral. They clearly indicate that the chain rule holds in
the incoherent limit but breaks down for an arbitrary de-
gree of transport coherence.

%e conclude this section by exhibiting explicitly the
breakdown of the chain rule for translationally invariant
systems through an expression which also facilitates the
computation of correction factors. The crux of the
matter lies in (3), whose left-hand side (for n =0) can be
written as

yo(t]+t2)=(1/x) y]t("(t]+t2),

where g" denotes the discrete Fourier transform of the
single-particle propagator and N is the number of sites in
the lattice. The reciprocal-lattice vector k has the di-
mensions of the lattice. The right-hand side of (3), on
the other hand, can be written as

k, q, m

(10)

where (k +q)m represents a dot product of the (dimen-
sionless) direct-lattice vector m and the (dimensionless)
reciprocal-lattice vector ](."+q. In (10) we have written

as a consequence of translational invariance.
A slmpllflcatlon of (10) leads to

%e will call the dift'erence between the left- and the
right-hand sides of (3) the correction b.. By using (9)
and (11) in (3), along with the inversion symmetry im-
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plied by P =g ", we obtain the explicit correction
prescription

partially coherent motion that task is complicated by the
lack of a rule such as (3).

(1—/N) g b k, (12a) A. Evaluation of turbo-particle propagators

b,„=P"(r,+r, ) g—"(t, )f"(r, ) . (12b)

where K is the complete elliptic integral of the 6rst kind.
Since for br~0, K equals m/2, the chain-rule results are
acceptable for slow motion; however, since j: diverges
logsrithmically for b~~ao, severe departures from the
chain-rule approximation can occur for motion which is
fast enough with respect to radiative decay.

It is trivial to show that, for incoherent motion, P"(r)
is always an exponential: b,„ in (12b) is thus always zero
snd the chain rule holds. It is also straightforward to
see from (12b} explicitly how the chain rule breaks down
for coherent motion, for instance, on a one-dimensional
infinite chain with nearest-neighbor transfer interactions
J. For such a system, g"(t) is given by Jo(4Jt sin(k/
2)),where Jo is the usual Bessel function and the depar-
ture from the results of the chain rule are the direct
consequence of the di6'erence in the values of
Jo(x i )Jo (x 2 ) from Jo (x, +x 2 ) . Coincidentally, this
difterence has been examined graphically, and in detail,
by Fort, Ern, and Kenkre in their analysis of Ronchi
ruling signals in two- and three-dimensional systems.
From that discussion we can conclude here that the
chain rule will be accurate to a reasonable degree for
smal1 enough values of t. More precisely, the argument
of the Bessel function must be smaller than, or of the or-

der of, its first zero. Since the radiative lifetime r serves
as a natural cutoff on the time t, in the calculation of an-
nihilation observables such as the yield for purely
coherent motion, the chain-rule results will break down
when the radiative lifetime of the excitons is of the order
of, or larger than, the motion time, i.e., for Jv ~ 1. An
exp1icit demonstration of this result follows from a com-
parison of the quantity

I dr[exp( 2t/r)]JO—(br)
0

to the quantity

t exp —t ~ Jo 2bt

with 0 =4J sin( k /2). The difference between these
quantities is jdtb, „(t) in the presence of radiative de-

cay. The two quantities have been calculated earlier
snd are in the ratio

(2/rr)K(2br/(1+4b'r'}'"),

e+ —[E(k —k') —E(k') ]
h

where X ' is the inverse Laplace transform. P"(r) is re-
lated to P, (t) by the usual discrete Fourier transform

y (r) y e iklyk(r)1
(14)

There is a well-known prescription ' for constructing
the Laplace transform of g"(r) for an arbitrary coher-
ence parameter if the corresponding coherent propagator
P"(r) is known. This prescription is

$ "(~)=P"(~+a)/[I —P (a+a)] .

Equations (2) and (13)—(15) can be used to construct
the two-particle propagstors for specific systems. Exam-
ples are given in the following for systems in compact-
and ring-interaction geometries. Here, "compact" refers
to a case in which there are equal interactions among all
the sites of an X-site system. By "ring" we mean equal
nearest-neighbor interactions of an 5-site translationally

symmetric system of coordination number 2 and with
periodic boundary conditions.

1. Diner

As a meeting place for ring- and compact-interaction
geometries, the simplest system, the dimer, is discussed
Arst. Since we consider small "compact" systems in Sec.
III A 2 in detail, in order not to repeat ourselves we sim-
ply refer to Eqs. (17) and (18}. From these two equa-
tions, the correct and chain-rule approximation dimer
(N =2) propagators are, respectively,

1 e +3ae+2a'+SJ'
(@+a)(e +2ea+16J )

(16a)

It is known that P"(r), the coherent one-exciton propa-
gator for an X-site translstionally symmetric system with
an energy dispersion relationship E(k), where k is the
wave vector, is given by

yk(r) g —1[y k(~))

+ (~)=—,'P (e/2)= —,
' —+

e +2o.e+ I6J
(16b)

%e now return to the problem of analyzing the effects
of coherence on the annihilation observables. %'e em-

phasize that the expression (1) for the fluorescence yield
remains valid for any GME, as long as the two-particle
propagator 40(t) and its Laplace transform are correctly
evaluated. It is obvious from Sec. II that for coherent or

where J is the intersite interaction in units such that
fi= 1.

The difference between (16a) and (16b) is

b(e)=4J /[(@+a)(e +2ae+16J )] . (16c)

Under the chain-rule assumption, the dimer two-
particle propagator always decreases [Eq. (16b)] and
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h(e) always increases as the motion becomes more
coherent (a~O). On the other hand, the correct propa-
gator [Eq. (16a)] always has a minimum at
a/J=2 —(I/J)r; that is, as long as Jr~ 1/2. In other
words, there is a minimum when the scattering equals
the bandwidth (n=2J) if r~ao. The plots for the
quantities given in Eqs. (16a)—(16c) are given in Fig. l.

2. Small systems in compact interaction geometry

Although compact-interaction geometry cannot
represent large systems realistically since the intersite in-
teraction does not die down with distance, it is a reason-
able model for systems consisting of only a few chromo-
phores. Using the dispersion relation E( k)= J(X5 ko—1) in Eq. (13), one finds

P (e)=I/e

(17)

I I I I
Jr=0

t Pi ~ ~ ~ ~ ~ ~ ~ catena eeet ~ ~ ~ s ~O~ a ~ ~ ~g~~ e ~~V ~ ~ E ~ ~ ~ ~ ~ \ ~ 0 ~ ~ 0 ~ ~ ~ 0 ~ ~ ~ 0 ~ I ~ ~ ~ 0 ~ ~ I ~ ~ ~ ~ ~ IKIIPII

r~
Jv =0.1

J~=50f i// y/
/ /!,Jr=10/.-''l

/
r'- /'l~o %f ~ ~ ~

/ ~

/~ ~ *t~
+ +~ ~ ~

/ . J.=~ao
~ ~

r Jest .
/

V
J

:i/'.. .. 'l r / / Jr=5000 8

~~eggy eggt~++&~4J ~ W g H e W~~ ~~

0.2

From Eqs. (17) and (15), one obtains

(18a)
w 3

J7 =0

-2

log~o(a/ J)

(e+a) + V

(@+a) —a(e+a) +(V') (e+a) —aV

ql (e)=——+(&—1)X
~
Q(t)

~N e
(19)

where P(t) is given by Eq. (18b). Performing the
Laplace inversion of equation (18b), we have

3

1((t)= g C;e

r; —2ar;+e + V
C. =

(r; —r, )(r; —rk )
(i,j,k =1,2, 3)

and r; =cx—z, The z;*s are the roots of the cubic equa-
tion in the denominator of Eq. (18b). The Iluorescence
yield is evaluated using Eq. (19) in Eq. (1). The results
for several small systems are shown in Fig. 2. It is in-
teresting to note that no minimum occurs if a is held

(18b)

where V =X(N —2)J and (V') =N J .
An explicit expression for 4 (e) is found by using the

fact that P "(e) is independent of k [see Eq. (17)],

FIG. 1. The dimeric two-particle propagator [Eq. (16a)]
( ~ ), the chain-rule approximation two-particle propagator
[Eq. 16(b)] ( ———), and the correction [Eq. 16{c)]( ) as

a function of the coherence parameter (a/J) for a wide variety
of intersite interaction strengths (J~) ranging from 0 to 5&10
(J-3.5 meV if ~=1 ns). %'here the two propagators overlap,
the curves are combined ( —.—.—).

constant and J is varied. However, this has less physical
applicability, since it really is the scattering rate that is
likely to change with temperature and thus decide the
degree of coherence in transport.

3. Inj&itely iarge systems of ring interaction ge-ometry

The evaluation of the fluorescence yield 4 from Eq.
(1) is straightforward also for systems possessing ring-
interaction geometry, i.e., E(k)=2Jcosk. As a practi-
cal example we consider the infinite linear chain with
nearest-neighbor interactions J, as in the discussion at
the end of Sec. II, as a useful approximation to molecu-
lar crystals. %e shall show here some of the explicit ex-
pressions for the two-particle propagator 0 (t), particu-
larly in the presence of arbitrary degree of coherence.

Equations (2) and (ll) and the explicit expression '
for the single-particle propagator for the infinite linear
chain allow us to write the two-particle propagator as

4 (t)=(l/2m) J dk e ' Jo(b„t)+ J du ae "Jo[bk(t u)'i~]—
0
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where I/r, =a+ and x„ is given by

2bI, r, (1+4bk r, )

By contrast, the use of the chain rule would have given

eo(r)=(1/2~) f dke ' 'Jo(2b„r)

instead of (21) and, since the two integrals can be evalu-
ated exactly in this case,

iII (2/r)=(IIJri)xE(x) (chain rule),

where x =4Jr, (1+16J ri)

It is interesting to compare (22) and (24). The exact
expression, i.e., (22), involves an mtegral over the Bnl-

~ Coherent
I I I

incoherent ~
I I I I I

00 I I I I I I I I I

-4 -3 -2 -1 0 1 2 3 4

logio (ar)

FIG. 2. Fluorescence yield 4& [Eq. (1)] of several small
compact-interaction geometry conplexes vs degree of coher-
ence (o,'7. ) at a fixed value of the annihilation (y ) and the
motion (J) rates. Here, Jv=y =10, vrhich corresponds to
J-0.1 me& rf &=1 ns. y* =10" s ' Is a reasonable value of
the pairwise rate of annihilation for some systems, as discussed
in Ref. 8.

where bk=4J
~

sin(k/2) ~. Here and below, the k in-
tegration is over the 6rst Brillouin zone. The use of the
chain rule would have led us to write the expression

e 'Jo(2b„t)+ f du ae "Jo[2b„(r —u )'i ]

as the integrand on the right-hand side of (20).
For highly coherent motion, the u integral may be

neglected in comparison to the other term in 1arge
parentheses, with the result that

4 (t)=(I/2n) f dk e 'Jo(bj, t) . (21)

This time-domain expression leads to the following result
for the Laplace transform t (2/r) —= f dt e '~'4 (r):

P(2/r)=(I/2n ) f dk(2/bj, r, )xkK(xI, ) (exact),

)oui»one of the chain-rule expression, i.e., (24), with
the replacement of J by 2J

~

sin(k/2)
~

. The chain-rule
expression is the value of the integrand of the exact ex-
pression at k =m/3. The Laplace transform of the two-
particle propagator,

+ (2/r)= f dt e ' '+ (r),

can thus be written as the product of two factors. The
first factor is (1+a~) ' and decreases as a is increased
from 0, i.e., from the purely coherent limit. The second
factor is the Laplace transform of the purely coherent
two-particle propagator but with the replacement of 1/r
by 1/r+a. The exact and chain-rule expressions for
this factor both imply an increase of this second factor
as a is increased from 0. %henever there is a minimum
in 4' (2/r), this increase must be slower than the de-
crease of the first factor in the exact expression and,
therefore, produce a minimum. It would be interesting
to learn whether this is a general property of the exact
result. Such behavior is absent in the chain-rule expres-
sion.

8. Results

The results given in Figs. 1 and 2 show clearly that
the dynamics of two mutually annihilating excitons can
be correlated with trapping predictions only for the
range of a values exceeding a critical value, a„which
corresponds to the regime in which the scattering rate is
greater than the bandwidth. For values smaller than o;„
a totally opposite character is exhibited. Below we will
refer to the nature of dynamics as "bi-excitonic" and
"single excitonic, " respectively, for o; g a, and a ~ a, .

Note again that the fluorescence yield is proportional
to the two-particle propagator, 4 (e), which contains all
information regarding coherence and other transport
properties. 1/t (e ) is proportional to the probability of
finding two excitons on the same site at any time given

that they were both at the origin at t =0. For every
nonzero value of J and any value of a, the correct prob-

ability is always lower than the one obtained under the
validity of the chain-rule assumption (see Figs. 1 and 2).
%e can therefore say that a moving trap is less efkctive
than the corresponding stationary trap and its
inc@'ectiveness increases with increasing coherence.

The competition between the two e6'ects associated
with the opposite a dependences of g (e/2) and b, (e)
gives rise to single- and bi-excitonic dynamics, although
both effects coexist for any degree of coherence. In the
bi-excitonic regime, 5 increases more quickly than
—,'P (e/2) decreases with decreasing a as shown in Fig.
1. Therefore, the probability of the two excitons heing
on the same site decreases as o. increases; i.e., the
fluorescence yield increases with increasing degree of
coherence. In the single-excitonic regime, 6 decreases
and quickly approaches zero while —,'lit (e/2) increases
more rapidly with increasing degree of incoherence, as
shown in Fig. 1. Therefore, the probabi1ity that the ex-
citons visit the same site decreases as a increases, i.e.,
the yield increases with increasing degree of coherence.
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For a critical value of interaction (e.g. , Jr & —, for a di-

mer), the overall nature of the dynamics always looks
single excitonic since the increase in A(e) never over-
comes the decrease in —,'f (E/2). Although we have not
explicitly shown h(e. ) for X&2, it can be concluded
from a comparison of Figs. 1 and 2 and by considering
the results of Ref. 2 and the discussion of Sec. III A3
that the same behavior is implied for any other size.

Incidentally, a breakdown of the chain rule also
occurs for the con6gurationally averaged propagators of
a disordered system —even in the limit of incoherent
transport —because such propagators are known to obey
a non-Markovian GME. This observation allows one to
understand in a simple way the results of a recent con-
tinuous time-random-walk study of one- and two-
particle kinetics in disordered systems. " (For any fixed
realization of incoherent transport on an ordered or
disordered lattice, however, the chain rule is, of course,
valid. )

IV. APPLICATIONS AND CONCLUSION

Applications of a direct method. of extracting the de-
gree of coherence from optical spectra' indicate coher-
ence to be lost within 10 fs to 50 ps for several systems
at room temperature. A first clear demonstration of
coherence in singlet-exciton motion has recently been
available through a careful interpretation' of pure
transport observations on anthracene crystals' where
the transport is shown to be quite coherent at low tem-
peratures (up to 280 intersite distances at 1.8 K and 20
intersite distances at 20 K).

In essence, our prediction here can also be used to as-
sess the degree of coherence in singlet-exciton motion.
For this purpose, a series of quantum yield measure-
ments from complexes subjected to high excitation inten-
sities would be necessary. At low temperatures where
substantially coherent motion can be expected, one may
be able to detect a drop in the yield by increasing the
temperature. Conversely, starting from the high-
temperature side where incoherent exciton motion is ex-
pected, 6rst an enhancement and then a decrease of
quenching by decreasing the temperature may be detect-
ed. Good independent estimates of the several parame-
ters (such as y', J and r) may even lead to a quantitative
deduction of coherence times. It has been pointed out
earlier' that, in annihilation experiments, a certain com-
petition exists between y' and a quantity'

M =[ f"e ' 'qI (t)dt] ' called the "motion rate. "
Measurements of the overall rate constant
y = [( I /y')+(1/M)] ' may not always be helpful to re-
veal the transport characteristics, since for the cases
where M «~y' the behavior of y will essentially be in-
dependent of the motion characteristics buried in the
propagator 4 (t). The temperature independence of y
in naphthalene and anthracene have been interpreted
along this line. ' %'e would like to point out that the
fact of y being independent of temperature changes in
anthracene may be attributed in part to a very strong in-
tersite interaction [Jr=10 (Ref. 13)]. Our numerical

experiments point out that no matter how efkctive the
pairwise annihilation is, if the interaction is very strong
(e.g. , Jr=5)&10 of Fig. 1) there is a fiat region of the
propagator (or the yield) persisting for almost five de-
cades of incoherence parameter (a/J).

In the past, there have been reports on the decreasing
rates of annihilation (y) with increasing temperature
(T). ' ' These usually have been correlated with the
T ' dependence of the difFusion constant (D ) of
coherent excitons' through a commonly used linear re-
lationship between D and y. The inconsistency of us-
ing y ~D in this fashion has been indicated earlier. '
In addition, our prediction of the difference of one- and
two-exciton dynamics shows that, even in a system in
which annihilation is motion limited (so that y ~D) and
the difFusion constant is limited by scattering with acous-
tic phonons (D ~ T '~

), the dependence of the annihi-
lation constant on temperature could be substantially
different. From the time dependence of benzophenone
triplet-exciton phosphorescence, Delyukov, Klimusheva,
and Turchin ' infer a decrease of annihilation eSciency
with a decrease in temperature (15—4.2 K). This is con-
sistent with our results for small values of a as displayed
in Figs. 1 and 2. Delyukov, Klimusheva, and Turchin
believe that a physical interaction is e6'ecting a lower
dift'usion constant at lower temperatures. Thus, while
both their explanation and ours involve two-exciton
efkcts, the mechanisms are quite difkrent and a
dift'usion experiment may resolve the issue.

In summary, the central result of this paper is a pre-
dicted reduction in the e%ciency of annihilation or a
hindering of exciton motion arising from coherence in
the two-particle transport. The results are both surpris-
ing and interesting because they are contrary to what
one would expect in the coherent limit on the basis of
the chain rule. One can see from the form of Eq. (3)
that the chain-rule assumption is tantamount to assum-
ing that the exciton density matrix is diagonal at arbi-
trary times, rather than only at t =0, as is required for a
derivation of the GME from the Liouville-von Neu-
mann equations of motion for the density matrix (see
Ref. 4 for details). The chain rule is quite unrelated,
therefore, to the intuitive picture we mentioned earlier
regarding a transformation to center of mass and relative
coordinates. An analysis based on such a transforma-
tion, which would express the two-particle propagator
0 (r) in terms of some single-particle propagator describ-
ing just the relative motion of the two particles, would
provide, we believe, a complete conceptual understand-
ing of the problem.
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