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Statistics of transmission in one-dimensional disordered systems: Universal characteristics
of states in the fluctuation tails

L. I. Deych, M. V. Erementchouk, and A. A. Lisyansky
Queens College of City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, USA

Alexey Yamilov and Hui Cao
Physics Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA

~Received 8 May 2003; published 14 November 2003!

We numerically study the distribution function of the conductance~transmission! in the one-dimensional
tight-binding Anderson and periodic-on-average superlattice models in the region of fluctuation states where
single parameter scaling is not valid. We show that the scaling properties of the distribution function depend
upon the relation between the system’s lengthL and the lengthl s determined by the integral density of states.
For long enough systems,L@ l s , the distribution can still be described within a new scaling approach based
upon the ratio of the localization lengthl loc and l s . In an intermediate interval of the system’s lengthL, l loc

!L! l s , the variance of the Lyapunov exponent does not follow the predictions of the central limit theorem
and this scaling becomes invalid.

DOI: 10.1103/PhysRevB.68.174203 PACS number~s!: 72.15.Rn, 42.25.Bs, 41.20.Jb

I. INTRODUCTION

Coherent transport properties of disordered systems have
been a subject of active research for the last thirty years, but
complete understanding of this phenomenon even for one-
dimensional models is still absent. Even though the scaling
theory, put forward in the pioneering work of Ref. 1, created
a successful conceptual framework for discussing the phe-
nomenon of localization, the theoretical foundation of the
scaling hypothesis itself has not yet been completely under-
stood. One of the principal difficulties that the scaling theory
of localization had to deal with from the very beginning was
an absence of self-averaging of the main transport coeffi-
cients: conductanceg or transmissionT. Therefore, even the
nature of the scaling parameter remained unclear until it was
realized that the scaling hypothesis has to be applied to the
entire distribution function of the conductance or
transmittance.2–5

For one-dimensional systems Andersonet al.2 suggested
that the most suitable quantity for dealing with the statistical
description of conductance is the Lyapunov exponent~LE!,
which can be defined for systems with finite lengthL as

g̃5
1

L
lnS 11

1

gD5
1

L
lnT. ~1!

The name ‘‘Lyapunov exponent’’ alludes to the fact that the
quantity defined by Eq.~1! have the same statistical proper-
ties as the ‘‘real’’ Lyapunov exponent, i.e. the exponential
growth rate2(1/L)lnucu of the norm of the wave functionc.
An important property of LE is that it satisfies a multiplica-
tive central limit theorem6 and approaches a nonrandom limit
g when the size of the systemL tends to infinity. The local-
ization length l loc of a state with energyE in the infinite
system is related tog as l loc5g21. At finite L, g̃ is a ran-
dom quantity with mean value equal tog, ^g̃&5g. The dis-
tribution of LE is the main object of research in the field of
one-dimensional localization. The hypothesis of single pa-

rameter scaling~SPS! in this context means that the distribu-
tion function can be parametrized by a single parameterg
itself. As a result, it is expected that all moments of the
distribution can be expressed in terms of the first moment

^g̃& in a universal way. For the second moment~variance! s2

such a relationship, as it was first conjectured by Anderson
et al.,2 can be presented in the form

s25
g

L
. ~2!

The entire distribution function of LE for systems with
finite lengths was also derived by several authors in the limit
of infinitesimally weak local scattering for several
models.3,8,9 For finite L, this function was found to be non-
Gaussian, but nevertheless, it depended upon a single param-
eter — the localization length.

Thus, in the situations when SPS holds the problem of the
conductance/transmision distribution function can be consid-
ered as settled. There are spectral regions, however, where
SPS fails even for locally weak disorder. These are, first of
all, the regions of fluctuation states, which arise outside of
the initial spectrum because of disorder. This result was first
obtained numerically in Ref. 10 for a periodic-on-average
system and was confirmed by an exact analytical solution of
the Lloyd model~the Anderson model with the Cauchy dis-
tribution of the site energies!.11,12 Similar results were ob-
tained numerically for the Anderson model with the box11,12

and dichotomic13 distributions of the site energies, and ana-
lytically for a continuous model with white noise Gaussian
potential.14 The analytical calculations of Refs. 11,12 re-
vealed that the criterion for the validity of SPS can be pre-
sented in the forml loc. l s , where l s is a new scale intro-
duced in Refs. 11,12. For the Lloyd model this scale is
defined in terms of the imaginary part of the Lyapunov ex-
ponent, which, according to Thouless15 is proportional to the
integral density of states. Therefore,l s can be presented in
the form
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l s5
a

sin@pN~E!#
, ~3!

where N(E) is the integral density of states between the
genuine boundary of the spectrum, the energyE is normal-
ized by the total number of states in the system, anda is a
distance between the neighboring sites. The definition ofl s
in this form can be easily generalized to other models as
well, and it was shown numerically that the SPS criterion
based uponl s works for such models as the Anderson model
with box11,12 and dichotomic13 distributions of site energies,
a Kronig-Penney-like model with a periodic-on-average dis-
tribution of barrier widths,11,12 and a model of a scalar wave
propagating in an one-dimensional absorbing disordered
medium.16 The case of periodic-on-average models involves
a system with multiple bands, and in this caseN(E) must be
understood as the integral density of states between a genu-
ine boundary of the band~if the latter exist! and the energyE
normalized by the total number of states in the band. More
detailed discussion of this case can be found in Ref. 12. In a
recent paper Ref. 17, it was shown how this criterion can be
applied to the zero energy states of the Anderson model with
a diagonal disorder, where the violation of SPS was observed
in Ref. 18.

The criterion based onl s replaces an original criterion put
forward by Andersonet al.2 that suggested that SPS exists if
the stationary distribution of the phases of the reflection and
transmission coefficients is uniform, and the phase relaxes to
this distribution over a length, which is much smaller than
the localization length. By using the hypothesis of the phase
randomization~2! was rederived by many authors for a va-
riety of different models.7 The phase randomization was
proven rigorously in some one-dimensional5,19,20 and
quasi-one-dimensional21,22 models, but only for certain parts
of the spectrum of the respective systems. At the same time,
it was found that, for instance, in the Anderson model with a
diagonal disorder the stationary distribution of the phase is
not uniform for all values of energyE, for which cos21(E/2)
is a rational fraction ofp ~it is assumed that in the nonran-
dom case all site energies in the Anderson model are set to
zero, and the interaction parameter is chosen to be equal to
unity!. The strongest deviation of the phase distribution from
the uniform one takes place in the vicinities ofE50 and the
initial band boundariesE562. While it was found that an
absence of the phase randomization in both of these cases is
accompanied by the violation of SPS,10–12,18the reference to
the phase randomization as a criterion for SPS does not seem
to be satisfactory. Indeed, the initial idea of the phase ran-
domization length,2 used to introduce the criterion for SPS,
does not actually describe the way the distribution of phase
becomes nonuniform. The absence of the phase randomiza-
tion does not mean that the relaxation length of the distribu-
tion of phase becomes too large and exceeds the localization
length. What it means is that the stationary distribution of
phase, which can be reached over relatively short distances,
is merely not uniform. Thus, the problem of a criterion for
SPS is simply replaced by the problem of finding a criterion
describing the transition between uniform and nonuniform
stationary distributions of the phase. A solution for the latter

problem suggested, for instance in Ref. 18, applies to only
one particular model, and, actually involves different criteria
for different spectral regions. In contrast, the criterion based
on l s introduced in Refs. 11,12 was proven to work for the
entire spectrum of the variety of different models, and offers,
therefore, a universal approach to the verification of SPS.

The violation of SPS in the spectral region of fluctuation
states rises a question about the properties of the probability
distribution of LE in these regions. Recently, a significant
progress in this direction was achieved in Refs. 14,23. In the
former paper, the first four moments of this distribution were
found analytically for the Anderson model with a Gaussian
white-noise potential. The authors of the latter paper used
numerical simulations to develop a macroscopic scaling ap-
proach to this problem, and one which could be readily ap-
plied to a wide variety of different systems. It was shown in
Ref. 23, that not only second, but also the third moment of
the distribution function of LE for the Anderson tight-
binding model with diagonal disorder can be fully character-
ized by a scaling parameterk5 l loc / l s .

The objective of the present paper is to present more fully
and expand the results of Ref. 23. Considering two quite
different models of one-dimensional localization such as the
Anderson tight-binding model with a diagonal disorder, and
a model of a scalar wave propagating in a one-dimensional
random superlattice, we demonstrate that one-dimensional
disordered systems allows for a universal scaling description
of the conductance~or transmission! distribution in the spec-
tral regions of fluctuation states, where standard SPS does
not work. In particular, we show that the scaling approach
suggested in Ref. 23 describes not only the Gaussian bulk of
the distribution function, but is also capable of describing the
statistics of large deviations characterized by the third mo-
ment of the distribution.

The results presented in this paper are also relevant to the
problem of resonant tunneling through disordered potential
barriers. This problem was considered in the pioneering
work by Lifshits and Kirpichenkov24 for quantum particles
incident on a three-dimensional barrier, and was later studied
in many subsequent papers~see reviews in Ref. 25,26!.
Mostly, these works were concerned with tunneling through
three-dimensional barriers with the dimension in the propa-
gating direction much smaller than in the perpendicular di-
rections. Even though the resonant tunneling is in many as-
pects a quasi-one-dimensional process,24 the transport in the
pure one-dimensional models significantly differs from the
situation described above. First of all, in one-dimensional
case all states of an infinite sample are localized. Respec-
tively, transmission through a finite, but longer than the typi-
cal localization length, system can be described as a resonant
under-barrier tunneling at any energy regardless to its posi-
tion in the initial spectrum. Therefore, the difference between
transport in the region of states from the initial allowed
bands and the fluctuation states, is not as clear as in three-
dimensional situations. Therefore, the problem of transport
via fluctuation states was not considered as a separate prob-
lem in the area of one-dimensional localization until very
recently.11,12Second, the main quantity of interest in the case
of three dimensional barriers is the total transmittance across
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the entire area of the barrier, which is determined by the sum
of individual transmissions through independent quasi-one-
dimensional channels or filaments.24,26 This quantity ap-
proaches a nonrandom limit when the area of the barrier
tends to infinity. In a pure one-dimensional case the self-
averaging quantity is the Lyapunov exponent, which be-
comes nonrandom when the length of the system becomes
infinite. In a sense, the pure one-dimensional case is an op-
posite limit to the one considered for three-dimensional bar-
riers. At the same time, solutions of the one-dimensional
problem can be used to describe barriers whose lengths are
larger than the typical localization length of individual chan-
nels.

Another important application of the problem studied in
this paper lies in the field of random lasing, which has be-
come an area of active research.27 It is anticipated that using
localized modes of a strongly scattering disordered medium,
one can obtain very low-threshold lasing. Disordered photo-
nic crystals, which support fluctuation photon states in the
band gaps of the underlying periodic structures, can play an
important role in achieving this objective.28,29 The results
presented in this paper will help to understand the unusual
statistical properties of the lasing threshold and the nature of
lasing modes in such structures.

II. MODELS AND TECHNICAL DETAILS

In this paper we study two models of one-dimensional
Anderson localization: a classical Anderson tight-binding
model with a diagonal disorder, and a scalar wave propagat-
ing in a one-dimensional random superlattice. The Anderson
model is described by the equation of motion

cm111cm211~Um2E!cm50, ~4!

where random on-site energiesUm are described by a uni-
form probability distribution

P~Um!5H 1

2U
, uUmu,U,

0, uUmu.U.

The propagation of a scalar wave is described by a regular
wave equation

d2c

dx2
1k2e~x!c50, ~5!

with a piece-wise dielectric function, corresponding to a su-
perlattice consisting of two types of layers with dielectric
constantse1 ande2, respectively. The width of the layers of
the first kind is kept constant and is equal tod1, while the
width of the layers of the second type was chosen from a
random distribution. In this paper, we report the results for
~i! d2 uniformly distributed in the interval̂d2&2d,^d2&1d
~uniform distribution! and ~ii ! d2 taking one of two equally
probable values2d/A3 and 1d/A3 ~dichotomic distribu-
tion!.

Both these models can be studied using the transfer ma-
trix approach, in which the propagation of the excitation
along the system is presented in the following form:

vm115Tmvm , ~6!

wherevm is a two-dimensional state vector, which presents
the state of the system at themth site ~or mth interface be-
tween the layers! andTm is the transfer matrix describing the
change of this state at one discreet step. For the Anderson
model the state vector and the transfer matrix have the fol-
lowing forms, respectively:

vm5S cm

cn11
D , ~7!

Tm5S E2Um 21

1 0 D . ~8!

For the second model the state vector can be defined as

vm5S cm

cm8
D , ~9!

wherecm andcm8 are the values of the wave functionc(x)
and its derivative at themth interface between the layers.
The transfer matrix in this case takes the form

Tm5S cos~kmdm! ~1/km!sin~kmdm!

2kmsin~kmdm! cos~kmdm!
D , ~10!

wherekm5kAem. The most important property of the trans-
fer matrices is that the transfer matrixTM describing the
evolution of the initial state vector across theM sites~slabs!
is equal to the product of the one-step matrices

TM5)
1

M

Tm . ~11!

Using the transfer matrices, we calculate the finite size LE,
which for both models is defined as

g̃5
1

L
ln

iTMv0i
iv0i , ~12!

whereL characterizes the total length of the system. For the
Anderson model,L5M if the distance between adjacent
sites is chosen as a unit of length, and for the wave equation,
L is a sum of the lengths of all slabs, and is a random quan-
tity.

We calculate LE iteratively using Eq.~12! starting with an
arbitrary initial vectorv0. The resultant vector is renormal-
ized after every ten iterations in order to avoid any loss of
accuracy.30 Since we are interested in statistics of finite size
LE, we do not try to find its limiting value forL→`. In-
stead, we keep the size of the system fixed while calculating
g̃ for different realizations of our systems. At the same time,
since we are interested in asymptotic properties of the distri-
bution, we consider only sufficiently long systems, for which
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L@ l loc , where the localization lengthl loc is defined through

the average value of LE asl loc5^g̃&21.
Another quantity of interest in this work is the lengthl s ,

which is expressed in terms of the integral density of states
N(E), Eq. ~3!. For the Anderson modelN(E) can be com-
puted with the help of the node-counting theorem.31 Starting
with an arbitrary initial vector and the energy valuesE,
222U, which are certainly outside of the energy spectrum
of the system, we counted how many times the sign of the
wave function changes over the length of the system for
different values ofE. Each new node corresponds to a new
state of the system.31

For the random superlattice model we find it more conve-
nient to use the phase formalism described, for instance, in
Ref. 5. Within this formalism the density of state is expressed
in terms of the phase variablef5tan21(c8/c). In the case
of systems with a single band spectrum, this phase changes
between 0 andp whenE sweeps the spectrum of the system
from one band boundary to the other. In the superlattice, the
spectrum of the wave in the absence of disorder consists of
multiple bands. In this case, the phase increases byp across
every allowed band, and stays constant and equal tonp,
inside anynth forbidden band. If disorder in our model is not
too strong, the regions of the constant phase are preserved
even in the presence of random fluctuations Fig. 1, and can
be used for identifying the fluctuation boundaries of the
bands in the disordered system. Then we can introduce a
density of statesN(E) for a single band, which is normalized
to change from 0 to 1, when energy spans from one fluctua-
tion boundary to another.N(E) normalized this way is sub-
stituted in Eq.~3! in order to calculatel s for the superlattice
model. When disorder becomes stronger the regions of con-
stant phase disappear, and the notion of the single band den-
sity of states becomes meaningless. In our calculations we
always make sure to avoid such situations.

III. SCALING DESCRIPTION OF THE MOMENTS OF THE
DISTRIBUTION FUNCTION

It was shown in Refs. 11,12 that the variances2 of the
Lyapunov exponent in the Lloyd model can be conveniently
described in terms of a relationship between two scaling
variablest defined as

t5
s2L

g
~13!

andk, defined as

k5
l loc

l s
. ~14!

In this paper we show that the variance of LE in more ge-
neric models can also be described in terms of the scaling
function t(k).

In order to demonstrate this result we computeds2 andl s
for different values of the energy, strength of disorder, and
length of the system for both models under considerations.
The results of these calculations were presented in the form
of the functiont(k), which is shown in Figs. 2 and 3 for the
Anderson model and the superlattice model, respectively.
The data included in these figures correspond to systems
with L@ l s ,l loc . The first important result revealed by this
figures is that all the data lie on a single curve, when ex-
pressed in terms of the variablest and k for both models.
This result confirms our general conjecture that the second
moment of the distribution function of LE can be universally
described in terms of variablest andk regardless the micro-
scopical nature of the models under consideration. While the
form of the functiont(k), may differ for different models,
its essential qualitative properties show a degree of univer-
sality: t(k)51 for k.1, and it steeply decreases fork
!1. We are most interested here in the latter region, where
the fluctuation states arise. For the Lloyd modelt5(p/2)k

FIG. 1. The dependence of the phase near the band gap region
(1.44,ka,1.56) separating the first and the second bands in the
superlattice model.d2 was taken from a uniform distribution with
d50.1, L/a.106.

FIG. 2. Typical dependence of the scaling parametert on k for
the Anderson model. The width of the distribution of disorder
changes fromU50.08 toU50.16. Curves corresponding to differ-
ent values of the width are not distinguishable. In the inset the
region of smallk is shown in the log-log scale.
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for k!1,11,12 while in the models studied in this paper the
dependence oft uponk is much steeper. In order to obtain a
better insight into the properties oft(k) for small k, we
replotted our numerical data in log-log coordinates~see in-
sets in Figs. 2 and 3!. Before interpreting these figures we
have to note that unlike the case of the Lloyd model, where
t(0)50, in the models considered heret(0), while very
small, is not equal to zero. The reason for this is the small
fluctuations of the LE due to nonresonance tunneling through
a random barrier, which contributes tot at the fluctuation
spectrum boundary wherek50. This small contribution is
model specific, and in the Anderson model it can be ne-
glected everywhere with exception of a small neighborhood
of the fluctuation spectrum boundaries. This can be seen
from the fact that whilek changes over at least two orders of
magnitude, the data for the Anderson model~inset in Fig. 2!
form a straight line with exceptions of a few points corre-
sponding to very small values ofk. According to these re-
sults,t(k) has the form

t5Cka1t lim , ~15!

wheret lim stands for the nonuniversal correction discussed
above. In the superlattice model the value oft lim is more
significant, and therefore has to be compensated. In order to
estimate coefficientsC andk, we select only those data for
which l s,L and use linear regression. The results of the fit

are presented in Table I. These results demonstrate that while
the nature of the scaling parameters is universal for both
models, the numerical values of the respective parameters
are model dependent. An interesting question is whether the
values ofC anda depend upon the type of statistics of the
respective random parameters of our models~site energy for
Anderson model, the layer width for the superlattice model!.
In the case of a superlattice model we found that the change
in statistics~from the box to dichotomic distribution! did not
affect the values of the coefficientsC anda. For the Ander-
son model with the dichotomic distribution of the site ener-
gies the results were inconclusive. Strong noise in the data
for the dichotomic process prevented us from positively es-
tablishing equivalency of the coefficients for the two differ-
ent types of statistics.

In the region of fluctuation states, a new intermediate re-
gime of lengthsL, in which l loc!L! l s appears. This regime
does not exist for in-band states. It is natural to anticipate
that the scaling behavior of our systems in this regime would
change. In order to study this question, we divided our data
in groups according to the value ofL/ l s , including points
with L/ l s.1 as well as withL/ l s,1. Carrying out statistical
analysis of the data for fixed values ofL/ l s we were able to
obtain dependencies of the parametersC anda on L/ l s ; the
respective results are presented in Figs. 4 and 5. First of all,
we would like to note that these dependencies saturate to
values presented in the Table I forL/ l s.1. This confirms
our assumption that in this regimet depends upon a single
parameterk.

For shorter systems, however, a new parameter,L/ l s
emerges. For the Anderson model we were able to show that
a(L/ l s) is best described by the logarithma(L/ l s)
; ln(ls/L), which means that the variance of the Lyapunov
exponents2 in this regime demonstrates an anomalous scal-
ing with the length of the systemL:

s2}
1

Ll loc
exp@a~L/ l s!lnk#}L2(11 ln k). ~16!

It is interesting to note that whenk decreases, 11 lnk may
become negative resulting ins2 increasing withL. This be-

FIG. 3. Dependence of the scaling parametert on k for the
dichotomic distribution~superlattice model! of d2 with d50.1,
0.125, 0.15, 0.175, and 0.2. For every value of disorder we took 17
lengthsL, ranging from 320 to 20 000 layers. Different offset value
of t lim was compensated~see text!. In the inset the same is shown in
the log-log scale.

TABLE I. ParametersC anda from Eq. ~15! for different mod-
els.

Anderson model Superlattice models

C 1.27 1.08
a 0.27 0.40

FIG. 4. Dependence of the index of the scaling parametera
~filled squares, left axis! and the factorC ~circles, right axis! on L/ l s

for the Anderson model.
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havior can be qualitatively understood from the following
arguments: The conditionL! l s means that for the most of
the realizations of the random potential no states exist in the
energy interval under discussion. The transmission through
such realizations fluctuates rather weakly. The greatest con-
tribution to the transmission fluctuations is given by those
few realizations that can support at least a single state. The
probability for such realizations to arise grows when the
length of the system increases, resulting in the respective
increase ofs2. This behavior, of course, breaks down for
very large values ofl s , which correspond to states close to
the genuine spectral boundary, because for these statess2 is
determined by a nonuniversal correction tot given byt lim .

The behavior ofs2 given by Eq.~16! can be confirmed by
plotting directly the functions2(L) for energies from the
band gap. Figure 6 presents such a plot for the Anderson
model for the value ofk equal tok50.2. It demonstrates a
good agreement with Eq.~16!: the slope of the curve was
found to be equal to 1.77, while an estimate for this slope
from Eq. ~16! gives 1.78. It should be noted, however, that
the regime described by Eq.~16! exists in a relatively narrow
interval of energies, at least for the Anderson model with the
box distribution. The reason for this is thatl s grows very fast
in the region of fluctuation states when the energy is shifted
toward the fluctuation spectrum boundary. Very largel s
means that only few realizations of our system support at
least a single state. Therefore, for most realizations transmis-
sion occurs via nonresonant under-barrier tunneling. The sta-
tistics of the transmission for this subset of realizations is
determined by the localization length alone (l s is exact infin-
ity for these realizations!. As a result, we have a competition
between a small number of realizations, supporting states,
for which fluctuations of the Lyapunov exponent are large
and grow with the length, and the majority of realizations, in
which s2 is small, and decreasing with length. At very large
l s the contribution tos2 from the representative realizations
becomes larger than the contribution from the resonant real-

izations, and Eq.~16! fails. In this case, an asymptotic be-
havior of s2 is again controlled by the localization length
alone, as it can be seen in Fig. 7, wheres2L saturates atL
much smaller thanl s .

The assumption about the Gaussian form of the distribu-
tion of LE is the result of the central limit theorem, and
strictly speaking is true only asymptotically whenL→`. At
finite L the distribution function deviates from the Gaussian
form even in the regime when SPS holds.3,8,9 However, it
was found in Refs. 14,23 that this deviation, as measured by
the magnitude of the third and higher moments, increases
significantly in the vicinity of the band boundary of the ini-
tial spectrum. This result was obtained analytically for the
white-noise potential in Ref. 14. The first study of the scaling
properties of the third moment was reported in Ref. 23. In

FIG. 5. The exponent of the scaling parametera ~filled squares,
left axis! and the factorC ~circles, right axis! as functions ofL/ l s

for the superlattice model. Large and small symbols correspond to
dichotomic and box distribution ofd2, respectively.

FIG. 6. The logarithm of the scaling parametert for the Ander-
son model as a function of log10L/ l s for intermediate values of
energy whenl s is not too large. Points are the result of numerical
calculations and the straight line is a linear fit.

FIG. 7. The logarithm of the scaling parametert for the Ander-
son model as a function of log10L/ l s for energies corresponding to
extremely large values ofl s . The saturation occurs at the length
close to the localization length.
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this part of the paper we expand scaling analysis of Ref. 23
to the superlattice model, and compare the results obtained
for these two models. We consider the scaling properties of
the third cumulant%5^(g2^g&)3&, which characterizes the
asymmetry or skewness of the distribution function. Figure 8
shows the energy dependence of the third moment for the
Anderson model. It is seen that this moment significantly
grows in the vicinity of the initial band boundaries of both
models, which means that the significant deviation of the
distribution function of LE from the Gaussian form in the
region, where traditional SPS violates is a universal phenom-
enon.

To analyze scaling properties of the third cumulant we
consider the dimensionless parameter

t35%L2l loc . ~17!

The dependence oft3 on k for the Anderson model and
superlattice is shown in Figs. 9 and 10, respectively.

One can see from these figures that while data for the
parametert3 are rather noisy, it shows a relatively good
scaling behavior as a function of the single parameterk for
both models. This fact itself is quite remarkable since it dem-
onstrates that even in the region, where the distribution func-
tion of LE deviates significantly from the Gaussian form, it
can still be characterized by two parameters within the scal-
ing procedure suggested here.

The better data quality for the superlattice model allowed
for a more thorough study of the third moment. The insert in
Fig. 10 shows a good scaling behavior similar to Eq.~15!:

2t35C3ka31t3,lim . ~18!

The limiting valuet3,lim was substantially smaller thant lim ,
so no explicit correction was needed to obtain Fig. 10.

For intermediate lengths,l loc!L! l s , we analyzed data
using approach similar to that employed to obtain Figs. 4 and
5. For fixed values ofL/ l s we obtained dependencies of the

parametersC3 anda2 on L/ l s ~Fig. 11!, and found the satu-
rated values ofC350.73 anda350.52 – the same for both
dichotomic and box distributions.

IV. COMPARISON WITH THE GAUSSIAN WHITE NOISE
MODEL

It is well known that under certain circumstances statisti-
cal properties of one-dimensional disordered systems in the
vicinity of the band edges of the initial spectrum can be
universally described by replacing an actual random poten-
tial by a Gaussian white noise potential.5 One of the mani-
festations of this fact is that the statistical properties of LE in

FIG. 8. Dependence of the renormalized third cumulant%L2 on
energy in the vicinity of the band edge of a pure system (U
50.05) for the Anderson model.

FIG. 9. Dependence of the parametert35%L2l loc on k21

5 l s / l loc ~Anderson model! for a set of different widths of the dis-
tribution of the potential 0.001,U,0.21. Error bars show the dis-
persion of the results of numerical simulations near a mean values
shown by squares.

FIG. 10. Dependence oft3 on l loc / l s for dichotomic distribution
~superlattice model! of d2 with d50.1, 0.125, 0.15, 0.175, and 0.2.
For every value of disorder we took 17 lengthL, ranging from 320
to 20 000 layers. On the insert the same is shown in log-log scale.
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the Anderson model with the box distribution of the site
energies14,19,20,32are very similar to those of the continuous
model with the Gaussian white-noise potential,5 and are
characterized by the same scaling parameterE/D2/3, whereE
is the energy counted from the initial band boundary andD is
the variance of the random potential. It was noted in Ref. 12
that the scaling parameterk is a single-valued function of the
Gaussian scaling parameterE/D2/3 for the white-noise
model, so that in this case these two parameters are equiva-
lent to each other. An important question now arises: whether
the apparent universality of the scaling description, sug-
gested in this paper, is a mere consequence of the fact that in
the region of the fluctuation states all models can be reduced
to the Gaussian model, or this universality reveals more fun-
damental properties of this spectral region. This question was
partially discussed in the Ref. 17, in which it was shown that
the behavior of the second moment of the LE in the vicinity
of E50 of the Anderson model obeys the scaling description
in terms of the parameterk, while the Gaussian approxima-
tion certainly does not work in this part of the spectrum. In
this paper, we address this question considering regions of
the fluctuation states in the superlattice model.33 The inset to
Fig. 12 shows the plot of the parametert versus the Gauss-
ian scaling parameter (k2ki)/D

2/3 (D}d2), whereki is the
dimensionless frequency of one of the initial band bound-
aries of the superlattice for several values of the disorder.
Moreover, we included the frequencies from the upper edge
of the first band and the lower edge of the second band. We
found that instead ofE/D2/3 predicted by the Gaussian white
noise model, our data are better scaled with the parameter
E/D1/2. One can see from Fig. 12, that while the Gaussian
scaling fails, the functiont(k) discussed in the previous
section of the paper gives the best scaling description of this
model as well as of the Anderson model. We can conclude,
therefore, that the scaling parameterk retains its universal
significance beyond the validity of the white-noise approxi-
mation.

V. CONCLUSION

In this paper we studied scaling properties of the distribu-
tion function of the Lyapunov exponent for two one-
dimensional disordered models: the Anderson model with
diagonal disorder, and the model of a scalar wave propagat-
ing in a random superlattice. The main result of the paper is
that in the region of band-edge and fluctuation states, where
simple SPS fails, the distribution function can be described
by two independent scaling parameters: the localization
length l loc and an additional lengthl s , introduced in Refs.
11,12, which is related to the integral density of states. It is
interesting that not only the second moment of the distribu-
tion is described by these two parameters, but so also is the
third moment. This means that even though in the region of
fluctuation states the form of the distribution function
strongly deviates from the Gaussian, it still can be described
within the suggested two-parameter scaling approach.

Among the other results of the paper we would like to
note the detailed study of the properties of the variance and
the third moment of LE in the region of fluctuation states.
We showed that both, the normalized variance and the third
cumulant presented by the scaling functionst andt3, dem-
onstrate a power law dependence upon the scaling parameter
k. Parameters of this power law dependence were found to
depend weakly upon the type of statistics used to character-
ize our random systems, but are different for the Anderson
model and the superlattice model. When the length of the
system becomes smaller thanl s , we showed that the scaling
behavior ofs2 deviates significantly from the central limit
theorem behavior even whenL remains much bigger than the
localization length.

FIG. 11. a3 ~filled squares, left axis!, the exponent oft3, and
factor C2 ~circles, right axis! as functions ofL/ l s for superlattice
model. Large and small symbols correspond to dichotomic and box
distribution ofd2 , respectively.

FIG. 12. Normalized variance of LEt plotted versus parameter
(k2ki)/d demonstrates a good scaling. Scaling with (k2ki)/d

4/3,
predicted by the Gaussian white noise model, shown in the inset,
fails. The data was generated in the superlattice model with the box
distribution for five values ofd50.1, 0.125, 0.15, 0.175, and 0.2,
L520 000. We included the frequencies from two band edges —
the upper edge of the first band and the lower edge of the second
band. Altogether, the band gap region between the first and the
second bands is covered entirely.
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