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First-principles electronic band structure investigations of monoclinic, tetragonal, and cubic ZrO2 reveal the
highly anisotropic nature of the conduction and valence band topologies in the monoclinic phase with electron
and hole effective masses differing by over an order of magnitude in perpendicular directions. The planes of
relatively high implied electron and hole mobilities intersect along a single crystallographic direction, making
this the only direction readily available for exciton motion. Conversely, in the tetragonal and cubic phases,
charge carrier effective masses are more isotropic and exciton motion is less restricted. These findings may
explain recent experimental observations suggesting that exciton production via gamma irradiation in zirconia
crystallites immersed in water is responsible for the accelerated dissociation of adsorbed water molecules on
crystallite surfaces, and for the specificity of the effect to the tetragonal zirconia phase.

DOI: 10.1103/PhysRevB.76.235115 PACS number�s�: 71.20.�b

INTRODUCTION

Zirconium based alloys, such as the Zircaloys, have long
been the cladding materials of choice for pressurized water
reactor fuel elements, by virtue of zirconium’s low thermal
neutron capture cross section and resonance integral, its rela-
tively high melting temperature, and its favorable aqueous
corrosion resistance. Thus, radiation effects on zirconium al-
loy aqueous corrosion have been a subject of long standing
interest in the nuclear industry. The key to good aqueous
corrosion resistance in the zirconium alloys is the passive,
protective nature of the dense, adherent oxide scale that de-
velops in water on exposed alloy surfaces. Long-term corro-
sion rates are determined by mechanical and crystallographic
instabilities of aqueous corrosion films.1 Aqueous high-
temperature corrosion of Zircaloy normally results in the for-
mation of a uniform oxide layer that initially grows in thick-
ness at a rate proportional to the one-third power of time.
Such corrosion films undergo mechanical and crystallo-
graphic instabilities at thicknesses of about 2–3 �m, leading
to accelerated corrosion kinetics. This kinetics change is re-
ferred to as transition. Post-transition films are observed to
consist of parallel layers of dense oxide separated by thin
strata containing many “submicron” sized pores and/or
cracks.2,3

In the post-transition corrosion regime, oxide growth typi-
cally exhibits linear kinetics. Mechanistically, this behavior
is interpreted to be either the result of repeated local pre-
transition cycles that grow progressively out of phase on
different parts of the corroding surface or due to counterbal-
ancing growth and breakdown mechanisms in the scale re-
sulting in a protective layer of constant thickness. In the
latter interpretation, the thickness of the protective portion of
the oxide scale is thought to be limited either by zirconia

crystallographic phase instabilities in the strained, impure
zirconia or by porosity percolation. In both interpretations,
the innermost oxide layer, i.e., the barrier layer, is believed to
limit mass or charge transport.

Except for the region directly adjacent to the metal-oxide
interface, most of the thickness of such films is thought to
consist of parallel columns of primarily monoclinic oxide
separated by vertical networks of nanometer sized pores that
are much smaller than those found on the horizontal layer
boundaries. In situ, the vertical pore networks are believed to
be permeated by water �or steam�, so that at most only a
relatively thin layer of oxide adjacent to the metal/oxide in-
terface prevents direct access by water to the metal substrate.
The oxide forms entirely by the inward diffusion of oxygen.
Thus, as a result of the high Pilling-Bedworth ratio �the ratio
of the oxide volume to the volume of the metal from which
it formed� of 1.56, the oxide scale directly adjacent to the
metal substrate is in a high state of biaxial compression. A
variety of experimental investigations via transmission elec-
tron microscopy,4–8 Raman spectroscopy,9 and x-ray diffrac-
tion studies10 confirm that the key protective region of oxide
near this interface consists of a combination of monoclinic,
tetragonal, and sometimes amorphous components. The ap-
parent low-temperature metastability of the tetragonal oxide
polymorph near the metal-oxide interface may be attributed
to compressive stress and perhaps other factors. For instance,
nanosize grains may stabilize a nonequilibrium phase via
surface energy considerations.

Petrik et al.11 have reported that of 30 different oxide
materials that were subject to � irradiation, only those oxides
with fundamental electronic band gap values between 4.5
and 6 eV, including zirconia, exhibited increased rates of
adsorbed water dissociation. Citing this “resonant” behavior,
they attributed the increase in the observed water dissocia-
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tion rate to �-induced exciton formation within those mate-
rials with a band gap value close to but greater than the O-H
bond dissociation energy in adsorbed water. Separately,
LaVerne12 reported on the formation of H2 in the radiolysis
of liquid water containing nanometer sized ZrO2 particles
and found the evolution rate of H2 to depend on the crystal-
line structure of the particles. Radiolysis of liquid water con-
taining tetragonal ZrO2 particles exhibits a significant in-
crease in the rate of decomposition of water to H2 compared
with water containing only monoclinic zirconia particles or
water alone. Annealing the tetragonal particles to the mono-
clinic structure eliminated excess H2 production above that
found with water alone.

While the electronic band structure of the monoclinic, te-
tragonal, and cubic phases of pure zirconia has been a sub-
ject of numerous studies,13–22 here we show that nonlocal
corrections to the local density approximation �LDA�, such
as in the screened exchange LDA, are crucial for accurate
determination of the band gaps and the valence and/or con-
duction band topology of the zirconia phases. Moreover, de-
tailed comparison of the screened exchange local density
approximation �sX-LDA� calculated electron and hole effec-
tive masses of the monoclinic, tetragonal, and cubic phases
helps elucidate their different radiolytic behavior under �
radiation.

APPROACH

The electronic band structure calculations of monoclinic
�m�, tetragonal �t�, and cubic �c� zirconia were performed
using the highly precise all-electron full-potential linearized
augmented plane-wave method.23 In order to determine ac-
curately the fundamental band gap value and the valence
and/or conduction band topology for each zirconia phase, we
employed the self-consistent sX-LDA24–28 which provides a
better energy functional beyond the LDA or generalized gra-
dient approximation by modeling the exchange-correlation
hole within a nonlocal density scheme. In contrast to the GW
approximation, which also removes most of the problems of
LDA in treating excitation properties by calculating the self-
energy in terms of the single particle Green function G and
the screened interaction W, the sX-LDA is much less com-
putationally demanding and it also enables the self-consistent
determination of the ground state and excited state proper-
ties. The screened nonlocal exchange Hamiltonian is similar
in spirit to various hybrid functional approaches with two
principal differences: �i� The relative weight of the LDA and
nonlocal exchange contributions is dictated by the specific
physical system being modeled, through the value of the va-
lence electron Thomas-Fermi screening length, rather than
being fixed a priori for all systems. We argue that this fact
gives the sX-LDA method a more ab initio character than
hybrid functional methods. �ii� The Thomas-Fermi screening
function emphasizes the shorter range contributions of non-
local exchange. The success of the sX-LDA in systematically
improving the description of the excited states in various
narrow-to-wide band gap �IV, III-V, and II-VI semiconduc-
tors, Bi2Te3, nitrides, and transparent conducting oxides� and
insulating �CaF2� materials has been recognized.29–34 In this

work, we apply the sX-LDA approach to a d0 metal oxide,
ZrO2, and show that the nonlocal density scheme gives a
significant improvement over LDA. In addition, using the
second variation method,35 spin-orbit coupling was included
self-consistently. For the sX-LDA+SO calculations, cutoffs
for the plane wave basis and the star functions were 17.6 Ry
and 100 Ry, respectively, and all angular momentum contri-
butions with l�8 were included within the muffin-tin
spheres. Zr 4p6 states and O 2s2 states, which were treated as
valence, were excluded from screening. Summations over
the Brillouin zone were carried out using at least ten special
k points in the irreducible wedge; for each system, the con-
vergence of absolute values of the total energy was checked
carefully using finer k-point meshes. For each structure under
consideration, both the lattice parameters and the internal
coordinates of all atoms in the cell were optimized via total
energy and atomic force minimization. Finally, our total en-
ergy calculations correctly predict the relative stability of the
pure phases, namely, m� t�c, at zero temperature.

ELECTRONIC BAND STRUCTURE

First, we examine the electronic band structure of pure

low-pressure zirconia in its cubic �Fm3̄m�, tetragonal
�P42 /nmc�, and monoclinic �P21 /c� phases. LDA and sX-
LDA band structures are presented in Fig. 1. In agreement
with previous calculations,17–19,22 it is found for all three
phases that the top of the valence band �VB� is formed from
oxygen 2p states, whereas the bottom of the conduction band
�CB� is formed from zirconium 4d states. As expected, the
predicted width of the O 2p valence band decreases from the
high- to the low-temperature phase in the order c� t�m,
within both the LDA and sX-LDA. It is also found that in the
tetragonal and cubic phases, but not the monoclinic, the un-
occupied Zr 4d states at the bottom of the conduction band
are split off from the rest of the CB; in these, the LDA
�sX-LDA� gap values are 0.99 �0.92 eV� and 1.27 �1.02 eV�,
respectively, cf. Fig. 1.

In Table I, we compare the calculated LDA and sX-LDA
direct and indirect band gaps for all three zirconia phases. As
can be seen, use of the screened-exchange approximation
results in a systematic increase of the LDA band gaps for all
three systems. This shift is not rigid in the manner of a “scis-
sors” operator but, rather, is found to depend on crystal mo-
mentum. The LDA predicts the largest indirect fundamental
band gap value for tetragonal zirconia and the smallest for
the cubic phase. This ordering agrees with previously re-
ported LDA results.19,22 However, the sX-LDA changes the
order of the minimum band gap values among zirconia
phases such that the monoclinic phase is predicted to have a
slightly larger indirect gap than the tetragonal. This result is
satisfying since the fundamental band gap, which is an en-
ergy splitting between bonding and antibonding states, is a
secondary indicator of relative stability. Nevertheless, the
largest optical �i.e., direct� sX-LDA band gap remains in the
tetragonal phase. It is noted that for the tetragonal phase, the
sX-LDA valence band maximum is found to be at the A point
of the Brillouin zone. This prediction might appear to con-
flict with recent GW results,19 where the maximum was re-
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ported to lie between the � and M points, except that the A
point was not reported in the GW band structure calculation.
Finally, the sX-LDA calculated band gap for monoclinic zir-
conia falls within the large range of the available experimen-
tal values, from 4.2 up to 7.1 eV as measured by different
techniques.18,36–39 The spread among reported experimental
values is considerably wider than the disagreement between
experiments and sX-LDA band gap predictions previously
reported, which is typically less than 10%.

The calculated zero-temperature sX-LDA direct band gap
values of all three zirconia phases, which differ by at most
0.2 eV from one another, cf. Table I, allow the possibility of
producing an exciton with sufficient energy to break an O-H
bond in a water molecule �the energy of the H-OH bond is

5.1 eV�. It should be noted here that above room tempera-
ture, the relevant band gap values for the zirconia phases are
expected to be several tenths of an eV smaller than the cal-
culated zero-temperature values, placing them all well inside
the excitonic energy range of 4.5–6.0 eV for resonant water
dissociations reported by Petrik et al.11 The band gaps of the
denser tetragonal and cubic phases are expected to show the
greatest temperature dependence. The correlation seen by
Petrik was with bulk. �We note here that changes in the band
gap values at the surface may be more significant than the
gap variations with temperature. Surface studies are beyond
the scope of the present work.� However, the similarity of the
band gap values for the monoclinic and tetragonal phases
�6.04 and 5.95 eV, respectively� offers no insight, in and of
itself, into their dissimilar heterogeneous radiolytic behavior.

BAND TOPOLOGIES AND EFFECTIVE MASSES

To understand the differences in radiolytic properties of
the monoclinic and tetragonal phases under � radiation, we
analyzed the conduction and valence band topologies of all
three zirconia phases. First, we note that due to the relatively
flat conduction and valence bands of the monoclinic phase,
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FIG. 1. LDA �top� and sX-LDA �bottom� band structures of the cubic, tetragonal, and monoclinic zirconia phases.

TABLE I. Direct �indirect� zero-temperature band gap values, in
eV, for monoclinic, tetragonal and cubic ZrO2 calculated within
LDA and sX-LDA.

Monoclinic Tetragonal Cubic

LDA 3.59 �3.52� 4.03 �3.93� 3.67 �3.22�
sX-LDA 6.04 �6.05� 6.08 �5.95� 5.87 �5.53�
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the band edge density of states values are high, such that the
Fermi level �EF� shifts by only 0.115 and 0.087 eV, respec-
tively, even for the high n or p carrier concentrations of
±7.5�1020 cm−3.40 Further, in Table II, we compare the
electron and hole effective masses calculated in several high-
symmetry directions of the corresponding Brillouin zone.
Large anisotropies in the effective masses are evident, espe-
cially in the monoclinic and tetragonal phases, suggesting
similar anisotropies in carrier mobility. The conduction and
valence band topologies for monoclinic zirconia, the most
anisotropic phase, are illustrated in Figs. 2 and 3. These
three-dimensional band structure plots are calculated for the
specified plane in the Brillouin zone while the energy runs
along the third direction, z. The planes of constant energy

which show the electron or hole pockets correspond to the
carrier concentrations given above.

As one can see from Table II, most LDA effective mass
values are smaller than the corresponding sX-LDA values,
usually within 20% or less. Two significant exceptions to this
trend are the CB effective mass of monoclinic zirconia in the
direction �→B, where the sX-LDA effective mass is a factor
of 3.5 larger, and the �→X direction in the VB of tetragonal
zirconia, where the sX-LDA effective mass is a factor of 2
smaller than the corresponding LDA result. These differ-
ences have potentially important consequences for exciton
dynamics.

In monoclinic zirconia, the lowest electron and hole ef-
fective masses are in the �100� and �001� directions, respec-
tively, Table II. However, the corresponding hole and elec-
tron effective masses are factors of 5–10 times larger. As a
result, there is only one crystallographic direction in this
phase, the �010�, in which electrons and holes can both move
easily. Thus, exciton motion in monoclinic zirconia is rela-
tively restricted, and access to the network of water-filled
pores near the metal-oxide interface is limited.

Conversely, the low mobility �i.e., the large effective
mass� directions in tetragonal zirconia are the same for con-
duction band electrons as for valence band holes, cf., Table
II. Hence, both carriers and excitons can move relatively
freely in the perpendicular plane. For the tetragonal phase,
the smallest effective masses for both an electron and a hole
are in the �111� direction. Finally, as expected, cubic zirconia
is more isotropic than either monoclinic or tetragonal zirco-
nia, so that carriers can effectively move in all directions.

STRUCTURAL AND ELECTRONIC PROPERTIES

To understand the differences in the band topologies of
the three zirconia phases, we analyze their structural and
electronic properties. Because the conduction and valence
bands in ZrO2 are formed from the bonding-antibonding

TABLE II. Calculated sX-LDA �LDA� effective electron and
hole band masses �in me� for the monoclinic, tetragonal, and cubic
phases of ZrO2 along the high-symmetry directions.

Conduction
band mass

Valence
band mass

Monoclinic phase

�X �100� 1.067 �1.088� −10.502 �−9.073�
�Y �010� 1.134 �0.719� −2.233 �−1.800�
�B �001� 9.555 �2.720� −1.761 �−1.507�

Tetragonal phase

�X �010� 0.952 �0.674� −1.895 �−3.704�
�M �110� 0.976 �0.667� −1.883 �−1.587�
�Z �001� 2.127 �2.111� −10.545 �−10.627�
�A �111� 1.000 �0.792� −0.991 �−1.483�

Cubic phase

�X �010� 2.048 �2.046� −0.353 �−0.293�
�L �111� 1.220 �0.828� −1.389 �−0.950�
�K �110� 1.671 �1.384� −0.283 �−0.213�
�W �120� 2.027 �1.867� −0.710 �−0.599�

FIG. 2. �Color online� The anisotropic conduction band topol-
ogy of monoclinic zirconia, showing where a carrier pocket would
reside. The plane of constant energy corresponds to the electron
concentration of 7.5�1020 cm−3. The low effective mass and/or
high mobility direction is from X to �.

FIG. 3. �Color online� The valence band topology of monoclinic
zirconia showing the location of the hole pocket that would be
present in a doped, substoichiometric, or impure material. The plane
of constant energy corresponds to the hole concentration of 7.5
�1020 cm−3. The low effective mass and/or high mobility direction
runs from � to Y.
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oxygen p and zirconium d states, the overlap between these
spatially highly anisotropic orbitals should be very sensitive
to the oxygen coordination and the distortions of the polyhe-
dra and of the Zr-O-Zr chains. First, we note that in both the
tetragonal and cubic phases, the Zr atoms have eight oxygen
neighbors, while in the monoclinic phase, there are only
seven O atoms around each zirconium and the oxygen coor-
dination is strongly distorted, Fig. 4. The optimized Zr-O
distances are found to be equal to 2.19 Å for the cubic, 2.07
and 2.34 Å for the tetragonal, and 2.04–2.25 Å for the
monoclinic phases. Significantly, we find that in the mono-
clinic phase, Zr-O pairs with shorter distances ��2.13 Å in
the range specified above� form chains running along the y
direction. These chains are connected into a three-
dimensional network via the longer Zr-O distances. There-

fore, a better orbital overlap may explain the high energy
dispersion along the y direction in monoclinic ZrO2. Indeed,
the calculated charge density distribution at the bottom of the
conduction band, Fig. 5�a�, or at the top of the valence band,

x
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x

z

y

x

z

y

FIG. 4. �Color online� Oxygen coordination of Zr atoms in the
cubic �left�, tetragonal �center�, and monoclinic �right� phases.
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a 3
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FIG. 5. �Color online� Charge density distribution calculated
within a 30 meV energy range �a� above the bottom of the conduc-
tion band or ��b� and �c�� below the top of the valence band in
monoclinic ZrO2. Zr atoms are in the corners, in the center, and in
the middle of the edges.
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Fig. 5�b�, illustrates the chains formed from the empty
x2−y2 orbitals of Zr and the antibonding oxygen p orbitals or
mainly from the oxygen bonding p states, respectively. As
discussed below, this results in the low effective mass in the
�010� direction for both the electrons and holes in the low-
symmetry monoclinic phase.

Because in both tetragonal and monoclinic ZrO2 the Zr
x2−y2 orbitals form the bottom of the conduction band, the
interactions along the z direction are weak. Therefore, the
electron effective masses are largest in the �001� direction for
both phases, Table II. Note that the LDA gives similar values
of the effective masses along this direction for the tetragonal
and monoclinic phases, while the screened exchange affects
only the monoclinic zirconia and triples the corresponding
LDA value, Table II. We analyze the contribution from the
oxygen states to the conduction band wave function and find
that it is decreased by 23% in the monoclinic and by 9% in
the tetragonal phases when the nonlocal corrections to the
LDA are taken into account. Thus, screened exchange re-
duces the p-d interaction resulting in the pronounced in-
crease of the electron effective mass in the �001� direction
for monoclinic zirconia.

The top of the valence band in the tetragonal phase is
formed by the bonding oxygen p and Zr 3z2−r2 orbitals.

Because there is no oxygen atom above or below the Zr atom
in the z direction, the interaction is weak along this direction
�cf. Fig. 6�. As a result, the hole effective mass is large in the
�001� direction, �cf. Table II�. In the monoclinic phase, we
find that due to the strong structural distortions, the oxygen p
orbitals overlap along the y and z directions but not along the
x direction: Figs. 5�b� and 5�c� illustrate anisotropic and rela-
tively uniform charge density distributions in the xy and yz
planes, respectively. Hence, the hole effective mass is signifi-
cantly larger in the �100� direction for this low-symmetry
phase.

SUMMARY

In conclusion, accurate first-principles band structure in-
vestigations of the monoclinic, tetragonal, and cubic zirconia
phases were performed using LDA and sX-LDA approaches.
The screened-exchange extension of the local density ap-
proximation predicts the largest indirect band gap in the
monoclinic phase, i.e., the phase order of the indirect band
gaps is m� t�c, which is different from the LDA result
t�m�c. The calculated sX-LDA zero-temperature funda-
mental band gaps are above the LDA values by 2.0–2.5 eV
and for all three phases range from 5.9 to 6.1 eV. Most sig-
nificantly, we found that the conduction and valence band
topologies of monoclinic zirconia are highly anisotropic with
the sX-LDA electron and hole effective masses varying by
factors of 5 and 10, respectively. Thus, in striking contrast to
the tetragonal and cubic zirconia phases, the conduction band
electrons and valence band holes in the monoclinic phase
move primarily in perpendicular planes, �100� and �001�, re-
spectively, so that exciton motion is limited to a single crys-
tallographic direction, �010�.

The results reported herein may be relevant in explaining
recent experimental observations suggesting that exciton
production via gamma radiation in zirconia crystallites im-
mersed in water is responsible for the accelerated dissocia-
tion of adsorbed water molecules on crystalline surfaces and
for the specificity of the effect to the tetragonal zirconia
phase. Furthermore, the enhanced dissociation of water on
tetragonal zirconia may have important implications for un-
derstanding the acceleration in Zircaloy corrosion kinetics
under irradiation.
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