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An elementary method for calculating orientation-averaged fully differential
electron-impact ionization cross sections for molecules

Junfang Gao,a� J. L. Peacher, and D. H. Madison
Department of Physics, University of Missouri-Rolla, Missouri 65409-0460

�Received 19 August 2005; accepted 20 September 2005; published online 18 November 2005�

Currently there are no reliable theoretical approaches for calculating fully differential cross sections
�FDCS� for low-energy electron-impact ionization of large molecules. We have recently introduced
the distorted-wave impulse approximation as a first step in developing improved theoretical
approaches. One significant obstacle to evaluating improved theoretical approaches which require
significant computer resources lies in the fact that the existing experimental data require taking
averages over all molecular orientations. To circumvent this problem, it has been proposed to
approximate the orientation-average by using an orientation-averaged molecular orbital in the
calculation of the FDCS. The theoretical justification and expected range of validity for the
approximation is given in this paper. Examples are presented for electron-impact ionization of H2

and N2. © 2005 American Institute of Physics. �DOI: 10.1063/1.2118607�

The investigation of fully differential cross sections
�FDCS� for molecular ionization by electron impact, nor-
mally referred to as �e ,2e�, represents a powerful tool to
study the electronic structure of molecules as well as to ex-
amine the fundamental interactions between continuum elec-
trons and molecules. Over the last few decades, there have
been many theoretical and experimental studies performed
for the �e ,2e� process with molecular targets. However most
of these studies were primarily interested in molecular struc-
ture and most were for high incident energy or small
molecules.1–10 At high enough energies, where all the con-
tinuum electrons can be expressed as plane waves, the FDCS
becomes proportional to the momentum space wave function
so that measuring the cross section translates into a direct
measurement of the active electron’s wave function. A very
successful theoretical approach for interpreting these high-
energy data is the plane-wave impulse approximation
�PWIA� of McCarthy and co-workers1–4 and much valuable
information about molecular wave functions was obtained
from these studies. In order to investigate the collision dy-
namics for big molecules ionized by lower incident-energy
electrons, better theoretical approaches are needed. All theo-
retical approaches for the FDCS for electron-impact ioniza-
tion of molecules use the Born-Oppenheimer approximation
to describe the target. As a result, only the electronic part of
the molecular wave function is treated with the vibrational
and rotational parts being neglected. Even with this major
simplification of the problem, one still has to deal with the
fact that almost all the existing experimental data represent
an average over all molecular orientations except for some
very recent �e ,2e� measurements,3 which were performed
for the oriented molecules.11,12 For elementary approaches,
like the PWIA, these orientation averages can be performed
analytically. For more complicated theoretical approaches,
analytical averages are not possible and one must resort to

numerical averages. However, if calculating the FDCS for a
single fixed orientation requires significant computer re-
sources, calculating the large number of different orienta-
tions required for an accurate numerical average can become
impractical. Consequently, an alternative method to obtain
orientation averages becomes highly desirable.

To perform a proper average over all orientations, one
must evaluate the T matrix for a particular orientation, and
then repeat this process for enough orientations to be able to
perform an accurate average over all orientations. We re-
cently introduced the idea of constructing an orientation-
averaged molecular orbital �OAMO� which was then used in
the distorted-wave impulse approximation �DWIA� to calcu-
late the orientation-averaged FDCS for electron-impact ion-
ization of N2.13 In this approach, the OAMO was generated
first and then it was used in the T matrix. As a result, the T
matrix is evaluated only once with a single OAMO instead
of many times for many orientations. The purpose of this
paper is to evaluate the conditions of validity for using
OAMO wave functions to calculate orientation-averaged
FDCS.

To investigate the conditions of validity for using
OAMO wave functions in FDCS calculations, we will ana-
lytically evaluate the PWIA FDCS both with a proper orien-
tation average and with an OAMO. The PWIA FDCS with a
proper orientation average is given by4

FDCS =
4

�2��5

kakb

ki
F�ki,ka,kb�� , �1�

where

� =
1

4�
� d�R�� dreiq·r� j�r,R��2

. �2�

In Eq. �1�, F�ki ,ka ,kb� is an elementary function of the mo-
menta of the incident �ki�, scattered �ka�, and ejected elec-
trons �kb�, respectively, q=ki−ka−kb is the momentum
transferred to the residual ion, and � j�r ,R� is the moleculara�Electronic mail: jqzm6@umr.edu
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orbital for the active electron with R the internuclear vector.
In the OAMO approximation, � is replaced with

�OA = �� dreiq·r� j
OA�r��2

, �3�

where

� j
OA�r� =

1

4�
� � j�r,R�d�R. �4�

Here � j
OA�r� is the OAMO.

We will work in the framework of the linear combination
of atomic orbital �LCAO� approach in which the molecular
wave function is expressed as a sum of orbitals for each
nucleus, and we will restrict our attention to diatomic mol-
ecules. Figure 1 shows the coordinate system we will be
using with the z axis aligned along the internuclear axis and
the origin at the center of mass.

In the LCAO approach, the MO is expressed in terms of
a linear combination of s-basis states, p-basis states, etc. As
will be shown below, using the OAMO in the calculation of
the FDCS will be valid for gerade states if the MO’s are
dominated by the s-basis states. This can be seen as follows.
For gerade states, the generic primitive s-basis function for a
diatomic molecule has the form

�g
s-basis�r,R� = N�e−a�r − R/2�2

+ e−a�r + R/2�2� , �5�

where N and a are constants. If the wave function of Eq. �5�
is used in Eq. �2�, it can be shown that

�g = 2�A�2�1 +
sin�qR�

qR
	 . �6�

Similarly, if Eq. �5� is used to construct the OAMO of Eq.
�4�, the cross section of Eq. �3� is

�g
OA =

8�A�2

�qR�2 �1 − cos�qR�� . �7�

If qR�1, the �g of Eq. �6� reduces to

�g → 4�A�2 �8�

and �g
OA of Eq. �7� for qR�1 is

�g
OA → 4�A�2. �9�

Consequently, in the limit qR�1 we have

�g = �g
OA. �10�

To investigate the range of validity for Eq. �10�, the ratio of
�g

OA/�g is plotted in Fig. 2. As can be seen from the figure,
�g
�g

OA for qR�2. Consequently the OAMO approxima-
tion is valid for a fairly broad range of qR values for a gerade
state providing that the MO is dominated by the s-basis func-
tions. As will be shown below, for the case of ionization of
N2 studied by Gao et al.,13 the ground gerade state is domi-
nated by the s-basis states and essentially all the measured
experimental data has qR�2 which explains the success of
that work.

We now consider the ungerade MO in the LCAO ap-
proximation for diatomic molecules. The primitive s-basis
states have the form

�u
s-basis = N�e−a�r − R/2�2

− e−a�r + R/2�2� .

If this wave function is used for the proper orientation aver-
age, we find that Eq. �2� yields

�u = 2�A�2� sin�qR�
�qR�

− 1	 . �11�

Similarly, the OAMO calculation for ungerade states yields

�u
OA = 0. �12�

Again in the limit qR�1 we have

�u 
 �u
OA = 0. �13�

Of course, this is of academic interest only since this
wave function would yield a zero cross section. Conse-
quently, we conclude that the OAMO approximation is valid
for gerade states dominated by s-basis states and small qR.

We now compare PWIA cross sections that have been
properly averaged over all molecular orientations with PWIA
cross sections calculated using the OAMO for H2 and N2.
Due to its relatively simple structure, H2 has often been in-
vestigated as a prototype for the theoretical treatment of
electron-impact ionization of molecules.5,8–10 Because the H2

molecular orbital can be represented as a linear combination
of s-primitive Gaussian functions, it is a good example to be
used to investigate the validity of Eq. �10�. We have used the

FIG. 1. Coordinate system used for the LCAO for diatomic molecules. The
origin is at the center of mass.

FIG. 2. Ratio of �g
OA/�g as a function of qR.
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GAMES �Ref. 14� software program to obtain the orientation-
dependent wave functions of Eq. �2� and the OAMO of
Eq. �4�. Figures 3 and 4 compare the PWIAOA in which the
OAMO is used in the calculation with the PWIA in which
the orientation-dependent orbital is used in the T-matrix cal-
culation and then the average over orientations is performed
analytically for coplanar symmetric electron-impact ioniza-
tion of H2. The upper part of the figure contains the cross
sections as a function of the equal-angles for the two equal
energy outgoing electrons and the bottom part of the figure
contains the corresponding qR values.

Although it is not possible to see the difference in a
journal figure, the top part of Figs. 3 and 4 actually contains
two cross sections—the PWIAOA and the PWIA. The verti-
cal dashed lines indicate the boundary for qR=2. It can be
seen that the cross sections are very small for qR�2. Inter-
estingly, we find no indication of a breakdown for the
OAMO approximation even for qR�2. From the figures it is
seen that the maximum in the cross section tends to occur
near the minimum qR value particularly for the higher ener-

gies. This is to be expected since the maximum in the cross
section occurs near the angle that would be predicted for a
binary collision between the projectile electron and an
atomic electron at rest with the residual ion playing no role.
As a result this peak is normally called the binary peak and
the angular location comes closer to the classical prediction
with increasing energy. Since q is the momentum of the re-
sidual ion, the minimum in qR corresponds to the smallest
role for the residual ion and consequently the closest to a
classical binary collision between the two electrons.

In Gao et al.,13 the exact and PWIAOA cross sections
were compared for ionization of the 3�g ground state of N2

for coplanar symmetric scattering. Here we note that the 3�g

orbital satisfies the criteria of dominance by s-state basis
functions so we would expect that the PWIAOA calculation
should be valid if qR�2. In Figs. 5 and 6, the PWIA and
PWIAOA results for N2 are shown for a range of energies.
The MO from GAMES were obtained using two s-basis states
and one p-basis state. The small contribution from the
p-basis state causes the small difference between the two
results. Nevertheless, with the exception of 405.6 eV small
scattering angles, the use of the OAMO for the calculation of
orientation-averaged cross sections is very good even for
qR�2. For an incident energy of 405.6 eV and small scat-
tering angles, there is a significant difference between PWIA
and PWIAOA for qR�2. On the other hand, this was the
only significant difference between the two calculations that

FIG. 3. Upper part of the figure is the relative FDCS for electron-impact
ionization of H2 in the coplanar symmetric scattering geometry. For copla-
nar symmetric scattering, the electrons are detected with equal energies and
at equal angles on opposite sides of the beam direction. The energy of the
incident electron E0 is shown in each part of the figure and each outgoing
electron has an energy of �E0−Eion� /2 where Eion is the ionization energy of
the ground-state orbital. The horizontal axis is the angular location for the
two electron detectors and the corresponding qR value is shown in the lower
part of the figure. The solid lines are the PWIAOA results and the dashed
lines are the PWIA results.

FIG. 4. Same as Fig. 3 except for higher incident-electron energies.

FIG. 5. Same as Fig. 3 except for electron-impact ionization of N2.

FIG. 6. Same as Fig. 5 except for higher incident-electron energies.
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we found. It is interesting to note that PWIA consistently
crosses from below the PWIAOA to above it as qR passes
through 2. We are unsure if there is some significance for this
observation.

In summary, Gao et al.13 proposed the orientation-
averaged MO idea for approximating the average over all
molecular orientations in the calculation of the FDCS for
electron-impact ionization of molecules. In this paper, we
have shown the justification for this idea and have demon-
strated that the approximation should be valid for calculating
the ionization of gerade states providing the MO is domi-
nated by s-basis functions and providing qR�2. The validity
of this replacement is further demonstrated by comparing
exact and OAMO PWIA cross sections for ionization of H2

and N2. For ionization of H2, there is so little difference
between PWIA and PWIAOA that it cannot be seen in a
journal figure for all qR values. For ionization of N2, except
for small angles and high energy, there is a small difference
between the two calculations due to the p-basis-state contri-
bution. However, the difference is small enough that the use
of the OAMO represents an approximation which is accept-
ably accurate. This elementary approximation for evaluating
orientation-averaged cross sections will greatly simplify the
evaluation of orientation-averaged FDCS for electron-impact
ionization of molecules using better and more sophisticated
theoretical approaches. In a future work, we plan to use the
OAMO to calculate distorted-wave Born approximation

�DWBA� and molecular three-body distorted wave �M3DW�
results for N2 to compare with the experimental measure-
ments of Refs. 15–17.
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