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Abstract We study in detail the influence of the nuclear
form factor both on the Born cross section and on the
Coulomb corrections to the photo-production of muon pairs
off heavy nuclei (γZ → μ+μ−Z) and in heavy-ion colli-
sions (ZZ → ZZμ+μ−). Our findings indicate a number of
issues which have not been sufficiently described as yet in
the literature: (i) the use of a realistic form factor, based on
the Fermi charge distribution for the nucleus, is absolutely
indispensable for reliable theoretical predictions; (ii) we
checked quantitatively that the equivalent photon approxi-
mation has a very good accuracy for the discussed processes;
and (iii) we present a leading logarithmic calculation of the
Coulomb corrections which correspond to multi-photon ex-
change of the produced μ± with the nuclei. These correc-
tions are found to be small (on the percent level). Our result
justifies using the Born approximation for numerical simu-
lations of the discussed process at the RHIC and LHC col-
liders. Finally, we calculate the total cross section for muon
pair production at RHIC and LHC.

1 Introduction

Lepton pair production in ultra-relativistic nuclear collisions
was discussed in numerous papers (see [1–3] for a review
and references therein). For definiteness, we restrict our-
selves to equal charge numbers of the nuclei Z1 = Z2 ≡ Z

and symmetric Lorentz factors γ1 = γ2 ≡ γ , for the RHIC
and the LHC colliders with parameters given in Table 1.

In the present paper, we primarily consider the produc-
tion of a muon pair, but for completeness and comparison,
we first recall some results for electron–positron (e+e−) pair

a e-mail: serbo@math.nsc.ru

production and therefore make a slight detour. The produc-
tion of a single e+e− pair in the Born approximation is de-
scribed by the Feynman diagram of Fig. 1; the correspond-
ing cross section was obtained many years ago [4, 5]. Since
the Born cross section σe+e−

Born is huge (see Table 1), the e+e−
pair production can be a serious background for many ex-
periments. It is also an important issue for the beam lifetime
and luminosity of these colliders [6]. This means that vari-
ous corrections to the Born cross section, as well as the cross
section for n-pair production, are of great importance. The
subject is inherently difficult; a number of controversial and
incorrect statements in the literature have been clarified in
Refs. [1, 7–11].

Since the parameter Zα is not small (Zα ≈ 0.6 for Au–
Au and Pb–Pb collisions), the whole series in Zα has to be
summed in order to obtain the cross section with sufficient
accuracy unless higher-order corrections are otherwise para-
metrically suppressed. The exact cross section for single pair
production σ1 can be represented as the sum of the Born
value, the Coulomb correction, and of the unitarity correc-
tion,

σ1 = σBorn + σCoul + σunit. (1)

The Coulomb correction σCoul corresponds to multi-
photon exchange of the produced e± with the nuclei (Fig. 2);
it was calculated in Refs. [7, 11]. The unitarity correction
σunit corresponds to the exchange of light-by-light blocks

Table 1 Cross sections for the production of light lepton pairs at mod-
ern colliders

Collider Z γ σe+e−
Born [kb] σ

μ+μ−
Born [b]

RHIC, Au–Au 79 108 36.0 0.209

LHC, Pb–Pb 82 3000 227 2.46

mailto:serbo@math.nsc.ru
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between the nuclei (Fig. 3); it was calculated in [9, 10].
It was found that the Coulomb corrections are about 10%
while the unitarity corrections are about two times smaller
(see Table 2). In the last column of Table 2 is shown the
result of Baltz (see Ref. [12]) obtained by numerical cal-
culations using formula for the cross section resulting from
“exact solution of the semiclassical Dirac equations.” In fact,
the employed formulas allow to calculate the Coulomb cor-
rection in the leading logarithmic approximation only, and
this may account for the discrepancies of the results for
RHIC indicated in Table 2. For the case of electron–positron
pairs, the leading logarithmic approximation is insufficient
because of the large absolute magnitude of the correction.

Fig. 1 Feynman diagram for the lepton pair production
ZZ → ZZl+l− in the Born approximation (l = e,μ)

Fig. 2 Feynman diagram for the Coulomb correction

Fig. 3 Feynman diagram for the unitarity correction

In this paper, we present detailed calculations related to
muon pair production. This process may be easier to ob-
serve experimentally than e+e− pair production. It should
be stressed that the calculational scheme, as well as, the fi-
nal results for the μ+μ− pair production are quite different
from those for the e+e− pair production.

The principal issues related to muon pair production, in-
cluding the problem of unitarity corrections, have been con-
sidered in Refs. [10, 13]. In particular, using simple esti-
mates, it was pointed out that: (i) the Born contribution can
be easily calculated using the equivalent photon approxima-
tion (EPA) which has in our particular case a good accuracy;
(ii) contrary to the e+e− case, the Coulomb correction is
small in the muon case (on the level of a percent). The last
statement is of principal importance because it justifies the
validity of the Born approximation for event generators of
this process at the RHIC and LHC colliders.

In a recent paper [14], the conclusion (i) has been con-
firmed, but the point (ii) has been questioned. Namely, in
Ref. [14], it was found out that the Coulomb corrections to
muon pair production are rather large: −22% for RHIC and
−17% for LHC. These results have been obtained using the
same formulas as for the e+e− case with the minor changes.
Below, we present a new calculation of the Coulomb cor-
rections for muon pair production in the leading logarith-
mic approximation (LLA); our result is in agreement with a
previous numerically small estimate of the Coulomb correc-
tions as given in Ref. [13], but it is in strong disagreement
with the result of Ref. [14].

We would like to note that the above features (i) and
(ii) are directly related to the fact that both the electromag-
netic form factors of the nuclei F(K2), F(Q2) and the cross
section for the virtual block γ ∗(k) + γ ∗(q) → μ+μ− drop
quickly with increasing photon virtualities K2 = −k2 > 0
and Q2 = −q2 ≈ q2 > 0. However, the scale of this de-
crease is much less for the nuclear form factor than for the
virtual γ ∗ + γ ∗ → μ+μ− block (by γ ∗, we here denote a
virtual as opposed to a real photon).

As a rule, the calculation of muon pair production for nu-
clear collisions is very laborious (for example, the exact ex-
pression for the Born cross section even for the case of sim-
plified form factors is an eight-fold integral). Therefore, it is
convenient to check the main points of various approxima-
tions using the simpler process of muon photo-production.
In this case we have a possibility to perform relatively eas-
ily both the exact and approximate calculations and compare
them.

Table 2 Coulomb and unitarity
corrections to the e+e− pair
production

Collider σCoul
σBorn

(Refs. [7, 11]) σunit
σBorn

(Refs. [9, 10]) σCoul
σBorn

(Ref. [12])

RHIC, Au–Au −10% −5.0% −17%

LHC, Pb–Pb −9.4% −4.0% −11%
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This paper is organized as follows. In Sect. 2, we study
in detail the photo-production of muon pair off heavy nu-
clei γZ → μ+μ−Z. An exact calculation of the total Born
cross section for arbitrary photon energy starting from the
threshold is carried out. The use of a realistic form factor in-
stead of simplified form F(Q2) = 1/(1 + Q2/Λ2) turns out
to be critically important for moderate photon energies. In
Sect. 3, the validity of the EPA is studied both for a realistic
and for a simplified representation of the nuclear form factor.
Coulomb corrections to photo-production of the muon pair
are studied in Sect. 4. Predictions for the RHIC and LHC
colliders are given in Sect. 5, and we conclude with a sum-
mary in Sect. 6. Throughout the paper, we use a system of
units in which c = 1, � = 1, α = e2/(�c) ≈ 1/137 and de-
note the muon and nuclear mass m and M , respectively.

2 Form factor and Born-level pair photo-production

2.1 Form factors and nuclear charge distributions

We first recall basic formulas related to the realistic and sim-
plified form factor representations for the colliding heavy
nuclei which are central to our investigation. For the real-
istic form factor, we employ a Fermi-type nuclear charge
distribution in the form (see Refs. [15, 16])

ρ(r) = ρ0

1 + exp [(r − R)/a] (2)

with a = 2.30/(4 ln 3) fm, R = 6.55 fm for Au (mass num-
ber A = 197) and R = 6.647 fm for Pb (A = 208). This
leads to the mean squared radius

√〈
r2

〉 =
√

3

5

[
1 + 7

3

(
πa

R

)2]
R, (3)

with
√〈r2〉 = 5.4338 fm for gold and

√〈r2〉 = 5.5041 fm
for lead. The latter numbers are in very good agreement with
the experimental values

√〈r2〉exp = 5.4358 fm for gold and√〈r2〉exp = 5.5010 fm for lead.
The nuclear form factor is defined as

F
(
q2) = 1

N

∫
ρ(r)e−iq·r d3r, N =

∫
ρ(r) d3r, (4)

where q2 ≈ Q2 and q is the three-vector part of the pho-
ton four-momentum q . Its behavior is shown on Fig. 4, it
is seen that for Q2 > 1/R2, the form factor drops quickly
with the growth of Q2. On the other hand, the cross section
for the virtual block γ ∗ + γ ∗ → μ+μ− drops quickly with
the growth of Q2 at Q2 > W 2 = (k + q)2 > (2m)2 [see (19)
below]. For further consideration it is important that

1/R2 ≈ (30 MeV)2 � W 2. (5)

For the simplified form factor, we use an approximation
of a monopole form factor corresponding to an exponen-

Fig. 4 Realistic (solid line) and simplified (dashed line for
Λ = 80 MeV and dot-dashed line for Λ = 90 MeV) form factors vs.
QR for Au

tially decreasing charge distribution

F
(
Q2) = 1

1 + Q2/Λ2
. (6)

Its behavior is also shown in Fig. 4. This approximate form
of the form factor is used, for example, in Refs. [13, 14,
17] and enables to perform some calculations analytically.
For the concrete calculations reported in Refs. [13, 14], the
value

Λ = 80 MeV (7)

is used for lead and gold. In the calculations below we also
use this value unless otherwise stated. Another possibility
is to use the connection of Λ with the mean squared radius√〈r2〉; in this case

Λ =
√

6

〈r2〉 ≈ 90 MeV (8)

for lead and gold.
Looking at three curves in Fig. 4, one can come to the

conclusion that the difference between the two choices of
the Λ parameter should be negligible. We will show, how-
ever, that a transition from the realistic form factor to the
simplified one with Λ = 80 MeV or Λ = 90 MeV results
in a change of the total cross section for the muon pair pro-
duction at the RHIC collider on the level of 10% or 20%,
respectively.

2.2 Realistic form factor: exact result for the Born cross
section

We start to discuss the role of the form factor on the basis of
muon pair production by a real photon with the energy ω off
the nucleus with charge Ze and mass M :

γ (k) + Z(P ) → μ+(p+) + μ−(p−) + Z(P ′). (9)
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In the Born approximation, this process is described by the
Feynman diagram of Fig. 5, and the corresponding diagram
is also contained as a block diagram within the Feynman
diagram for pair production off heavy nuclei. We assume
that a real photon with 4-momentum k and a virtual photon
with 4-momentum q = P − P ′ and virtuality

Q2 = −q2 > 0 (10)

collide with each other and produce a μ+μ− pair with the
invariant mass squared

W 2 = (k + q)2 = 2kq − Q2. (11)

We also use the notation

s = (k + P)2 = M2 + 2ωM, σ0 = Z2α3

m2
, (12)

where m is the muon mass. So, ω measures the incoming
photon energy in the rest frame of the incoming nucleus.

The exact cross section for muon pair production σγZ can
be split into the form

σγZ = σBorn + σCoul, (13)

where σBorn corresponds to the Born cross section, and the
Coulomb correction σCoul corresponds to multi-photon ex-
change of the produced μ± with the nucleus (Fig. 6).

It is well known (see, for example, Ref. [18]) that
the exact Born cross section for the process (1) as well

Fig. 5 Feynman diagram for the photo-production of muon pair in the
Born approximation. The incoming virtual photon has momentum k,
the invariant mass squared of the pair is W 2 = (k +q)2 = (p+ +p−)2.
The four-momenta of the produced leptons are p±

Fig. 6 Typical Feynman diagram for a higher-order Coulomb correc-
tion to the photo-production of a muon pair

as for electro-production can be written in terms of two
structure functions or two cross sections σT (W 2,Q2) and
σS(W 2,Q2) for the virtual processes γ γ ∗

T → μ+μ− and
γ γ ∗

S → μ+μ−, respectively (here, γ is a real initial pho-
ton, while γ ∗

T and γ ∗
S denote the virtual transverse and

scalar/longitudinal photons with helicity λT = ±1 and
λS = 0, respectively):

dσBorn = σT

(
W 2,Q2)dnT

(
W 2,Q2)

+ σS

(
W 2,Q2)dnS

(
W 2,Q2). (14)

The coefficients dnT and dnS are called the number of trans-
verse and scalar virtual photons (generated by the nucleus).
The cross sections σT and σS can be found in Appendix E
of the review [18]:

σT = 4πα2

W 2 + Q2

{[
1 + 4m2W 2 − 8m4 − 2Q2W 2

(W 2 + Q2)2

]
L

−
[

1 + 4m2W 2 − 4Q2W 2

(W 2 + Q2)2

]
v

}
, (15)

σS = 16πα2Q2W 2

(W 2 + Q2)3

[
v − 2m2

W 2
L

]
, (16)

where

v =
√

1 − 4m2

W 2
, L = 2 ln

[
W

2m
(1 + v)

]
. (17)

Let us note that

σT ∼ 4πα2

W 2

[
1 + O

(
Q2/W 2)],

σS ∼ 16πα2Q2

W 4
at Q2 � W 2,

(18)

and

σT ∼ 4πα2

Q2
, σS ∼ 16πα2W 2

(Q2)2
for Q2 � W 2. (19)

The number of photons can be found in Sect. 6 and Appen-
dix D of Ref. [18]

dnT = Z2α

π

(
1 − y − M2y2

Q2

)
F 2(Q2) dW 2

W 2 + Q2

dQ2

Q2
,

dnS = Z2α

π

(
1 − y + 1

4
y2

)
F 2(Q2) dW 2

W 2 + Q2

dQ2

Q2
,

(20)

where

y = kq

kP
= W 2 + Q2

2ωM
. (21)

Integrating the cross section (14) over Q2 in the region
Q2

min ≤ Q2 ≤ Q2
max, where (see Problem 3 to §68 in
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Fig. 7 Born cross section for the realistic (solid line) and simplified
(dashed line) form factors (photo-production on Au)

Ref. [19])

Q2
min,max = B ∓

√
B2 − C, (22)

2B = 2M6 − M4W 2 − M2W 4

(2M2 + W 2)s
+ s − 2M2 − W 2

≈ 2
2ω2 − W 2(1 − ω/M)

1 + 2ω/M
, (23)

C = M2W 4

s
, (24)

and over W in the region 2m ≤ W ≤ ω, we obtain the exact
result for the Born cross section presented in Fig. 7.

2.3 Simplified form factor: exact result for the Born cross
section

The exact result for the Born cross section for the case of
a simplified form factor can be obtained using (14), (15),
(16), (20) with the form factor (6). The result is shown by
the dashed line in Fig. 7. It is seen that calculations with the
simplified form factor give an accuracy better than 10%, 5%
and 2% at ω > 3.5 GeV, 8 GeV and 50 GeV, respectively. At
RHIC, the region near the “accuracy threshold” (2m < ω <

8 GeV) gives a numerically important contribution, which
accounts for about 10–20% of the difference between cross
sections with the realistic and simplified form factors.

3 Approximations to Born-level pair photo-production

3.1 Realistic form factor: equivalent photon approximation
(EPA)

Let us recall the usual schema of the EPA, but with the addi-
tion of an accurate treatment of the nuclear form factor (see,

for example, Ref. [18]). For the case of high-energy pho-
tons ω � 2m, the most important contribution to the photo-
production cross section stems from photons with very small
virtuality Q2 � W 2 [we recall the definition of ω in (12) and
that Q2 = −q2 ≈ q2]. It means that we can ignore the con-
tribution of the scalar photons in (14) and the dependence of
σT on Q2; besides we can simplify the expression for dnT

from (20). As a result, we obtain the simple approximate
(EPA) expression

dσ EPA
Born = σγγ

(
W 2)dnγ

(
W 2,Q2), (25)

where

σγγ

(
W 2) = 4πα2

W 2

[(
1 + 4m2

W 2
− 8m4

W 4

)
L

−
(

1 + 4m2

W 2

)
v

]
, (26)

dnγ = Z2α

π

(
1 − Q2

min

Q2

)
F 2(Q2)dW 2

W 2

dQ2

Q2
,

Q2
min = W 4

4ω2
. (27)

The quantities v and L are defined in (17).
Integrating this spectrum over Q2, we obtain (the upper

limit of this integration can be set to be equal to infinity in
a good approximation, due to the fast convergence of the
integral at Q2 > 1/R2):

dnγ

(
W 2) = Z2α

π
f

(
W 2R

2ω

)
dW 2

W 2
. (28)

The function

f (x) =
∫ ∞

x2

(
1 − x2

y

)
F 2

(
y

R2

)
dy

y
(29)

is presented in Fig. 8. It is large for small values of x,

f (x) = ln

(
1

x2

)
− C0 for x � 1. (30)

(The value of constant C0 depends slightly on the ratio a/R:
we obtain C0 = 0.166 for gold and C0 = 0.163 for lead.)
However, f (x) drops very quickly for large x,

f (x) <
1

x4
for x > 1. (31)

Finally we obtain

σ EPA
Born = Z2α

π

∫ ∞

4m2

dW 2

W 2
f

(
W 2R

2ω

)
σγγ

(
W 2). (32)

A comparison of this cross section with the exact result is
shown in Fig. 9. It is seen that the EPA gives an accuracy
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Fig. 8 The function f (x) from (29) for the realistic form factor (solid
line) and f̃ (x/(RΛ)) from (36) for the simplified form factor (dashed
line) (photo-production on Au)

Fig. 9 Ratio σEPA
Born/σBorn (solid line) and σ SEPA

Born /σBorn (dashed and
dash-dotted lines), where σBorn is the total Born cross section from (14)
while σEPA

Born from (32) is calculated for the case of realistic form factor
and σ SEPA

Born from (39) is calculated for the case of a simplified form
factor with Λ = 80 MeV (dashed line) and Λ = 90 MeV (dash-dotted
line) (photo-production on Au)

better than 1% already at ω > 1.3 GeV. This needs to be
explained.

Going from the exact expressions (14), (15), (16), (20)
to the approximate ones (25), (26), (28) we omit terms of
the relative order of Q2/W 2, which are dropped before the
integration over Q2 is done. After the integration with the
“weight function” F 2(Q2)/Q2 the relative value of these
corrections becomes of the order of 1/(R2W 2). In addition,
the contribution of these correction terms is suppressed by
a logarithmic factor. Indeed, the main contribution to the
cross section in EPA is proportional to the large Weizsäcker–
Williams logarithm

LWW =
∫ 1/R2

Q2
min

dQ2

Q2
≈ 2 ln

(
ω

2m2R

)
, (33)

while the omitted terms have no such logarithm. Therefore,
the actual parameter describing the suppression of the omit-
ted terms to the differential cross section for pair production
is numerically small indeed,

ηEPA ∼ 1

R2W 2LWW
. (34)

3.2 Simplified form factor: EPA

The replacement of the realistic by the simplified form fac-
tor means that we have to replace the function f from (29)
by a function f̃ which is obtained when we replace the form
factor in the integrand in (29) appropriately by the simplified
nuclear form factor. The SEPA (S here stands for the simpli-
fied form factor) can thus be obtained using (25) and (26)
with the following expression for the number of equivalent
photons:

dnγ

(
W 2) = Z2α

π
f̃

(
W 2

2ωΛ

)
dW 2

W 2
. (35)

The function f̃ [W 2/(2ωΛ)] can be obtained analytically,

f̃ (x̃) = (
1 + 2x̃2) ln

(
1

x̃2
+ 1

)
− 2. (36)

This is in contrast to f (x), which would be the equivalent
of f̃ (x̃) for a realistic form factor [see (29)]. Now, f̃ (x̃) is
large for small values of x̃,

f̃ (x̃) ≈ ln

(
1

x̃2

)
− 2 for x̃ � 1, (37)

but drops very quickly for large x̃:

f̃ (x̃) <
1

6x̃4
for x̃ > 1. (38)

Its behavior is presented by the dashed line in Fig. 8, where
x = RΛx̃. In view of the same leading logarithmic asymp-
totics for small argument [see (30) and (37)], the functions
f and f̃ almost coincide for small values of x.

Finally, we obtain for the simplified equivalent photon
approximation (SEPA),

σ SEPA
Born = Z2α

π

∫ ∞

4m2

dW 2

W 2
f̃

(
W 2

2ωΛ

)
σγγ

(
W 2)

= σ0J
(
ωΛ/m2). (39)

For large photon energies, the function J (ωΛ/m2) behaves
as

J (z) = 28

9

[
ln(z) − 57

14

]
for z � 1. (40)
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A comparison of SEPA cross section with the exact result
from (14) is shown by the dashed and dot-dashed lines in
Fig. 9. It is seen that the EPA gives a considerable better
accuracy than the SEPA, once again confirming that the use
of a realistic nuclear form factor is essential.

3.3 Realistic form factor: asymptotics for the Born cross
section

The high-energy asymptotic behavior of the Born cross sec-
tion (for a realistic form factor) at large ω � 2m can easily
be obtained using the EPA formulas (25), (26), (28) with
the asymptotic form of the function f (x) given in (30). The
final result is

σ
asymp
Born = 28

9
σ0

[
ln

(
2ω

Rm2

)
− 43

14
− 1

2
C0

]
. (41)

It should be noted that the cross section (41) provides a rea-
sonable approximation only for large enough values of the
photon energy ω. Indeed, this cross section is positive only
at

ω > ωcrit = 1

2
Rm2 exp

(
43

14
+ 1

2
C0

)
= 4.4 GeV. (42)

A comparison of the asymptotics with the exact Born cross
section is given in Fig. 10. It is seen that the accuracy of a
simple expression (41) is better than 10% only at very large
ω > 20 GeV, showing that the realm of applicability of the
high-energy asymptotics is limited.

3.4 Simplified form factor: result of Ivanov and Melnikov
for asymptotics

The cross section σγZ in the high-energy limit was calcu-
lated by Ivanov and Melnikov in Ref. [17] using the same

Fig. 10 Ratio σ
asymp
Born /σBorn for the realistic form factor (solid line)

and ratio σ IM
Born/σBorn (dashed line) (photo-production on Au)

expression (6) for the form factor of the nucleus and assum-
ing Λ2/(2m)2 � 1. The corresponding analytical formula
including the first correction ∼ Λ2/(2m)2 reads

σ IM
γZ = σ IM

Born + σ IM
Coul, (43)

σ IM
Born = 28

9
σ0

[
ln

(
2ωΛ

m2

)
− 57

14
− C1

]
, (44)

σ IM
Coul = −28

9
σ0C2, (45)

where

C1 = 12

35

(
Λ

2m

)2

, C2 = 0.928(Zα)2C1. (46)

We note that the parameter Λ2/(2m)2 = 0.14 is small for
muon pairs. A comparison of σ IM

Born with the exact Born cross
section (14) is shown by dashed line in Fig. 10.

Two final remarks: (i) the SEPA asymptotics (40) is in ac-
cordance with the result of Ivanov and Melnikov (44), as has
already been noted in [17]. (ii) The difference between the
high-energy asymptotics σ

asymp
Born for the realistic form fac-

tor (41) as opposed to the high-energy asymptotics σ IM
Born for

a simplified form factor is very small:

σ IM
Born − σ

asymp
Born = 0.012

28

9
σ0. (47)

This is not surprising because the asymptotics are deter-
mined by a region with small values of x = W 2R/(2ω), in
which the spectra of the equivalent photons for the realistic
and simplified form factors coincide (see Fig. 8).

4 Coulomb correction to the photo-production of pairs

Having discussed the role of the nuclear form factor in the
determination of the lepton pair production amplitude in the
Born approximation, we now turn our attention to the role of
Coulomb corrections. This is done according to our “mas-
ter equation” (13). The Coulomb correction is the leading
correction beyond the Born amplitude, provided the latter is
being evaluated with exact form factors.

The Coulomb correction corresponds to Feynman dia-
gram of Fig. 6. The calculation of the Coulomb correction
for high photon energies (ω � 2m) can be performed ap-
proximately using the result of Ivanov and Melnikov given
in (45). The ratio σ IM

Coul/σBorn as presented at Fig. 11 is small.
It is seen that the relative magnitude of the Coulomb correc-
tion is less than 1% at ω > 20 GeV. This is in accordance
with the following estimate [13, 17].

Due to the restriction of the transverse momenta of addi-
tionally exchanged photons to the range below Λ ∼ 1/R, the
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Fig. 11 Relative magnitude of the Coulomb correction
(photo-production on Au)

effective parameter of the perturbation series is not (Zα)2

but

(Zα)2 Λ2

W 2
, (48)

where W is the invariant mass of the muon pair. Besides,
there is an additional logarithmic suppression because the
Coulomb corrections lack the large Weizsäcker–Williams
logarithm. Therefore, the actual parameter describing the
relative value of the Coulomb correction is

ηCoul = (Zα)2 Λ2

W 2LWW
(49)

which corresponds to Coulomb corrections of less then 1%
for ω > 20 GeV [we recall that LWW is defined in (33)].
It is reassuring that the result of Ivanov and Melnikov con-
firms this estimate. Indeed the relative order of the Coulomb
correction according to (44)–(46) is

σ IM
Coul

σ IM
Born

= 0.318(Zα)2
(

Λ

2m

)2[
ln

(
2ωΛ

m2

)
− 57

14
− C1

]−1

∼ ηCoul. (50)

5 Predictions for the RHIC and LHC colliders

We now turn our attention to the muon pair production in
collisions of heavy nuclei. Let us therefore consider the
process

Z(P1) + Z(P2) → μ+(p+) + μ−(p−) + Z(P ′
1) + Z(P ′

2).

(51)

Its cross section can be calculated with a high accuracy by
means of the EPA using the result (14) for the exact cross
section of the process,

γ (k) + Z(P2) → μ+(p+) + μ−(p−) + Z(P ′
2). (52)

For the RHIC collider, we use the parameters Z = 79 and
γ = 100, the latter in order to be accordance with the value
used in Ref. [14]. In the Born (B) approximation and with a
realistic (Fermi, F) form factor, we have

σZZ
BF = Z2α

π

∫ ∞

2m

dω

ω
f

(
ωR

γL

)
σ

γZ
Born(ω) = 0.193 barn. (53)

In (53), γL = 2γ 2 is the Lorentz factor of the first nucleus
in the rest frame of the second nucleus; f (x) and σ

γZ
Born(ω)

can be found in (29) and (14), respectively. There is a 9.8%
difference to the corresponding result for the simplified (S)
form factor, still in the first Born approximation,

σZZ
BS = 0.212 barn. (54)

This is in full agreement with the recent result 0.211 barn of
Ref. [14]. The consistent use of Λ = 80 is crucial in order to
obtain this agreement. We note in passing that Λ = 90 MeV
results in a 22% difference.

A calculation for the Coulomb correction in LLA can
be done using the result of Ivanov–Melnikov and taking
into account Coulomb corrections to both nuclear lines (fac-
tor 2),

σZZ
Coul = Z2α

π

∫ ∞

2m

dω

ω
f

(
ωR

γL

)
2σ IM

Coul = −0.0072 barn.

(55)

It means that the relative value of the Coulomb correc-
tion is −3.7% in full contrast to the recent result −22% of
Ref. [14], but in agreement with our parametric estimates.

For the LHC collider, we use Z = 82, γ = 2760, again
in order to be in accordance with Ref. [14]. We have for a
realistic form factor

σZZ
BF = 2.36 barn, (56)

and for a simplified form factor

σZZ
BS = 2.45 barn. (57)

This is in good agreement with the recent result 2.42 barn of
Baltz [14]. Again, an estimate for the Coulomb correction
can be obtained on the basis on an integration over the result
of Ivanov and Melnikov,

σZZ
Coul = −0.03 barn. (58)

It means that the relative value of the Coulomb correc-
tion is −1.3% in full contrast to the recent result −14% of
Baltz [14].

For completeness, we recall that in Table 1, slightly dif-
ferent values were used for the relativistic Lorentz fac-
tors at the modern colliders, namely, γ = 108 (RHIC) and
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γ = 3000 (LHC) instead of γ = 100 (RHIC) and γ = 2760
(LHC). In both cases, with the alternative values for γ and
for a realistic nuclear form factor, we obtain results for σZZ

BF
which are slightly larger than those in (53) and (56), namely
0.209 barn for RHIC and 2.46 barn for the LHC (see Ta-
ble 1).

6 Conclusions

We have analyzed in detail the role of the nuclear form factor
in the calculation of muon pair production cross sections in
photon–nucleus and nucleus–nucleus collisions. At RHIC,
the realistic (Fermi) nuclear charge distribution leads to pre-
dictions that deviate by 10–20% from the corresponding val-
ues for simplified nuclear form factors. We also show quan-
titatively that the EPA is an excellent approximation to the
muon photo-production for photon energies that exceed the
rest mass of the produced pair (region ω � 2m) as well as
for muon pair production at RHIC and LHC.

We find that the Coulomb corrections for the muon pro-
duction are less pronounced than for the e+e− pair produc-
tion. Our calculation in LLA leads to a decrease by about
1.3–3.7% due to higher-order Coulomb effects at the LHC
and RHIC colliders.

Let us issue a few remarks regarding the obvious discrep-
ancy of our results about the Coulomb corrections to those
of the recent, interesting paper [14]. It is not obvious from
the condensed presentation given in Ref. [14] whether or not
the nuclear form factors have been taken into account to all
orders in Zα. Therefore, the approach may need to be re-
examined. Moreover, our parametric quantitative estimates
given by the numerically small expansion parameter (49)
indicate that the Coulomb corrections for muon pair pro-
duction should be smaller than those for e+e− production.
Coulomb corrections for the total production cross section
of heavier lepton pairs would be even smaller, and in ad-
dition, we note that the Coulomb corrections also decrease
with higher invariant mass W 2. Under typical conditions,
muons from the discussed process can be detected at the
RHIC and LHC colliders with large values of W ; this means
that the Born approximation can be safely used in numeri-
cal simulations of this process. A correction on the order of
22% for muons at RHIC, as obtained in Ref. [14], is larger
than that for the e+e− production and seems unrealistically
large even if we allow for a large numerical prefactor multi-
plying the parameter (49). We also note that the calculation
of the Coulomb corrections in Ref. [14] proceeds in the im-
pact parameter representation. The numerical evaluation of
integrals of this type is known to be notoriously problematic
because of large numerical cancellations due to oscillations.
In any case, a calculation of the Coulomb corrections be-
yond the leading logarithmic approximation is desirable.

Finally, it should be mentioned than unitarity corrections
to the muon production have been discussed in Refs. [10, 13]
with the following result: unitarity corrections for the exclu-
sive production of exactly one muon pair are large. However,
the experimental study of the exclusive muon pair produc-
tion seems to be a very difficult task, because it requires that
the muon pair should be registered without any electron–
positron pair production, including e± emitted at very small
angles. The corresponding inclusive cross section is not af-
fected by the unitarity correction and, indeed, close to the
Born cross section.

Note added in proof

We were informed by Professor W. Schäfer that in the paper
M. Klusek, W. Schäfer and A. Szczurek (Phys. Lett. B 674,
92 (2009)) the necessity to use a realistic nuclear form factor
for the description of ρ0–ρ0 production at RHIC also has
been discussed.
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