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Nucleation rates of water and heavy water using equations of state
Abdalla Obeidat,a) Jin-Song Li, and Gerald Wilemskib)

Department of Physics and Cloud Aerosol Sciences Laboratory, University of Missouri-Rolla, Rolla,
Missouri 65409-0640

~Received 21 July 2004; accepted 19 August 2004!

The original formula of Gibbs for the reversible work of critical nucleus formation is evaluated in
three approximate ways for ordinary and heavy water. The least approximate way employs an
equation of state to evaluate the pressure difference between the new and old phases. This form of
the theory yields a temperature dependence for the nucleation rate close to that observed
experimentally. This is a substantial improvement over the most commonly used~and most
approximate! form of classical theory. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1806400#

I. INTRODUCTION

Nucleation refers to the kinetic processes that initiate
first-order phase transitions in nonequilibrium systems. It
plays a key role in many fields ranging from atmospheric
applications to materials science, and its study is currently
being stimulated by the development of new experimental
and theoretical techniques to measure and predict homoge-
neous nucleation rates.

In the 1870s Gibbs1 showed that the reversible workW
required to form a nucleus of the new phase consists of two
terms: a bulk or volumetric term that stabilizes the fragmen-
tary new phase and a surface term that destabilizes it. In
1926, Volmer and Weber2 developed the first nucleation rate
expression based on kinetic assumptions. Subsequent refine-
ments and improvements by Farkas,3 Becker and Do¨ring,4

Frenkel,5 and Zeldovich6 led to what we now call the classi-
cal nucleation theory~CNT!. In CNT ~e.g., Ref. 7! the criti-
cal nucleus is treated as a drop with a sharp interface~a
dividing surface! that separates the new and old phases. Mat-
ter within the dividing surface is treated as a part of a bulk
phase whose chemical potential is the same as that of the old
phase. In the absence of knowledge of the microscopic clus-
ter properties, particularly the surface tension, bulk thermo-
dynamic properties, and several approximations, discussed
below, are used to evaluateW.

The inputs to CNT are experimental quantities which
makes the theory easy and popular to use. For many years,
CNT was also regarded as relatively successful since it pre-
dicted reasonable critical supersaturations for a wide variety
of substances. This view has been tempered by the develop-
ment of improved experimental techniques that have allowed
the accurate measurement of nucleation rates for many
substances.8–20 Comparison of these results with the predic-
tions of CNT has shown that the theory is usually in error,
giving rates that are too low at low temperatures and too high
at high temperatures,10,17,18 although the predicted depen-

dence on supersaturation is generally quite satisfactory.
The most fundamental approach to improving CNT is

through the development of microscopic theories or simula-
tion methods.21,22 Although some remarkable progress has
been made, a microscopic treatment that is widely applicable
to many substances is not yet available. More empirical
efforts22,23 to improve CNT are more widely applicable, but
they generally meet with limited success. One of the most
successful and general treatments of the temperature depen-
dence of nucleation rates is provided by the so-called scaled
model of Hale,24,25 which will be used below.

The principal goal of this paper is to test a form of clas-
sical nucleation theory closest in spirit to the original ideas
of Gibbs. It is curious that, despite the long history of this
subject, this seems not to have been attempted previously.
Three different versions of CNT are used to calculate nucle-
ation rates of water and heavy water. Two of these versions
require an accurate equation of state to calculate the work of
formation of a critical droplet, which is then used to evaluate
the nucleation rate. The theoretical rate predictions are com-
pared with the experimental rates of water and heavy
water18,20 and with the predictions of the scaled model.24

Significant improvement in the predicted temperature depen-
dence of the nucleation rate was realized. The number of
molecules in a critical cluster is also compared with the ex-
perimental data using the nucleation theorem.26

II. EQUATION OF STATE APPROACH FOR CLASSICAL
NUCLEATION THEORY

A. Work of formation

Gibbs’ result forW, the reversible work required to form
a critical nucleus of the new phase, is

W5Ag2V~Pl2Pv!, ~1!

whereA andg are the area and surface tension, respectively,
of the nucleus,V is its volume,Pl is the pressure of the new
bulk reference phase at the same chemical potential as the
metastable mother phase, andPv is the pressure of the
mother phase far from the nucleus. The result strictly applies
to droplets of critical size, but its value is independent of any
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particular choice of thermodynamic dividing surface needed
to defineA andV. Gibbs found it convenient to introduce the
‘‘surface of tension’’ dividing surface at which the classical
Laplace equation is valid. The Laplace equation governs the
pressure drop across a curved interface, and for a spherical
droplet of radiusr * it reads

Pl2Pv52g/r * . ~2!

Specializing to spherical critical nuclei, Gibbs showed that
with Eq. ~2!, Eq. ~1! became

W5
16p

3

g3

~Pl2Pv!2 . ~3!

To apply this famous formula of Gibbs, one has to know
the exact surface tension at that radius and the droplet refer-
ence pressure. Lacking knowledge of the exact surface ten-
sion, the first approximation is to use the experimental sur-
face tension of a flat interface, i.e., setg5g` to obtain

W5
16p

3

g`
3

~Pl2Pv!2 . ~4!

We call this equation theP form.
Gibbs’ method for calculating the pressurePl will be

described below. As far as we know, calculations using this
method have never been made for a specific substance. In-
stead, with only a few exceptions,27,28 Pl is approximated by
assuming that the droplet is incompressible. In this case, we
have

Pl2Pv5Dm/v l , ~5!

where Dm5mv(Pv)2m l(Pv) and v l is the molecular vol-
ume of the new phase. The quantityDm is the difference
between the chemical potential of the metastable vapormv
and the chemical potential of matter in the new phase at the
pressure Pv , m l(Pv). This definition is identical to
Kashchiev’s.29 Equation~5! follows from the thermodynamic
identity

m l~Pl !2m l~Pv!5E
Pv

Pl
v ldP, ~6!

whenv l is assumed to be constant and the condition of un-
stable equilibrium between the critical droplet and the meta-
stable vapor,mv(Pv)5m l(Pl), is used. With Eq.~5!, Eq. ~4!
becomes

W5
16p

3

g`
3 v l

2

~Dm!2 . ~7!

We call this equation them form. This form is most useful
when the chemical potential difference can be found from an
equation of state. Generally, this is not the case, andDm is
more commonly evaluated using a simpler, but approximate
thermodynamic relation that holds when the supersaturated
and saturated vapors are ideal gases and the droplet is an
incompressible liquid. This relation follows from Eq.~6! af-
ter replacingPl with Pve, the equilibrium vapor pressure,
and using the condition of bulk two-phase equilibrium,
m l(Pve)5mv(Pve). We then use the definition ofDm to
eliminatem l(Pv) and arrive at

Dm5mv~Pv!2mv~Pve!2v l~Pv2Pve!. ~8!

In the ideal gas limitmv(Pv)2mv(Pve)5kT ln S, and Dm
reduces to

Dm5kT ln S2v l~Pv2Pve!, ~9!

wherek is the Boltzmann constant,T is the absolute tem-
perature, andS is the supersaturation. The value ofS is de-
fined as the ratio of the actual and equilibrium monomer
partial pressures,27 but a good approximation isS
5Pv /Pve. It is customary to neglect the termv l(Pv
2Pve), which is almost always extremely small. For ex-
ample, for water at 230 K, atS52000, an essentially unat-
tainable value,v l(Pv2Pve)/kT ln S53.431025. Equation
~7! then reduces to the most familiar form used in CNT,

W5
16p

3

g`
3 v l

2

~kT ln S!2 . ~10!

For simplicity we call this equation theS form.
Applying the first two forms ofW requires knowledge of

the droplet reference pressure or chemical potential. Usually
this information is unavailable, and experimental results are,
instead, compared with rates predicted using theS form be-
cause the supersaturation ratio is readily determined from the
experimental data.

A less approximate way to evaluate theP form of W
involves calculating the internal pressurePl using the equa-
tion

kT ln S5E
Pve

Pl
v ldP, ~11!

which follows from Eq.~6! when the conditions for stable
and unstable equilibrium are applied and the ideal gas limit
for Dm is used. The integral on the right-hand side of Eq.
~11! can be evaluated quite accurately if the liquid density or,
equivalently, the molecular volume is known as a function of
pressure. If the pressure dependence of the density is not
available from direct measurements, it may be calculated us-
ing the measured liquid isothermal compressibility, prefer-
ably as a function of pressure.

B. Gibbs’ reference state

The calculation of the internal reference pressurePl

from an equation of state~EOS! follows Gibbs’1 original
reasoning.29–31 Upon forming a droplet within a homoge-
neous fluid with uniform chemical potential and temperature,
the droplet may be so small that its internal state may not be
homogeneous even at the center of the drop. The meaning of
the internal pressure and density of the droplet is then ob-
scured, and these values are difficult to determine. To over-
come this difficulty, Gibbs introduced the concept of the ref-
erence state as the thermodynamic state of a bulk phase
whose internal pressurePref and densityr ref are determined
by the same conditions that exist for the new phase and the
mother phase, i.e., by assuming that the temperature and the
chemical potential are the same everywhere in the nonuni-
form system. In mathematical terms, the pressure inside the
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droplet is calculated such that the chemical potentials are
equal in both the metastable vapor and reference liquid
phases

mv~rv!5m l~r ref!, ~12!

whererv is the density of the supersaturated vapor andr ref is
the density of the reference liquid state. As a practical matter,
one always calculates differences in chemical potential, and
because Eq.~12! involves phase densities that generally dif-
fer by many orders of magnitude it is convenient to rewrite
this equation as an equality of chemical potential differences
measured from the common equilibrium state, for which

P~rve!5P~r le!, ~13!

mv~rve!5m l~r le!, ~14!

whererve andr le are the equilibrium vapor and liquid den-
sities, respectively. After subtracting the equilibrium value of
m from both sides of Eq.~12!, we obtain

mv~rv!2mv~rve!5m l~r ref!2m l~r le!. ~15!

The chemical potentials are calculated fromm5(] f /]r)T ,
wheref is the appropriate Helmholtz free energy density for
the EOS. Oncer ref has been found by solving Eq.~15!, the
reference pressurePref is straightforward to calculate from
the EOS. To implement this approach, we need a satisfactory
EOS. There are many possible candidates in the literature,
but most are not sufficiently accurate. Three EOS’s for water
and one for heavy water were used in this work. They are
described later.

C. Nucleation rate expressions

The conventional Becker-Do¨ring expression7 for the
classical nucleation rate is

JCL5J0 expS 2
W

kTD , ~16!

with the pre-exponential factor

J05A2g`

pm
v l S Pv

kTD 2

, ~17!

wherem is the mass of a condensible vapor molecule, and
the other symbols have been defined already.

The scaled model is based on CNT, and it yields a uni-
versal dependence of nucleation rate onTc /T21. The two
parameters of this model are the nearly universal constantV,
which is interpreted as the excess surface entropy per mol-
ecule, and the constant rate prefactorJ0('1026 cm23 s21).
The value of V for nonpolar substances is around 2.2,
whereas for polar materials it is about 1.5. For later use, and
as an example,V is 1.476 for heavy water and 1.470 for
water. The model works well for many substances for which
the CNT fails. In the scaled model, the nucleation rate is
given by the expression

J5J0 expF2
16p

3
V3S Tc

T
21D 3

/~ ln S!2G . ~18!

D. Number of molecules in the critical nucleus

In addition to the nucleation rate, another physical quan-
tity of interest is the size of the critical nucleus, which is
experimentally determinable from measured nucleation rates
using the nucleation theorem in the approximate form,26,32

n* '
] ln J

] ln S
. ~19!

The experimentally determined values ofn* can be
compared with the theoretical values based on the different
forms of W using the rigorous form of the nucleation
theorem:29

]W

]Dm
52Dn* /~12rv /r l !. ~20!

For the formation of liquid droplets in a dilute vapor, Eq.
~20! reduces to

]W

]Dm
52n* . ~21!

The critical numbern* can also be computed from classical
considerations. Since the volume of a spherical critical
nucleus isV* 54pr * 3/3, one can calculate the number of
molecules in the nucleus from the relationn* v l5V* . Ap-
plying the Gibbs-Thomson or Kelvin equation,33,34 Dm
5kT ln S52gvl /r, one finds

n* 5
32pv l

2g`
3

3~kT ln S!3 . ~22!

III. EQUATIONS OF STATE FOR WATER AND HEAVY
WATER

A. IAPWS-95

This EOS was published by the International Association
for the Properties of Water and Steam~IAPWS-95!.35,36 It is
an analytical equation based on a multiparameter fit of all the
experimental data available at temperatures above 234 K. It
is very accurate and, therefore, highly suitable for use in the
EOS approach, but only forT>234 K. This EOS fails to
provide a continuous representation of single phase fluid
states in the metastable and unstable regions of the phase
diagram, but this is not a limitation for the present applica-
tion.

B. Crossover equation of state „CREOS…

Kiselev and Ely37 have developed an EOS that describes
classical mean-field behavior far from the critical region and
smoothly crosses over to the singular behavior near the criti-
cal point. Their EOS for ordinary water37 at low tempera-
tures has been termed CREOS-01, while the heavy water
version38 is referred to as CREOS-02. To make these equa-
tions work at low temperatures, the scenario of a second
critical point at low temperature39 was exploited by Kiselev
and Ely.37 The CREOS equations describes only the liquid
states of the system.

9512 J. Chem. Phys., Vol. 121, No. 19, 15 November 2004 Obeidat, Li, and Wilemski
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C. JA-EOS

Jeffery and Austin40 ~JA! have developed an analytical
equation of state to describe water. It has several interesting
properties, but also an important drawback. Similar to the
CREOS equation, it predicts a low temperature critical point
associated with two metastable phases of supercooled water.
It also provides a continuous description of single-phase
states in the two-phase region, similar to the van der Waals
and other cubic EOSs. We found that it could not accurately
predict the low temperature vapor-liquid binodal line, al-
though it is capable of accurate predictions of the equilib-
rium vapor pressure if the either the correct equilibrium va-
por or liquid density is supplied independently. Conse-
quently, we use it only to calculate properties of vapor states,
as described below, to complement the CREOS equations.

IV. RESULTS OF EOS APPROACH

A. Water

Before applying the different equations of state to calcu-
late nucleation rates, differences in the critical work of for-
mation W for the various forms of CNT were examined.
Figure 1 showsW of water droplets using the IAPWS-95
~Ref. 35! at T5240, 250, and 260 K. As can be seen from
the graph, the results for them form and for theS form are
close to each other at lowS and start to deviate slightly at
high S. The maximum deviation is of orderkT, which will
give a difference in nucleation rates of only a factor of 3 and
is, thus, inconsequential. It is clear from this figure that theP
form gives significantly different results. TheW for the P
form is much lower than for the other forms. Since the nucle-
ation rate depends exponentially on (2W), higher nucle-
ation rates will result for theP form. An important point to
note is that the gap between theP form and other versions
grows asT decreases, so the predicted temperature depen-
dence should also be greatly improved.

The other EOS used to describe water at low tempera-
ture is the CREOS-01. A similar calculation was made for
the CREOS-01 as described below. ForT>240 K, where the
results can be compared, we found essentially no difference
between theW(P-form) predictions of these two EOSs.

Because it fails to describe the vapor states of the fluid,
the CREOS-01 was used only for the liquid states, while the
JA-EOS was used for the vapor, in the following way. To
calculate the equilibrium vapor densityrve and liquid den-
sity r le one solves, respectively, the two equations,

Pve
expt~T!5PJA~rve!, ~23!

Pve
expt~T!5PCR1~r le!, ~24!

wherePve is the experimental equilibrium vapor pressure.18

Then, to findr ref the JA-EOS and the CREOS-01 were com-
bined in the following equation

mJA~rv!2mJA~rve!5mCR1~r ref!2mCR1~r le!. ~25!

The rationale for this procedure is that the JA-EOS is accu-
rate for densities and chemical potential differences of vapor
states, while the same is true of the CREOS-01 for the liquid
states.

Nucleation rates of water using the CREOS-01~Ref. 37!
results were calculated for temperatures from 260 to 220 K,
as shown in Fig. 2. Rates using the IAPWS-95 EOS were
also calculated forT>240 K, but since they are nearly iden-
tical to the CREOS-01 results, we show only the CREOS
results. TheP-form results are divided by a factor of 200.
Because the predictions of theS form and m form are so
close to each other, only the results of theS form are plotted.
The figure also shows the predictions of the scaled model.25

Both the P-form and the scaled model results describe the
data well in terms of both the temperature dependence and
the supersaturation dependence. The classical Becker-Do¨ring
result, based on theS form gives a clearly inferior account of
the temperature dependence.

From the experimental rates and the nucleation theorem,
the number of molecules in the critical dropletn* can be
determined. Figure 3 shows the experimental values18 and
the values derived from theP form of W versus the predic-
tions of the Gibbs-Thomson formula, Eq.~22!, at the differ-
ent temperatures. Only the CREOS-01 EOS was used to cal-
culaten* using the formula

n* 5
32pg`

3

3~Pref2Pve!
3 r ref , ~26!

FIG. 1. The work of formation for water droplets using the IAPWS-95 EOS
with the three forms of CNT atT5240, 250, and 260 K.

FIG. 2. Comparison of the experimental rates of Wo¨lk and Strey~Ref. 18!
~open circles! for water down toT5220 K with two versions of CNT based
on the CREOS-01 and with the scaled model.
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which is readily found from Eqs.~4! and ~20!. The experi-
mental data were found by Wo¨lk and Strey18 using the equa-
tion

n* 5
] ln J

] ln S
22. ~27!

The calculatedn* values using theP form of the CNT
show excellent agreement with the measured ones. This re-
sult is not unexpected since theP form of the CNT gives the
right T andS dependence, and sincen* is essentially equal
to the derivative of lnJ with ln S.

B. Heavy water

The only EOS valid at lowT to describe D2O is the
CREOS-02.38 As for CREOS-01, this equation also describes
only liquid states, and there is no other EOS to describe the
vapor states. Consequently, to evaluate the chemical poten-
tial of the metastable vapor, the assumption that the vapor is
ideal has been used, i.e.,m(rv)2m(rve)5kT ln S. To calcu-
late the equilibrium liquid densityr le the experimental equi-
librium vapor pressure18 Pve(T) has been equated with the
CREOS-02 pressure at the equilibrium liquid density,

Pve~T!5PCR2~r le!. ~28!

To find r ref the ideal vapor assumption was used to obtain

kT ln S5mCR2~r ref!2mCR2~r le!. ~29!

The reference pressure is then obtained asPref5PCR2(r ref)
after the solution to Eq.~29! is found.

Figure 4 shows the rates, divided by a factor of 100,
predicted by theP form using the CREOS-02~Ref. 38!
equation. The results show good agreement with the experi-
mentalT andS dependence.

All the aforementioned experimental data has been taken
by Wölk and Strey18 using a pulse chamber. Other experi-
mental data have been taken by Khanet al.19 and Kim
et al.20 using a supersonic nozzle technique. This technique
yields a very high nucleation rate at high supersaturation
values. The results predicted by theP form with CREOS-02
are compared in Fig. 5 with both the scaled model and an

empirical function by Wo¨lk and Strey.18,41 The empirical
function was developed by fitting all of the lowS nucleation
rate data.18

From Fig. 5, we notice that the scaled model gives very
good results at these high supersaturation values, while the
P-form results based on CREOS-02 lie within an order of
magnitude of the measured values, but do not reproduce the
T dependence quite as well as for the lowS pulse chamber
data.

Figure 6 shows the number of molecules in the critical
droplet calculated from the experimental data18 and theP
form of W using the nucleation theorem plotted versus the
number of molecules predicted by using the Gibbs-Thomson
formula at the different temperatures. As for ordinary water,
n* calculated from theP form of the CNT is in excellent
agreement with the measured values. Again, since theP
form of the CNT reproduces the experimentalT and S de-
pendence ofJ and sincen* is essentially the slope of the
ln J-ln S curve, this good agreement is not surprising.

V. DISCUSSION OF WATER RESULTS

The results show a clear advantage of using theP form
over the other versions. Note that them andS forms, which

FIG. 3. The number of water molecules in the critical cluster found experi-
mentally ~Ref. 18! using the nucleation theorem and theP-form calcula-
tions. The dashed-line shows the full agreement with the Gibbs-Thomson
equation.

FIG. 4. Comparison of the experimental rates of heavy water by Wo¨lk and
Strey~Ref. 18! down toT5220 K with the predictions of theP form of the
CREOS-02.

FIG. 5. Comparison of two different sets of supersonic nozzle rates at high
S for heavy water ~Refs. 19 and 20! with the P-form results using
CREOS-02 and with the scaled model and the empirical function. Calcu-
lated results are shown atT5237.5, 230, 222, 215, and 208.8 K from left to
right. Temperatures for the experimental results are close to these values.

9514 J. Chem. Phys., Vol. 121, No. 19, 15 November 2004 Obeidat, Li, and Wilemski
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were based on the assumption of liquid incompressibility,
give poor results when compared with the experimental data.
This is strong evidence against the assumption that liquid
water is incompressible. Figure 7 shows the liquid density as
a function of temperature at different pressures as calculated
from IAPWS-95 and CREOS-01, which are in excellent
agreement with each other and with experiment42,43 over
wide ranges of pressure and temperature. A similar figure can
be found in the paper by Kiselev and Ely,37 but we have
extended the comparison to higher pressures. From this fig-
ure, one can see that at all temperatures the density of liquid
water is strongly pressure dependent. Liquid water is unusu-
ally compressible, especially at lower temperatures.44 Also
note that at a pressure between 190 and 300 MPa, the den-
sities predicted by CREOS-01 and IAPWS-95 equations start
to differ qualitatively. The CREOS-01 equation predicts that
at the higher pressures the well-known density maximum of
water no longer occurs. This is in accord with the experimen-
tal density measurements of Petitet, Tufeu, and Le Neindre43

that show no density maximum forP>200 MPa down to
T5251.15 K. The disappearance of the density maximum is
also consistent with the observation that water’s viscosity
decreases and its diffusivity increases with increasing pres-
sure up to a pressure of about 200 MPa. At higher pressures,
these anomalies in water’s transport coefficients vanish, and
water behaves more normally with further increases in
pressure.44,45 In contrast, the IAPWS-95 equation continues
to predict this feature. This suggests that nucleation rates

calculated using the IAPWS-95 equation atT<240 K would
differ, perhaps substantially, from those found here using
CREOS-01. This conjecture awaits a means of using the
IAPWS-95 equation at lowT before it can be tested.

Figure 8 shows the isothermal compressibility as a func-
tion of temperature at 10 MPa~the differences in the isother-
mal compressibility between 1 atm and 10 MPa are small!
and at 190 MPa, calculated using the fit of Kanno and
Angell.46 From this figure, it is clear that the isothermal com-
pressibility decreases sharply when the pressure is increased
to values typical of critical nuclei. It should be kept in mind
that the reference pressure for critical droplets can reach very
high values, up to 400 MPa or higher, and so the high pres-
sure behavior of the EOS is of considerable importance in
calculating nucleation rates using theP form of CNT.

One last point concerns a purely practical matter. In Sec.
II, an alternative to using a full EOS to do theP form cal-
culations was noted. This method was tested using accurate
fits for the liquid density as a function of pressure and em-
ploying Eq.~11!. Results essentially identical to those shown
here were obtained.

In conclusion, we have applied Gibbs’ original formula
to water and heavy water using accurate equations of state
for the fluid properties. Significant improvement in the pre-
dicted temperature dependence of the nucleation rate was
realized for each substance. This appears to be due to the
extraordinary isothermal compressibility of these two sub-
stances at the low temperatures where nucleation rates are
generally measured. Two different types of EOS were used
in our calculations, but each accurately treats the anoma-
lously high compressibility of fluid water in the appropriate
temperature range.
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FIG. 6. As in Fig. 3, but for heavy water.

FIG. 7. The temperature-density isobars of water using the IAPWS-95 EOS
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