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General conditions are formulated that allow us to determine which quantum phase transitions in itinerant
electron systems can be described by a local Landau-Ginzburg-Wilson~LGW! theory solely in terms of the
order parameter. A crucial question is the degree to which the order parameter fluctuations couple to other soft
modes. Three general classes of zero-wave-number order parameters, in the particle-hole spin-singlet and
spin-triplet channels and in the particle-particle channel, respectively, are considered. It is shown that the
particle-hole spin-singlet class does allow for a local LGW theory, while the other two classes do not. The
implications of this result for the critical behavior at various quantum phase transitions are discussed, as is the
connection with nonanalyticities in the wave-number dependence of order-parameter susceptibilities in the
disordered phase.

DOI: 10.1103/PhysRevB.65.165112 PACS number~s!: 71.10.Hf, 73.43.Nq

I. INTRODUCTION

Much interest in the field of quantum many-body physics
has recently focused on quantum phase transitions.1–3 These
are phase transitions that occur at zero temperature as a func-
tion of some nonthermal control parameter, often pressure or
composition, and are driven by quantum fluctuations as op-
posed to thermal ones. In addition to being of fundamental
interest, quantum phase transitions are important because
they are believed to underlie a number of interesting low-
temperature phenomena, in particular various forms of exotic
superconductivity.4,5

Hertz, building on earlier work, has given a general
scheme for the theoretical treatment of quantum phase
transitions.1 After identifying the order-parameter of interest,
one performs a Hubbard-Stratonovich decoupling of the in-
teraction term responsible for the ordering, with the order
parameter field as the Hubbard-Stratonovich field. One then
integrates out the fermions to obtain a field theory entirely in
terms of the order parameter. This Landau-Ginzburg-Wilson
~LGW! theory can then be analyzed by means of
renormalization-group techniques. To the extent that the
LGW theory is well behaved, the resulting critical behavior
in three dimensions~3D! is often mean-field-like, since the
quantum phase transition is related to the corresponding clas-
sical transition in a higher dimension. Until recently, it there-
fore was believed that most quantum phase transitions are
not interesting from a critical phenomena point of view.

In recent years it has become clear that in general there
are problems with Hertz’s scheme. In particular, for one of
the most obvious examples of a quantum phase transition,
viz., the zero-temperature transition in itinerant ferromag-
nets, it was shown that Hertz’s method does not lead to a

local quantum field theory.6,7 This is because there are soft
modes other than the order-parameter fluctuations, specifi-
cally, soft particle-hole excitations other than the spin-
density fluctuations, that couple to the order parameter. Since
these ‘‘additional’’ soft modes are integrated out in deriving
the LGW functional, the resulting field theory has vertices
that are not finite in the limit of vanishing wave numbers and
frequencies. Such nonlocal field theories are hard to analyze,
and unsuitable for explicit calculations. A better, albeit more
involved, strategy in such cases is to integrate out the mas-
sive modes only, keep all of the soft modes on equal footing,
and derive a coupled field theory for the latter. Such a pro-
cedure for the quantum ferromagnetic transition in the pres-
ence of quenched disorder has recently revealed that the
critical behavior is not mean-field-like as suggested by Hertz
and not even given by a simple Gaussian fixed point as pro-
posed on the basis of the nonlocal LGW theory6 but rather
given by the power laws of the simple Gaussian fixed point
with complicated multiplicative logarithmic corrections to
scaling.8 In clean itinerant ferromagnets, Hertz theory also
breaks down7 and the quantum phase transition is generically
of first order.9

This example of a breakdown of the order-parameter field
theory method casts serious doubt on the very concept of
LGW theory for quantum phase transitions.10 However, an
equally prominent example for which the LGW concept
works, at least in 3D,11 is given by the quantum antiferro-
magnetic transition, which was also discussed by Hertz.1

This raises the following question: Which quantum phase
transitions in itinerant electron systems can be described by a
local order-parameter field theory, and which require a more
complicated analysis in terms of a coupled field theory? The
quantum ferromagnetic and antiferromagnetic transitions, re-
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spectively, in 3D provide examples for each of these two
categories.

It is the purpose of the present paper to provide a partial
answer to this question. Specifically, for quantum phase tran-
sitions with zero-wave number order parameters we will pro-
vide a classification scheme that shows for which transitions
Hertz’s scheme works and for which it does not. The paper is
organized as follows. In Sec. II we consider some very gen-
eral arguments to develop a criterion for the breakdown of
LGW theory. In particular, we discuss a relation between the
analytic properties of the order parameter susceptibility in
the disordered phase and the applicability of LGW theory. In
Sec. III we first formulate a general field theory for interact-
ing fermions to which this criterion can be applied. We then
consider three classes of zero-wave-number order-parameter
fields, one each in the particle-hole spin-singlet and spin-
triplet channels, and one in the particle-particle channel. We
show that for the first class, LGW theory works, while for
the other two it does not. In the last part of this section we
show that these results are consistent with explicit calcula-
tions. In Sec. IV we discuss these results. We discuss the
generality of the model we consider, the coupling between
the order-parameter fluctuations and other soft modes, and
questions regarding the coupling of statics and dynamics in
quantum statistical mechanics. We also discuss the effect of
disorder on our results. The paper closes with a series of final
remarks. Perturbative results for some susceptibilities rel-
evant to our dicussion are summarized the in Appendix.

II. A CRITERION FOR THE BREAKDOWN
OF LOCAL LGW THEORY

Of the two examples mentioned in the Introduction, the
quantum ferromagnetic and antiferromagnetic transitions of
itinerant electrons, the ferromagnetic one has a zero-wave-
number, or homogeneous, order parameter, while the antifer-
romagnetic one has a nonhomogeneous order parameter. The
impossibility of constructing a local order-parameter field
theory for the former is due to the coupling of fermionic soft
modes to the order-parameter fluctuations, all of which are
soft at the same~zero! wave number. For clarity we stress
that these fermionic modes are soft modes in addition to the
critical order-parameter fluctuations and to any Goldstone
modes in the ordered phase. The coupling of these additional
soft modes to the antiferromagnetic order parameter, which
is an object at nonzero wave number, is much weaker and
hence does not spoil the LGW concept in this case.

The above considerations imply that the existence of a
local LGW theory will generically be much more question-
able for quantum phase transitions with homogeneous, or
zero-wave-number, order parameters, than for nonhomoge-
neous ones. In this paper we will therefore investigate the
case of quantum phase transitions with homogeneous order
parameters. The crucial question is then whether or not the
coupling of the additional, fermionic, soft modes to the
order-parameter fluctuations is strong enough to destroy the
local nature of the LGW theory.

To sharpen this question, and put it in mathematical terms,
we note that in Hertz’s scheme the vertices of the LGW

theory are given by order-parameter correlation functions in
a reference ensemble that consist of the full action minus an
interaction term that has been decoupled by a Hubbard-
Stratonovich transformation~see Ref. 1 and Sec. III B be-
low!. Since the interaction term one chooses for the decou-
pling is the one that causes the phase transition, the reference
system is always in the disordered phase. The two-point, or
ordinary, order-parameter susceptibilityx (2)[x in the refer-
ence ensemble determines the Gaussian vertex, and the
higher-order correlation functionsx (n) (n.2) give the
higher vertices. The locality, or otherwise, of the LGW
theory then depends on the properties of thex (n). More pre-
cisely, since the square-gradient term in the LGW functional
comes from the wave number expansion ofx, and the coef-
ficients of the important~i.e., quadratic and cubic! terms in
the equation of state are determined by the zero-wave-
number and zero-frequency limits ofx (3) andx (4), it follows
that in order for the local LGW approach to break down, the
wave-vector-dependent susceptibilityx(q) must not be an
analytic function ofuqu at q50, or x (n) (n53,4) must di-
verge asq→0. Such nonanalyticities can only arise from
infrared singularities, i.e., from fermionic soft modes. As has
been discussed in Ref. 28, these soft modes exist for various
symmetry reasons, and if the symmetry responsible for a
particular soft mode is broken, the mode will acquire a mass
that depends on the symmetry-breaking parameter. For rea-
sons that will become clear below, let us suppose that the
field H conjugate to the order parameter for the quantum
phase transition, i.e., a source for the order-parameter field,
breaks the above symmetry. Then the most general form of
the the singular part ofx that is consistent with power-law
scaling is form12,13

xsing~q,H !5~ uqux1uHu!y. ~2.1!

Here y,x.0 are exponents that determine the nature of the
singularity and the scaling ofH with the wave number,
respectively.14 For example, for clean and disordered itiner-
ant quantum ferromagnets ind spatial dimensions, one has
x51, y5d21, andx52, y5(d22)/2, respectively.@In the
clean case in 3D,y52 should be interpreted as (uq
u1uHu)2ln(uqu1uHu); see Eq.~3.5! and the discussion below
it.# The higher susceptibilitiesx (n) can be obtained fromx
by differentiating (n22) times with respect toH. This leads
to infinite zero-field, zero wavenumberx (n) for all n.y12,
and hence to a nonlocal field theory. With these consider-
ations we can now state and justify a criterion for quantum
phase transitions in itinerant electron systems that we will
proceed to discuss and apply in the following sections of this
paper.

Criterion. Hertz theory ~a local LGW theory! breaks
down if a quantum phase transition has a homogeneous, or
zero-wave-number, order-parameter, and if a source termH
for the order-parameter field changes the soft-mode spectrum
of the fermionic or reference ensemble part of the action.

The validity of this criterion follows from our above dis-
cussion. We first note that interacting electronic systems are
intrinsically nonlinear, and therefore generically all soft
modes couple to all the physical quantities. Therefore, if
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some soft modes are given a mass byH.0, i.e., are of the
form 1/(uqux1H), then the free energy and thus all of the
order-parameter susceptibilities will be nonanalytic functions
of H. This is only possible if the two-point order-parameter
susceptibility in the reference ensemble has the form given in
Eq. ~2.1!. It then follows that atH50 all order-parameter
susceptibilities are singular functions of the wave number.
That is, a local LGW theory will not be possible.

Two remarks might be helpful at this point:~1! The sec-
ond condition in the above criterion ensures that there is a
sufficiently strong coupling between the fermionic soft
modes and the order-parameter fluctuations to invalidate the
local LGW approach.~2! Instead of referring to the soft-
mode spectrum of the reference ensemble, one could also
demand that a nonzeroH changes the soft-mode spectrum of
the full action in the disordered phase away from the critical
point. Since the order-parameter fluctuations, which are
taken out of the reference ensemble, are massive in this re-
gion, these two requirements are equivalent.

To conclude this section we note that the analytical prop-
erties of various susceptibilities in interacting electronic sys-
tems have been examined in perturbation theory atH50.
The spin susceptibility is known to be a nonanalytic function
of the wave number at second order in the screened
interaction,15 consistent with the known breakdown of Hertz
theory for the itinerant quantum ferromagnet.6,7 However,
the number-density, number-density current, and number-
density stress susceptibilities have all been shown to not
have a nonanalytic wave-number dependence to that order;
see the Appendix. This suggests that for quantum phase tran-
sitions with these observables as order parameters, Hertz
theory might work. While in principle it is possible that
nonanalyticities would appear in these correlation functions
at higher order in the perturbation theory, at least in the case
of the number-density current susceptibility this is very un-
likely, for reasons explained in Sec. III D. Also, in order to
ruin the local LGW theory, any nonanalyticity would have to
be cut off by the appropriate external field. In the case of the
number density, where the conjugate field is just the chemi-
cal potential, this is hard to imagine. In any case, the com-
plexity of perturbation theory makes it impractical to go be-
yond second order, and a more powerful approach is needed
to determine which quantum phase transitions can be de-
scribed by local order-parameter field theories.

In the remainder of this paper we develop a classification
scheme for quantum phase transitions with homogeneous or-
der parameters that is based on the above criterion. We will
show that there are classes of quantum phase transitions for
which a local LGW functional exist, i.e., for which Hertz
theory is valid, and classes for which it breaks down.

III. CLASSIFICATION SCHEME
FOR QUANTUM PHASE TRANSITIONS

WITH HOMOGENEOUS ORDER PARAMETERS

A. Fermionic field theory

Our starting point is a general action for itinerant, inter-
acting electrons,16

S52E dxc̄~x!@]t1e~]x!2m#c~x!1Sint . ~3.1a!

Here c̄(x)[„c̄↑(x),c̄↓(x)… and c(x)[„c↑(x),c↓(x)… are
fermionic ~i.e., Grassmann-valued! two-component spinor
fields, and the indexx[(x,t) comprises the real-space posi-
tion x and the imaginary timet. *dx[*dx*0

bdt with b

51/kBT, and the product ofc̄ and c is understood as a
scalar product in spinor space that accomplishes the summa-
tion over the two spin projections.m is the chemical poten-
tial, ande denotes the dispersion relation. For instance, for
free electrons one hase(]x)52]x

2/2m with m the free elec-
tron mass.

Sint describes the electron-electron interaction, which we
will keep general. At the most basic level,Sint is the Cou-
lomb interaction, but often one starts at the level of an effec-
tive theory, where some degrees of freedom have already
been integrated out to create short-ranged, effective interac-
tions between various modes. For our purposes, we only as-
sume thatSint contains an interaction between the order pa-
rameter modes. If we denote the order parameter, in terms of
the fermionic fields byn(c̄,c), this part ofSint reads sche-
matically

Sint
OP5JE dxn2~x!, ~3.1b!

with J an appropriate coupling constant. Notice that in gen-
eral n will be a tensor, so the notationn2 in Eq. ~3.1b! is
symbolic. For conceptual simplicity’s sake, we also assume
that the interacting system in the disordered phase has a
Fermi liquid ground state, i.e., that the interactions are not
sufficiently singular to destroy the Fermi liquid. We will
come back to this assumption in the Discussion, Sec. IV.

Finally, we write

S5S01Sint
OP, ~3.1c!

with S0 containing all pieces of the action other thanSint
OP. S0

describes the reference ensemble that was alluded to in Sec.
II. We note that, although the order-parameter interaction
term is missing from the bare reference ensemble actionS0,
such an interaction is in general generated in perturbation
theory, albeit with a coupling constant that is smaller than the
critical value necessary for a nonvanishing expectation value
of the order parameter. The correlation functions of the ref-
erence ensemble thus are those of the full system, with action
S, in the disordered phase.

B. Order-parameter field theory

Here we briefly review the derivation of the order param-
eter or LGW theory.1 Let us decouple the order-parameter
interaction Sint

OP, Eq. ~3.1b!, by means of a Hubbard-
Stratonovich fieldM. That is, we write the partition function
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Z5E D@c̄,c# eS[ c̄,c]

5constE D@M #expS 2JE dxM2~x! D
3 K expS 22JE dxM~x!n~x! D L

0
,

[const3E D@M #e2F[ M ] , ~3.2!

where ^•••&0 denotes an average with the reference en-
semble actionS0, and F@M # is the LGW functional. The
latter reads explicitly

F@M #5JE dxM2~x!2 lnK expS 22JE dxM~x!n~x! D L
0

~3.3!

and can be expanded in powers ofM,

F@M #5
1

2E dx1dx2M ~x1!F1

J
d~x12x2!2x (2)~x12x2!G

3M ~x2!1
1

3!E dx1dx2dx3x (3)~x1 ,x2 ,x3!

3M ~x1!M ~x2! M ~x3!1O~M4!, ~3.4a!

where we have scaledM with 1/A2J. The coefficientsx ( l ) in
the Landau expansion, Eq.~3.4a!, are connectedl-point cor-
relation functions ofn(x) in the reference ensemble,

x ( l )~x1 , . . . ,xl !5^n~x1!•••n~xl !&0
c . ~3.4b!

A crucial question now arises concerning the behavior of
these correlation functions in the limit of long distances and
times or small frequencies and wave numbers. If their Fou-
rier transforms are finite in that limit, then the LGW func-
tional F is local, and Hertz’s analysis of the quantum phase
transition applies. However, this is not the case if the fermi-
onic soft modes that have been integrated out in the above
procedure couple sufficiently strongly to the order-parameter
field. A prominent example is the case of a ferromagnetic
order-parameter, wherex (2) is a nonanalytic function of the
wave number,15

x (2)~q→0,v50!}const1uqud211O~q2!. ~3.5!

The integer exponents ind51 andd53 are to be interpreted
as ln(1/uqu) and q2ln(1/uqu), respectively. Higher-order cor-
relation functions, starting withx (4), diverge in this limit as
x (n);uqu22(n21)1d.7 A nonzero expectation value^M &Þ0 in
the ordered phase, or an external fieldH conjugate toM in
the disordered phase, cuts off these nonanalyticities by giv-
ing a mass to some soft modes~to spin-triplet particle-hole
excitations in the ferromagnetic example!. This leads to the
free energy being a nonanalytic function ofM or H.7,9 The
above discussion is a more technical rerendering of the cri-
terion given in Sec. II. In what follows, we will use this
criterion as a diagnostic tool.

C. Sources and symmetry considerations

We now add source or external field terms to our action,
and ask whether they change the soft-mode structure of the
system. We will consider three explicit examples, corre-
sponding to two classes of homogeneous spin-singlet and
spin-triplet order parameters in the particle-hole channel, re-
spectively, and a third class of particle-particle channel order
parameters.

1. Particle-hole channel spin-singlet order parameters

Consider a source term for a class of homogeneous, spin-
singlet particle-hole order parameter fields,

SH5HE dxc̄~x! f ~]x!c~x!, ~3.6!

with f an arbitrary polynomial function of the gradient op-
erator. Obviously, this source term has the same structure as
the most general dispersion term in the band electron part of
the actionS0, the first term on the right-hand side of Eq.
~3.1a!. Depending on the actual structure ofe(]x), SH may
or may not break a spatial symmetry ofS. However, it does
not change the soft-mode spectrum since any electronic ac-
tion with this structure describes a Fermi liquid, and the soft
modes of all Fermi liquids are in a one-to-one correspon-
dence with one another. The free energy is therefore an ana-
lytic function of H. It follows, from the criterion in Sec. II,
that for any quantum phase transition with an order param-
eter of the form

n~x!5c̄~x! f ~]x!c~x!, ~3.7!

Hertz theory works, and the quantum critical behavior in 3D
is in general mean-field-like. From the discussion in connec-
tion with Eq.~2.1! it further follows that the order-parameter
susceptibility in the disordered phase cannot have a nonana-
lytic wave-number dependence that is cut off byH.17

An example of an order parameter in this class is the one
for the isotropic-to-nematic phase transition that has been
proposed to occur in quantum Hall systems by Oganesyan
et al.18 For this phase transition Hertz theory works, and the
mean-field critical behavior determined in Ref. 18 is the ex-
act quantum critical behavior. Consistent with this, a pertur-
bative calculation of the stress susceptibilityxxy defined in
the Appendix, which plays the role of the reference ensemble
susceptibility for the isotropic-to-nematic transition, found
no nonanalytic wave-number dependence.

2. Particle-hole channel spin-triplet order parameters

Now consider a class of source terms analogous to Eq.
~3.6!, but in the spin-triplet channel,

SHW 5HW •E dxc̄~x! f ~]x!sW c~x!, ~3.8!

with sW 5(sx ,sy ,sz) the Pauli matrices. Such terms break
the invariance ofS under the SU~2! spin rotation group, so
the three components of the spin triplet are no longer equiva-
lent, and transverse spin-triplet particle-hole excitations ac-
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quire a mass. For instance, takeHW to point inz direction, and
consider the temporal Fourier transform ofc(x), cn(x)
[c(x,vn), with vn52pT(n11/2) a fermionic Matsubara
frequency. ForHW 50W , the homogeneous transverse particle-
hole susceptibility

E dxdy^@c̄n~x!sxcm~x!#@c̄n~y!sxcm~y!#&, nm,0

diverges forVn2m[vn2vm→0 as 1/Vn2m . For a nonva-
nishing source field, this soft mode acquires a mass propor-
tional to the magnitude ofHW , i.e., the above susceptibility in
the zero-frequency limit has a finite value proportional to
1/uHW u.

With an order parameter of the general form

nW ~x!5c̄~x! f ~]x!sW c~x!, ~3.9!

Hertz’s LGW approach will therefore break down: the free
energy is a nonanalytic function of the average order param-
eter, the quantum critical behavior is in general not mean-
field-like, and the order-parameter susceptibility in the disor-
dered phase is a nonanalytic function of the wave number.

The primary example for this class is the quantum itiner-
ant ferromagnetic transition that we have mentioned several
times before. Other examples include the spin-triplet analog
of the isotropic-to-nematic transition discussed in Ref. 18,
for which the Hertz theory will not work, in contrast to the
spin-singlet version.

3. Particle-particle channel order parameters

We finally consider a class of source terms for order pa-
rameters in the particle-particle channel,

SH5HE dxcs~x! f ~]x!cs8~x!, ~3.10!

which are relevant for superconductivity. These sources give
a mass to two-particle excitations in the particle-particle
channel. For order parameters of the form

n~x!5cs~x! f ~]x!cs8~x!, ~3.11!

Hertz theory will therefore break down. The prime example
for this class is the zero-temperature metal-to-superconductor
transition.19

D. Connection with perturbative results

The above considerations imply that for the class of order
parameters given by Eq.~3.6! one need not worry about a
breakdown of Hertz theory, and the exact quantum critical
behavior is easy to determine. In addition, they also explain
a number of results concerning the presence or otherwise of
nonanalytic wave-number dependences in various suscepti-
bilities, which show a pattern that was not understood before.

The topic of a possible nonanalytic wave number and/or
temperature dependence of static correlation functions in a
Fermi liquid has a long history, which has been reviewed in
Ref. 15. In this reference it was also established that the

wave-number-dependent spin susceptibilityxs at zero tem-
perature has the form given in Eq.~3.5!, a result that was
confirmed by an explicit calculation in 2D by Chitov and
Millis. 20 This was done by means of perturbation theory to
second order in the electron-electron interaction. Reference
15 also gave a physical argument, based on the coupling of
zero-sound modes, that links theq2lnuqu dependence in 3D,
and theuqud21 dependence for generald, to the lnuqu depen-
dence ind51.21 This means that, unless a prefactor acciden-
tally vanishes in some dimension, a correlation function that
shows the former nonanalyticity in 3D will necessarily have
the latter in 1D, as is the case forxs . Analogous calculations
for various spin-singlet susceptibilities found no nonanalyt-
icity to second order in the interaction.15,22 All of these re-
sults are summarized in the Appendix. Chitov and Millis20

speculated that, at least in the case of the number density
susceptibility, this null result is an artifact of low-order per-
turbation theory, and that there actually is a nonanalytic
wave-number dependence with the same strength as in the
spin density susceptibility, with the prefactor being of cubic
or higher order in the interaction. Given the computational
effort of the perturbation theory, this would be very hard to
check explicitly. However, in the case of the density current
susceptibility there is a strong argument against such a hy-
pothesis: Thef-sum rule, which reflects particle number con-
servation, requires that the homogeneous density current sus-
ceptibility is equal tone /m, with ne the electron density and
m the electron mass. This means that for very fundamental
reasons this susceptibility cannot have a lnuqu singularity in
d51, and from the mode-mode coupling argument men-
tioned above it follows that therefore there cannot be a
nonanalyticity stronger thanuqux with x.d21 in higher di-
mensions either.23 Since the density and density current sus-
ceptibilities are closely related by the same conservation law,
this casts serious doubt on a nonanalyticity in the former as
well.

Our general arguments based on the soft-mode structure
of the system provide an explanation for all of these results.
In particular, they show that neither the density susceptibil-
ity, nor any other spin-singlet susceptibility, to any order in
perturbation theory, has a nonanalytic wave-number depen-
dence that is cut off by the appropriate conjugate field. While
in principle this leaves open the possibility of a nonanalytic-
ity of a different nature,17 it makes it likely that these sus-
ceptibilities are analytic at zero wave-number, and the per-
turbative results summarized in the Appendix are consistent
with this.

In the particle-particle channel, the susceptibility of the
spin-singlet anomalous density has a nonanalytic wave-
number dependence that is cut off by a superconducting gap,
and accordingly the metal-superconductor transition at zero
temperature is not described by Hertz theory.19 This is again
in agreement with the general arguments given in Sec.
III C 3. These calculations for the particle-particle channel
were for systems with quenched disorder, but that does not
affect our arguments; see Sec. IV C below.

IV. DISCUSSION

A. Generalizations

In this paper we have provided a general scheme to an-
swer the question of whether it is possible to construct a
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local LGW theory, i.e. a field theory solely in terms of the
order parameter, for a given quantum phase transition. We
have applied this general philosophy to the one-band model
defined in Sec. III A, but more general models can easily be
analyzed in the same way.

As an example we consider a toy model with two com-
pletely degenerate bands

S52E dx (
a51,2

c̄ (a)~x!@]t1e~]x!2m#c (a)~x!

1 (
a51,2

Sint@c̄ (a),c (a)#1S12@c̄ (1),c (1),c̄ (2),c (2)#.

~4.1!

Herea51,2 denotes the band index. In the simplest case, the
interband interactionS12 could be an interaction between the
number or charge densities in the two bands

S125J12E dxnc
(1)~x!nc

(2)~x!, ~4.2!

wherenc
(a)(x) is the charge density in banda. With increas-

ing J12 the system will undergo a quantum phase transition
from a symmetric state, in which the number densities in
both bands are identical, to an asymmetric state with differ-
ent densities in the two bands. The order parameter for the
transition is the density differencenc

(1)(x)2nc
(2)(x).

Let us now apply the soft-mode considerations developed
in Sec. III to this model. A source term for the order-
parameter field,

SH12
5H12E dx@nc

(1)~x!2nc
(2)~x!#, ~4.3!

breaks the symmetry between the two bands manifest in Eq.
~4.1! and changes the soft-mode structure. Therefore, the
band symmetry breaking quantum phase transition will not
be described by a local order-parameter field theory.

We also note that this transition is very similar to the
magnetic transitions discussed above. If one neglects the spin
degrees of freedom in the two-band model, it can be mapped
onto a quantum ferromagnetic transition with Ising symme-
try by identifying the band indices 1 and 2 with spin up and
spin down, respectively.

B. Coupling between soft modes
and order-parameter fluctuations

The mechanism for a breakdown of the LGW approach to
quantum phase transitions that we have studied is soft modes
that are integrated out in deriving a LGW theory. It is impor-
tant to realize that such soft modesalwaysexist in itinerant
electron systems, and in general they always couple to the
order-parameter fluctuations via mode-mode coupling ef-
fects, except for special cases where such a coupling is for-
bidden by some symmetry. The crucial question is whether
this coupling is strong enough to lead to the free energy
being a nonanalytic function of the order parameter. The cri-
terion for this is whether a nonzero average value of the

order parameter, or, equivalently, a nonzero external field
conjugate to the order parameter, gives a mass to the soft
modes in question. This is more easily accomplished if both
the order parameter and the additional soft modes are mass-
less at the same wave number, as is the case for the itinerant
quantum ferromagnet. A counterexample is the quantum an-
tiferromagnet, where the order parameter is the staggered
magnetization, a finite-wave-number quantity that couples
only weakly to the soft particle-hole excitations that are soft
at zero wave number.

C. Effects of disorder

So far we have discussed clean systems, but all of our
methods remain valid in the presence of quenched disorder,
and so does our discussion. The only modification is that in
the presence of quenched disorder the Fermi liquid ground
state is destroyed for dimensionsd<2 rather thand<1.
Quenched disorder is described by a term in the action

Sdis5E dxu~x!c̄~x!c~x!, ~4.4!

with u(x) a random potential. The source term for a homo-
geneous spin-singlet order parameter, Eq.~3.6!, still does not
change the soft-mode structure of the disordered system~al-
though we stress that the latter is different from that of a
clean system!, and consequently the quantum phase transi-
tions with such order parameters in disordered systems can
be described by local LGW theories. Furthermore, the corre-
sponding susceptibilities are expected to be analytic func-
tions of the wave number. This is consistent with the fact that
the static density susceptibility has nouqud22 nonanalyticity
in perturbation theory, and its homogeneous limit,]n/]m, is
finite in 2D.24–26Similarly, the spin-triplet source, Eq.~3.8!,
still breaks spin rotation invariance and changes the soft-
mode structure by giving the transverse particle-hole excita-
tions in the spin-triplet channel a mass. Consequently, LGW
theory breaks down for the disordered itinerant quantum fer-
romagnetic transition, and the quantum critical behavior is
not mean-field-like. Consistent with this, in perturbation
theory the spin susceptibility has auqud22 nonanalyticity for
d.2, and a lnuqu behavior in 2D.24,6

D. Statics versus dynamics

It is well known that in quantum statistical mechanics,
statics and dynamics are coupled. Naively, this might lead to
the expectation that correlation functions that do not show a
nonanalytic wave-number dependence at zero frequency
have no nonanalytic frequency dependence either. This, how-
ever, is not true. In quenched disordered systems, the real
part of the electrical conductivity, which is the imaginary
part of the dynamical density current susceptibility divided
by the frequency, has anv (d22)/2 frequency dependence,
even though the static current susceptibility, as pointed out
above, has no analogous wave-number nonanalyticity. Simi-
lary, the dynamical counterpart of the stress susceptibility
xxy describes the sound attenuation coefficient, and it also is
a nonanalytic function of the frequency.27 It is thereforenot
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correct to conclude from the presence of a nonanalytic fre-
quency dependence in a time correlation function that the
corresponding static susceptibility will be a nonanalytic
function of the wave number, and that hence for the phase
transition with the corresponding order parameter LGW
theory will break down.

In order to understand this asymmetry between wave-
number and frequency dependences it is important to re-
member that, even in quantum statistical mechanics, statics
and dynamics are not equivalent. It is known that a finite
frequency in the fermionic field theory breaks the symmetry
between retarded and advanced Green functions, and gives a
mass to soft modes.28 Therefore, considering adynamical
source, as opposed to the static sources in Eqs.~3.6! and
~3.8!, changes the situation. If one expands a dynamical spin-
singlet source in powers ofv, then the zeroth-order term
does not change the soft-mode spectrum, but the term linear
in v does, and hence the dynamical piece of a spin-singlet
susceptibility has in general nonanalyticities, even though
the static part does not. The electrical conductivity and the
sound attenuation coefficient mentioned above are examples
of this effect.

E. Final remarks

We conclude with a few final remarks. First, we have
restricted ourselves to systems where the ground state in the
disordered phase is a Fermi liquid, but we have not explicitly
used this property. We expect our general method to still
work in more general cases. As an example, consider the
case of a metamagnetic transition, i.e., a magnetic transition
inside a ferromagnetic phase. In this case the spin rotation
symmetry is already broken on either side of the transition,
and adding the source term, Eq.~3.8!, does not further
change the soft-mode spectrum. We therefore conclude that
in this case LGW theory will work, in agreement with the
recent treatment of this situation by Milliset al.29

Second, we have restricted our explicit discussion to ho-
mogeneous order parameters. As we have mentioned in the
context of the antiferromagnetic phase transition, inhomoge-
neous order parameters are in general expected to couple less
strongly to the fermionic soft modes than homogeneous
ones. However, the consequences of a spontaneous breaking
of the translational invariance warrant a more thorough in-
vestigation. This is of interest, for instance, for the nature of
the transition to the stripe phases that have been predicted
and observed to occur in high-temperature
superconductors.30 These questions can also be analyzed
within the framework set up in this paper.
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APPENDIX: PERTURBATIVE RESULTS
FOR ORDER-PARAMETER SUSCEPTIBILITIES

In this appendix we list perturbative results for various
susceptibilities. In Ref. 15 it was shown that the static spin
density susceptibilityxs has a nonanalytic wave-number de-
pendence in 3D,

xs~q!52NF@11cs~q/2kF!2ln~2kF /uqu!1O~q2!#,
~A1!

with NF the density of states per spin at the Fermi surface,kF
the Fermi wave number, andcs a positive constant that, for
weak interactions, is quadratic in the interaction amplitude.
This result was confirmed in Ref. 20, which also showed that
in 2D there is a correspondinguqu nonanalyticity. All of these
results are consistent with a mode-mode coupling argument
that lets one expect a singularity of the the formuqud21, with
the integer exponents ind51 and d53 corresponding to
logarithms; see Eq.~3.5!. In particular, this argument links
the perturbative lnuqu dependence ind51 ~see Ref. 21! to
the more general nonanalyticity in any dimension.

The perturbation theory developed in Ref. 15 is readily
generalized to calculate other susceptibilities. For the num-
ber density susceptibilityxn one finds that, to quadratic order
in the interaction, the terms of orderq2lnuqu cancel,15 leaving
one with the behavior

xn~q!52NF@11O~q2!#. ~A2!

We have also calculated the number density current suscep-
tibility x j and the stress susceptibilityxxy that is the static
correlation function of the electronic stress operator

~2/kF
2 !(

k
kxkyck1q/2

† ck2q/2 .

For both of these we have found that the same cancellations
hold as in the case of the number density susceptibility. That
is, to second order in the interaction,

x j~q!5~ne /m!@11O~q2!#, ~A3!

xxy~q!5~8NF/15!@11O~q2!#, ~A4!

with ne the electron density andm the electron mass. The
null results expressed by Eqs.~A2!–~A4! are valid for inter-
action amplitudes with arbitrary wave-number and frequency
dependences.

In the particle-particle channel, the susceptibility of the
anomalous densityc↑(x)c↓(x) is known to have a leading
wave-number dependence proportional to 1/lnuqu,19 but no
exact perturbative results are available.
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