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Monte Carlo simulations of water-ice layers on a model silver iodide substrate:
A comparison with bulk ice systems

James H. Taylor* and Barbara N. Hale
Department of Physics and Center for Cloud Physics Research, University of Missouri-Rolla, Rolla, Missouri 65401
(Received 21 September 1992)

Two water layers adsorbed on a model silver iodide basal face are simulated at nine temperatures from
150 to 425 K using Monte Carlo methods. The periodic unit cell of 96 internally rigid water molecules
(interacting via the revised central-force potentials) couples to the rigid-substrate atoms via effective pair
potentials with Lennard-Jones short-range and Coulomb long-range terms. The distribution of mole-
cules perpendicular to the substrate exhibits layering, and individual layer structure factors, dipole mo-
ments, and “pseudodiffusion” coefficients are calculated. A complex temperature dependence with the
two layers taking on different solidlike, quasiliquid, or liquid properties at the same T is observed. Both
layers appear to be solid at the lowest T studied. But for 7= 265 K the upper layer becomes increasingly
liquidlike with increasing T, whereas the lower layer of water molecules remains generally solidlike up to
T =325 K. Comparisons are made with constant number, volume, and temperature bulk ice Monte Car-
lo simulations and (flexible molecule) molecular-dynamics simulations using the same water-water poten-
tials. Pseudodiffusion coefficients are compared with experimental values for ice, water, and with a

quasiliquidlike layer of water on ice.

I. INTRODUCTION

The motivation for this work has been to study the
processes by which ice nucleates on substrates. In partic-
ular, the interest lies in heterogeneous ice nucleation un-
der atmospheric conditions. Effective ice nucleating
agents have generally been classified by their threshold
temperature (for ice formation) at water saturation. In
general, the best substrates are those for which the lattice
mismatch with ice is small. For example, hexagonal
silver iodide (with a lattice mismatch of 2% -3%) was
identified as an efficient ice nucleating agent some time
ago.1 However, classical theoretical models for hetero-
geneous nucleation rates?”* have had only moderate suc-
cess. In some cases the nucleation rate predictions are as
much as 14 orders of magnitude too large.> Other puz-
zling aspects of ice formation on (particulate) surfaces are
the roles of substrate defects,®”® water-substrate bond-
ing,>10 particulate (and the critical ice embryo) size,!!
and complications associated with liquidlike layers on the
ice surface.’>”!7 The present study is focused on the mi-
croscopic features of the first two monolayers of water
molecules on a model basal face of hexagonal Agl. The
goals have been to examine the structure and state (liquid
versus solid) of the individual layers and to evaluate the
applicability of classical heterogeneous nucleation rate
formalisms for such a system.

A number of computer simulations have examined wa-
ter in contact with model solid surfaces or walls.!® 3!
Some of these studies focus on the water nonpolar solid
interface'® 2022 and some investigate model water-metal
interfaces.2"22726:2830.31 Many of the simulations use
the 9-3 integrated Lennard-Jones potential with
modifications  representing hydrophobic,  nonpo-
lar'®72922 charged walls?>2>2630 and walls with image
charges.?! Other simulations incorporate specific struc-

47

ture into the wall?>?%3! or investigate the effect of an
electric field.?® More realistic effective water-metal po-
tentials have also been used.?>2"-283! Jcelike structure in
the water layers adjacent to the substrate have been re-
ported.?%2231 Most of these studies use a symmetric
configuration of water between two walls. In the present
study we simulate two H,O layers adsorbed on a model
ice nucleating substrate with a free surface above the wa-
ter layers (=0 pressure in the vertical direction). In this
configuration, characteristic of vapor to solid heterogene-
ous nucleation, the structure formation in the adsorbed
water layers is greatly inhibited by the excess free surface
entropy.

Earlier studies of water on model Agl surfaces (using
effective atom-atom potentials) have examined optimal
water monomer binding sites*? and monolayer water clus-
ters? on the defect-free basal and prism Agl faces, water
monomer binding at point and extended (step) defects,**
and critical cluster size (=3 molecules) and nucleation
rate (=102 cm™?sec™!) for water monolayer formation
on the basal face®® at 7=265 K and water saturation.
The latter work implies that the model Agl basal face
(with water-substrate binding comparable to water-water
binding) is rapidly covered with a solidlike water mono-
layer composed of six- (and some five-) membered ringe
centered on the exposed iodine atoms. [Similar five- and
six-membered ring structure is seen in small liquidlike
monolayer water clusters on a smooth Lennard-Jones (9-
3) surface.’®] In order to examine the structure and state
of additional water layers on the model Agl surface, the
present work has been undertaken. Since no extensive
studies of bulk ice Ih melting [using the same revised
central-force potentials (RSL2) of Rahman and Stil-
linger’”*] have been available, companion constant
volume, number, and temperature (NVT) Monte Carlo
simulations of a model bulk ice Ik system (with corre-
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sponding periodic boundary conditions, areal density,
and intramolecular water molecule properties) have been
carried out.>*® The goals of the latter work have been to
provide an approximate melting-freezing temperature
and temperature-dependent basal plane structure factors
for the model ice Ih system.

The model system and simulation procedure are de-
scribed in Sec. II, the results are given in Sec. III, and
Sec. IV contains comments and conclusions.

II. THE MODEL SYSTEM
AND MONTE CARLO SIMULATIONS

The constant area [8(2)'/2R(X6(2)'/2R,] unit cell of
96 rigid water molecules is periodic parallel to the sub-
strate. The intramolecular HOH angle and OH bond
length are 101° and 0.972 A, respectively, and R,=2.78
A. These values (found from a static energy minimiza-
tion of 192 water molecules in the ice Ih configuration®
using the same RSL2 potentials) allow comparison of the
adsorbed water layer structure and state (liquid versus
solid) with the model bulk ice I system simulated in the
companion studies. The effective atomic electric charges,
q =0.329 83e and —2g, are fixed at the hydrogen and ox-
ygen atomic positions, and give a molecular dipole mo-
ment of 1.96 D. This value is intermediate between the
dipole moment in the vapor (~1.86 D) and values es-
timated for ice (2-2.3 D).1° A precalculated table of
RSL2 water-water potentjal values is used in the simula-
tions and a cutoff at 6 A (based on the oxygen-oxygen
separation distance) is assumed to reduce computer time.

A model rigid iodine-exposed basal face of silver iodide
in a wurtzite structure (with lattice constants a =4.58 A
and ¢=7.49 A) serves as the substrate. The water-
substrate interaction contains three terms: a 6-12
Lennard-Jones term V;;, a Coulomb term ¥V (assuming
0.4e and —O0.4e effective substrate atomic charges®), and
an induced polarization term V;,4.>* These are described
in more detail in the Appendix. Four separate three-
dimensional water-substrate potential grids for the
Lennard-Jones, the Coulomb interaction, and the induc-
tive interactions are generated using an Ewald sum for
the Coulombic terms*>*! and a cutoff of 15 A for the
remaining terms. Linear interpolation between grid
points is used to evaluate the water-substrate interaction
during the Monte Carlo simulations. Additional con-
straints on the water-substrate interaction are a hard wall
at 1 A above the z =0 plane of exposed iodine atoms (to
prevent penetration of the substrate by water molecules)
and a cutoff at z =20 A. In the 51mulat10ns, most of the
molecules remain above z=2.0 A and no molecules
reach z > 15 A. %

The Metropolis*> Monte Carlo (MC) simulations exe-
cute three independent translations along the Cartesian
axes and a rotation (with maximum value =~0.05 rad)
about a randomly chosen Cartesian axis at each step us-
ing a total of six random numbers. Maximum displace-
ments during the runs are as described below. Simula-
tions are performed at nine temperatures: 150, 200, 230,
265, 285, 300, 325, 375, and 425 K. We note that layer-
ing in fluids adjacent to substrates is well known?%264443
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and the present system also exhibits layering. In order to
monitor independently quantities for an upper (free sur-
face) layer and a lower (adjacent to the substrate) layer,
an artificial plane boundary between layers 1s assumed
(with respect to oxygen positions) at z =3.2 A; the sub-
strate plane is located at z =0 A. The latter layer
definition is consistent with the observed layering and al-
lows instantaneous assignment of molecules to the upper
or lower layer. In these simulations we calculate average
layer specific values for the dipole moments, structure
factors, and root-mean-square oxygen displacements.
Though molecules are free to cross this boundary, the
numbers in the individual layers are found to be nearly
stable. During equilibration runs, the layering is used to
introduce a 90% preferential sampling of molecules in
the upper layer. A correction factor in the acceptance
criterion to prevent the artificial accumulation of mole-
cules in the lower layer is used.*® This enhances (reduces)
the probability of travel from the lower (upper) layer.
The multiplicative correction factor P, is given by

P.=n,/9(n,+1) (from upper to lower layer), (2.1a)
P.=9n,/(n,+1) (from lower to upper layer), (2.1b)
P.=1 (no layer transition) , (2.1¢)

where n, (n,) is the number of molecules above (below)
the lower-layer boundary before the trial move.

The initial water molecule configurations for the simu-
lations reported in this work are generated as follows. A
192-molecule, four-layer unit cell (48 molecules per layer)
of ideal ice Ih (Ref. 39) is placed 3 A above the Agl sub-
strate with basal faces parallel and with six-membered
rings in the ice structure centered on the exposed iodines.
This system is then run at 7=1000 K for 10° MC steps
using the above-described unit-cell boundary conditions.
Next, the 96 water molecules farthest from the substrate
are removed. Finally a MC simulation is made for
N;=T7X10%7M) MC steps at 200 K using normal sam-
pling and a maximum displacement of 0.01 A. This final
configuration is used as an initial configuration for fur-
ther MC equilibrating simulations (with N, steps) fol-
lowed by N, averaging steps. Data collection simulations
of length N, are performed using normal importance
sampling and maximum displacements adjusted to give
an acceptance ratio =0.5. See Table I. The simulations
required ~3.5 h per million steps on an Amdahl V7. A
slight spreading of the (intramolecular) HOH angle
(<0.2%) and OH bond length ( <0.6%) from round-off
during the large number of center-of-mass rotations is
noted.

The 0.904 g/cm3 bulk ice Ih NVT Monte Carlo simula-
tions*>* (with which the present results are compared)
used periodic unit cells of 192 rigid water molecules (4
crinkled layers of 48 molecules each) with cell dimensions
[8(2)2R;X6(2)2Ry X $R]. The R, intramolecular
parameters, and water-water potentials were identical to
those used in the present simulation. The intermolecular
potentials’” were calculated directly with a cutoff of 5 A.
Simulations for the model bulk ice system with a cutoff of
6 A gave similar results near the liquid-solid coexistence
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TABLE 1. Equilibration information and results for average interaction energies per molecule for
the adsorbed layers. Numbers of MC steps are in millions. N; is the step number at which the initial
configuration was taken from the initializing run, N, is the number of equilibration steps, and N, is the
number of data collection steps. Average potential energies U and their standard deviations are in
kcal/mol per molecule. Uy is the total potential energy, U;,, is the intermolecular energy, and U, is the
water surface interaction energy. Standard deviations are found from the fluctuations in the given
quantity. C=[{U%)—{Ur)?]/kT*+0.33, and is roughly equal to the specific heat at constant
volume, in units of cal/(g K). The additive factor of 0.33 is the kinetic-energy contribution.

T N; N, N, —Ur —Uine —U; C
150 0.00 4.10 2.00 13.08+0.06 9.64+0.06 3.4410.04 0.72
200 7.11 6.06 2.00 12.67+0.08 9.27+0.08 3.40+0.05 0.72
230 0.00 4.10 2.00 12.50+0.11 9.12+0.10 3.38+£0.04 0.89
265 0.00 4.10 5.00 12.21+0.14 8.89+0.14 3.31+0.06 1.10
285 0.00 1.00 9.00 12.194+0.15 8.83+0.14 3.36%0.06 1.05
300 0.00 4.30 5.00 11.78+0.15 8.511+0.14 3.26+0.07 1.00
325 0.00 4.30 5.00 11.53+0.20 8.31+0.18 3.22+0.07 1.30
375 0.00 4.30 2.00 10.86x0.15 7.68+0.15 3.18£0.07 0.78
425 0.00 5.40 2.00 9.87+0.21 6.88+0.18 2.98+0.09 0.96

region. The molecular-dynamics simulations of model
bulk ice Ih,*” assumed the same unit-cell dimensions, but
flexible water molecules using the same RSL2 water-
water potential.>’

III. RESULTS

In all the simulations the following quantities are mon-
itored: the dipole moment p and |p| for a given layer, the
structure factors per molecule, S; (for the k; basal face
reciprocal-lattice vector) in a given layer, the intermolec-
ular potential energy per molecule, U,,, the water-

substrate potential energy per molecule, U,, the squares
of these energies, and the distribution of molecules in
constant z planes above the substrate, p(z). The calculat-
ed values are given in Tables I and II and general results
are described below.

A. The intermolecular, substrate, and total potential energies

Both the average water-substrate and intermolecular
potential energies generally increase with increasing tem-
perature. The fluctuations in the energies are all less than
about 3% of their magnitudes, but generally increase in

TABLE II. Results for the water layer system where 1 (2) denotes the lower (upper) layer. Dipole
moments are in e A, where 1 e A=4.8 D, and are for the entire layer. Structure factors are per mole-
cule. Because of variations in the number of molecules in a layer, the dipole moments and structure
factors given below are good to within about 3%. Root-mean-square displacements R; and R are in A.
R, is given separately for top and bottom layers. Note that R; and R are for different numbers of steps
and R is for both layers.

T (P,) (P,) (P,) (P) (s (S;) R, R
1 150 —0.41 —0.61 —0.62 1.1 0.44 0.44 0.30 0.45
2 —2.00 1.30 —3.70 4.4 <0.1 0.03 0.53
1 200 —0.57 —0.42 —0.51 1.0 0.45 0.43 0.37 0.74
2 —0.40 —0.26 —3.20 3.3 0.01 0.05 0.90
1 230 0.55 —0.43 0.14 1.0 0.44 0.52 0.46 0.75
2 —0.27 —0.61 —3.50 3.7 0.04 0.04 0.92
1 265 0.57 —0.50 —0.20 1.1 0.41 0.47 0.54 1.14
2 0.01 1.40 —2.80 33 0.04 0.02 1.41
1 285 0.44 —1.70 —0.49 2.0 0.56 0.50 0.65 1.35
2 0.38 1.20 —3.20 3.7 0.10 0.10 1.70
1 300 —0.93 —0.63 —0.24 1.4 0.55 0.51 0.96 1.50
2 1.70 —0.85 —2.70 3.6 0.04 0.03 1.80
1 325 —0.45 0.30 —0.20 1.2 0.45 0.45 1.01 2.15
2 0.04 —0.02 —2.50 2.9 0.03 0.05 2.66
1 375 0.21 —2.40 —0.81 3.0 0.48 0.41 1.06 1.92
2 —1.50 0.95 —2.40 34 0.04 0.02 2.31
1 425 —0.15 —0.07 —1.00 1.6 0.40 0.38 1.33 3.14
2 —0.15 0.17 —1.90 2.8 0.03 0.03 3.77
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FIG. 1. The kinetic plus water-water interaction potential
energy per molecule for the two water layer systems on the
basal Agl substrate and for the bulk ice/water systems. Open
circles represent the bulk Monte Carlo simulation (Ref. 40),
open squares represent the bulk molecular-dynamics simulation
(Ref. 47), and X’s represent the two-layer system on the model
basal Agl substrate.

relative size with increasing temperature. The sum of the
average kinetic and intermolecular potential energies per
molecule versus temperature (Fig. 1) appears to lie on
two straight lines with the intersection occurring near
300 K. This latter change in slope suggests a phase
change and will be discussed further below, in connection
with other properties of the system. In Fig. 1 is also plot-
ted the total energy per molecule for the bulk ice NVT
systems.*>*” We note that the Monte Carlo constant
volume pressure versus temperature results of Han and
Hale* show the onset of liquid-solid coexistence between
280 and 290 K.

The total energies remain quite stable throughout the
averaging runs. Small anomalies did occur during the
equilibrating runs, however. One of the problems with
such simulations (particularly for water near a phase
transition) is the verification of equilibration.

B. Structure factors and distribution
of molecules above the substrate

The reciprocal-lattice vectors for the structure factors
S; are
ki=(%)1/2Ro[i+( —1 )i3(~1/2)/)\,] R
where i =1,2.*® These two-dimensional structure factors
reflect the match between the xy projections of the oxy-
gen coordinates and the perfect basal face ice Ih struc-
ture. We note that layer boundary crossings introduce
small discontinuities in the structure factors as functions
of MC step and a 2%-3% uncertainty in the average
“layer” structure factors per molecule.
Another indicator of structure is p(z), the average
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FIG. 2. The distribution of molecules perpendicular to the
substrate, p(z), for T=200 K, where p has units (0.1
molecules/A). The z =0 A plane passes through the exposed I
atoms.

number of molecules in 0.05-A bins centered on equally
spaced values of z, starting at z=1 A. In the ice Ih
structure, the “layers” (parallel to the basal face) are
composed of crinkled six-membered rings whose mole-
cules lie alternately R,/6 above and below the mean
molecular plane. This has the effect of forming double
layers of molecules or, equivalently, double peaks in p(z)
separated by approximately R,/3=0.93 A. Figure 2
shows p(z) at T =200 K. This is typical of most temper-
atures. While layering (as generally expected for a liquid
near a solid surface) is evident, there is little evidence of
double peaks. One possible explanation for the single-
peak structure of the lower layer is a water-substrate
binding energy too large to allow the molecules to relax
into crinkled rings. Figure 3 shows snapshots of the wa-
ter molecules in the lower and upper layers at 200 K.
Three configurations (separated by approximately 1 mil-
lion MC steps) are superimposed to indicate the extent of

FIG. 3. Views of the 96 water molecule unit cell for the two-

layer system on the basal Agl face at 200 K showing (a) the
lower layer, (b) the upper layer, and (c) both layers. In each
view three configurations separated by approximately one mil-
lion steps are superimposed to indicate the extent of thermal
motion. The top view is along —2 and the bottom view is paral-
lel to the Agl surface; Ag (I) atoms are shown as small (large)
dashed circles and H (O) atoms are shown as small (large) solid
circles.
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thermal motion. Note the solidlike six-membered ring
structure in the lower layer and the less-stable disordered
molecular arrangements in the upper layer.

Figure 4 shows (S, +S§,)/2, the average structure fac-
tor for a given layer as a function of temperature. The
average structure factor in the upper layer is small at all
T and comparable to the 350-K bulk structure factors.
This lack of structure is expected for high temperatures.
At lower T it suggests the existence of an amorphous
solid or a liquidlike layer, consistent with experimental
evidence for a quasiliquid layer'?~!7 on ice at tempera-
tures close to the melting point. At the lowest tempera-
tures (230, 200, and 150 K), the molecules have probably
been frozen into a disordered state which emerged during
the initialization of the water layer system. This will be
discussed later in terms of molecular diffusion. At inter-
mediate temperatures, however, the molecules in the
upper layer should have sufficient kinetic energy to reor-
der.

The structure factors per molecule for the lower layer
are comparable to those for bulk .ice at 260 K. This is
surprising at the higher temperatures (above 325 K) but
near 300 K is consistent with infrared absorption experi-
ments which indicate the presence of ice structure above
the melting temperature in thin layers of water on silver
iodide.*’ (There is also experimental evidence for the per-
sistence of order in previously frozen water monolayers
ons(s)c;rlne substrates, if the sample is not heated excessive-
ly.”%>"h)

Examination of the more detailed temperature depen-
dence of the average structure factor for the lower layer
indicates an overall increase with temperature up to 285
K, probably because of defect annealing. Also, there is a
slow decrease for T greater than 285 K, and a definite
drop above 375 K. A short run at 500 K produces a fur-
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FIG. 4. The average structure factor, S =(S, +S,)/2 for ice
basal face lattice vectors versus temperature for the bulk ice
Monte Carlo simulation (Ref. 40) (solid circles), the upper water
layer on Agl (open triangles), and the lower water layer on Agl
(inverted open triangles). Straight lines connect the points for
the model bulk ice data.
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ther drop to 0.33 and indicates the expected tendency for
desorption. From the present work it is only possible to
predict a melting temperature for the lower layer between
300 and 375 K—probably near 325 K.

C. Dipole moments per layer

At all temperatures the magnitude of the total dipole
moment (for a layer of about 48 water molecules) is small.
See Fig. 5. The p, and p, show some cancellation be-
tween layers, and no preferred orientation. The p, for
both layers is directed toward the substrate. However,
the lower layer has a small p, consistent with the equili-
brated bulk-ice values, whereas the upper-layer molecules
have a distinct polarization along —z. The lower-layer
ring structure appears to preferentially orient the dipole
moments parallel to the substrate. See Fig. 3. On the
other hand, the upper-layer molecules are free to respond
more readily to the electrostatic interaction with the ex-
posed layer of negative iodide ions. One cannot conclude
anything from the present study about the dipole orienta-
tion at a vapor-liquid water interface’®> in the absence
of a substrate.

D. Specific heats

The specific heats are calculated in two ways: from the
fluctuations in the total potential energy of the system,
C=((U?)—(U)?) /kyT?*+3ky (where ky 1is the
Boltzmann constant and U is the intermolecular potential
energy) and from the slope of the total (intermolecular
plus kinetic) energy versus temperature. See Table I for
the specific heat C from the first method.

The 3kjy contribution to C from the kinetic energy
comprises 20%-40% of the total specific heat. The C
values are plotted in Fig. 6—together with C values for
the bulk ice system from the Monte Carlo simulation.*
The specific heat for the adsorbed two water layer system
shows a general increase with T up to about 265 K, then
a decline to about 300 K. The values at 325, 375, and 425
K show fluctuations which remain unexplained. The pos-
sibilities of nonequilibration and/or overlapping (and
different) changes of state in the two layers as a function
of temperature complicate the situation. For example, in
the lower layer near 325 K melting is likely. In the upper
layer near 375 K desorption is likely. The values of C at
T=150 and 200 K are comparable to those of the bulk
ice system, whereas the value of C for 265, 285, and 300
K are closer to the liquid water value at 350 K.

In the second method the specific heat is calculated
from the slope of the energy vs T curve in Fig. 1. The
values are ~0.710.1 cal/g K for T<265 K and 1.1+0.2
cal/gK for T =325 K. These values are close to those
for the Monte Carlo bulk simulation®® and the
molecular-dynamics simulation (1.03 cal/gK for the
liquid and 0.66 cal/gK for the solid systems).*’ In the
present simulation the energy value at 285 K cannot be
placed conclusively on either line and has been excluded
from the calculation of the slopes.
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FIG. 5. The dipole moment of the upper layer of approximately 53 water molecules (open triangles) and the lower layer of approx-
imately 43 water molecules (inverted open triangles) in the two water layer system on the model basal Agl substrate: (a) the x com-
ponent, (b) the y component, (c) the z component, and (d) the magnitude of the dipole moment. Straight lines connect the points. In
the vapor, one water molecule has a dipole moment equal to approximately 1.86 D=0.38 e A; in the water layer system each mole-

cule has a dipole moment of 1.96 D.

E. Pseudodiffusion coefficients

During the simulations, the distance of each oxygen
from its original position, the mean-square displacement
of each oxygen per move (rather than per step), MSDM,
and the total number of moves for each oxygen are moni-
tored. From these quantities, a mean-square displace-
ment for a given layer, { MSD; ), at any step number can
be approximated by noting which molecules are in the
layer at a given step and averaging (over those molecules)
the MSDM. The normal procedures for calculating a
mean-square displacement for a given layer cannot be
used since a few molecules “diffuse” between layers dur-
ing the run.

After a sufficient number of steps the {MSD; ) stabilize

and exhibit one of the following properties versus step
number: (1) a very small slope (indicating a solidlike
state); (2) a slope which increases moderately with step
number (indicating a quasiliquid or liquidlike state); or (3)
a much larger slope (indicating a real liquid or quasiva-
por state). As expected all the slopes for the upper layer
are at least an order of magnitude larger than for the
lower layer at the same temperature. In the lower-
(upper-) layer case (1) occurs for T'<265 (230) K. For
both layers at 375 and 425 K the slope is large [case (3)].
At intermediate temperatures case (2) holds. The slope of
the stabilized {MSD; ) versus step number per molecule,
(8MSD,; ) /8N, is used for determine a “pseudodiffusion”
coefficient (in A %/step ) for the ith layer, D;:
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FIG. 6. Specific heat C vs temperature for the two-layer sys-
tem on Agl (X) and the bulk ice/water system (Ref. 40) (cir-
cles) calculated from the fluctuations in the total energy of the
system. Straight lines connect the bulk ice points. The constant
density bulk ice system enters a liquid-solid coexistence region
near 280 K and does not have a “peak” in the specific heat at
the boundary.

D;=(8MSD;) /(65N) . 3.1

The D; give a rough measure of the relative mobility of
the molecules.’* Obviously, real diffusion does not occur
in Monte Carlo simulations.

An approximate conversion factor of 10'° steps/sec is
obtained by relating the Monte Carlo® and molecular-
dynamics*”% results for similar bulk systems. The self-
diffusion coefficient from the molecular-dynamics simula-
tion at 330 K, where D =0.7 cm?/sec, is compared to the
slope of the root-mean-square displacement versus the
number of steps per molecule in the Monte Carlo simula-
tions at 350 and 320 K. The D, in units of cm?/sec, are
shown in Fig. 7. These “pseudodiffusion” coefficients for
the water layers are compared with experimental values
of the self-diffusion coefficient for liquid water,>® natural
single-crystal ice,’’ a “quasiliquid layer” on ice,'® a melt-
ed bulk ice Monte Carlo simulation at 350 K,*® the melt-
ing bulk ice flexible molecular-dynamics simulation at
330 K,*"> and a molecular-dynamics simulation for
liquid water by Stillinger and Rahman®’ using the RSL2
water-water potentials with density=1 g/cm?.

It is not clear whether the same conversion between
steps and seconds has meaning for the adsorbed water
layers. However, assuming the conversion is correct to
within an order of magnitude, the pseudodiffusion
coefficients for the adsorbed water layers fall distinctly
below the experimental values for liquid water and above
the experimental values for ice. Such a rough conversion
between steps and seconds also places the adsorbed water
layer pseudodiffusion coefficients above those observed
for a “quasiliquid layer” obtained from the nuclear mag-
netic resonance studies of Mizuno and Hanfusa.!’

One unsatisfactory feature of the water layer D values
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FIG. 7. Temperature dependence of the pseudodiffusion
coefficients from Monte Carlo simulations (in cm?/sec) for the
upper-layer of water on Agl (open triangles), lower layer (invert-
ed triangles), and bulk H,O NVT simulation (Ref. 40) (+). Also
shown are the self-diffusion coefficients from: 1 g/cm?® liquid
water molecular-dynamics simulations using the RSL2 potential
(Ref. 37) (®); the 0.904 g/cm?® molecular-dynamics simulations
using the RSL2 potentials (Refs. 47 and 55) (solid square); ex-
perimental values for liquid water (Ref. 56) (open squares), ice
(Ref. 57) (X), and a “quasiliquid layer” on ice (Ref. 15) (open
circles). The conversion 10'* Monte Carlo steps equal to 1 sec is
used.

remains. The values for the lower layer (which appears
in all other respects to be solidlike at temperatures below
325 K) are large compared to those for solid bulk ice. A
possible explanation is that the water layer adjacent to
the substrate (defined to be below 3.2 A) contains several
molecules (perhaps of the order of 10%) which diffuse
readily out of and back into the lower layer. Also, the
lower layer probably contains more ‘“defects” than bulk
ice. A third possibility is that the molecules in the lower
layer acquire enhanced diffusion because of the adjacent
liquidlike layer. It should be pointed out that an order-
of-magnitude decrease in the conversion factor (to 10
steps/sec) for the water layers would yield rough equality
between the lower-layer results and those for the quasi-
liquid layer. A two-order-of-magnitude adjustment
would bring the upper-layer values down to those for the
quasiliquid layer and the lower-layer values close to those
of bulk ice. While this seems plausible from a physical
point of view, it is not possible to justify such a low con-
version factor from the available simulational data. In
any case, it is clear that the plot of the pseudodiffusion
coefficients versus 1/7 shows a change in slope between
230 and 285 K for both layers—indicating a shift in the
diffusion barriers. Diffusion barriers calculated from the
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pseudodiffusion coefficients at higher temperatures (for
both layers) appear to be closer to that for liquid water
(4.5 kcal/mol) than for ice ( =15 kcal/mol).

IV. DISCUSSION OF RESULTS

At all the temperatures up to 375 K the model (iodine
exposed) basal face of Agl appears to order the lower wa-
ter monolayer in a solidlike plane of five- and six-
membered rings centered on the iodines. The structure
factor results suggest that this layer begins to disorder be-
tween 300 and 325 K. The pseudodiffusion coefficient
data in this temperature region are not inconsistent with
this picture. The existence of an ordered layer at temper-
atures above the apparent model bulk ice melting temper-
ature (near 280 K)* is consistent with the experimental
finding of Bakhanova and Kiselev,* who observed an
“icelike” infrared absorption band for a thin film of H,O
on Agl at temperatures from 264 to 293 K. For all the
temperatures studied, the ice basal face structure factors
of this lower layer are comparable to those in the model
bulk ice system. At T =285 and 300 K the lower-layer
structure factor per molecule shows a distinct peak—
possibly due to the annealing out of previously frozen de-
fects. The peak gives further indication that this layer is
solidlike at 300 K. The pseudodiffusion coefficients for
the lower layer are large compared to the experimental
values for bulk ice. This could be due to the liquidlike
properties of the neighboring upper layer or to annealing
effects. The lower monolayer has a nearly zero dipole
moment projection perpendicular to the substrate.

In the present simulations for 77<230 K the upper lay-
er displays properties similar to those of an amorphous
solid; the large number of defects at the surface probably
gives rise to the rather large pseudodiffusion coefficient.
For T =265 K, the upper layer displays more liquidlike
properties. First, the structure factors are similar to
those for liquid water. Second, the diffusion barrier (~3
kcal/mol) is similar to that for liquid water (4.5
kcal/mol). Third, the pseudodiffusion coefficient is only
about one order of magnitude smaller than that found ex-
perimentally for liquid water.’® The existence of liquid-
like surface layers and/or surface premelting effects has
been indicated on surfaces other than ice.’®* % For ex-
ample, the effect of surface melting has been observed at
the (110) surface of lead.®® Computer simulations have
also examined surface premelting phenomena.®?~%" In
particular, it appears that diffusion coefficients and small
diffusion barriers alone are not sufficient to determine the
state of the surface layer. Finally, the upper layer of wa-
ter has a net dipole moment directed into the
substrate—probably arising from the exposed iodine sur-
face charge.

Not surprisingly, the system seems to be “evaporating”
for T 2375 K, with upper-layer molecules rising off the
surface 10 A or more, and those in the lower layer work-
J
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ing their way into the upper layer. The mean-square dis-
placements for both layers also show a steady increase
with step number above 375 K. Over this range of tem-
perature, there is a consistent decline in the structure fac-
tors and/or molecule of both layers, the more marked in
the lower layer because of its relatively high initial values.
A short simulation at 500 K corroborates this, with
structure factors and/or molecule dropping to less than
0.33 in the lower layer in less than three million steps
(equilibration run included), and molecules rapidly leav-
ing both layers.

V. CONCLUSIONS AND COMMENTS

The simulations indicate that the model adsorbed wa-
ter system takes on a complex character with the upper
and lower layers displaying different solidlike, quasili-
quid, or liquid properties at the same T. The implica-
tions of this for theories of ice nucleation on Agl and oth-
er substrates could be significant. Clearly the model of a
simple spherical cap of ice on an undistorted basal face of
Agl would not describe this system.

Some experimental studies have reported that ice does
not form readily on the basal face of AgL.%® The present
study indicates that at least in the second adsorbed layer
ice formation above about 265 K is inhibited by the free
surface entropy. It should be noted that the conclusions
of the present work cannot be applied to the prism face of
Agl. Our previous work with models for water on the
Agl prism face indicates that the first water monolayer is
even less structured than on the basal Agl face. Possible
remedies to this difficult situation for ice formation on
Agl are not lacking. The popular view is that impurities
(probably steps and ledges) play a large role in stabilizing
the water molecules. Some preliminary simulations for
two water layers on a model basal face ledge indicate that
the ledge is marginally better at promoting ice structure
in the upper layer.

An interesting possibility is that ice nucleation occurs
within a thicker film of adsorbed water on the basal Agl
face after the two-dimensional nucleation of a solidlike
monolayer adjacent to the substrate. The three-
dimensional nucleation would then occur on the icelike
underlayer with an extremely small lattice mismatch.
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APPENDIX

The water-substrate interaction given below is the
same as that used in Ref. 34, except that here a three-
point-charge model of the water molecule is used, instead
of the four-point-charge model used there:

(A1)

(A2)
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n,m

where n and m indicate substrate ions and i and j the in-
dividual charges in the water molecule. The ¢,, a,, and
r, are the effective charge, polarizability, and position
vector of the nth atom in the substrate, respectively. The
g;» a,, and r, are the atomic charges, polarizability, and
center-of-mass position vector of the water molecule, re-
spectively. The values of the Jparameters in the potential
functions are 0,5, =3.171 A, €,,,=0.5467 kcal/mol,

0 =3.342 A, €,=0.622 kcal/mol, a,,=2.4 A%

a;=6.43 A3, and a, =1.44 A3, The position vectors r
have units of A. The potential functions have units of
kcal/mol.

Since in the first inductive term cancellations occur

n,i, j

(A3)

—

when n#m, only the n =m terms are included in the
generation of the grid. In the grid for the second induc-
tive term (the contribution from polarization of the sub-
strate atoms) the water molecule has its dipole moment
directed perpendicular to the substrate along +2. The
interpolation from this grid is multiplied by
[1+(p2/p)?1/2 where p is the water molecule dipole
moment. Beyond 5 A the potential is essentially uniform
in planes of constant z and a five-point Lagrange interpo-
lation is used in the z direction. For oxygen-substrate
distances greater than 10 A, the potential is set equal to
zero.
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