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On the Calculation of Multicenter Two-Electron Repulsion Integrals Involving Slater 
Functions * t 

R. A. BONHAM, J. L. PEACHER, AND H. L. Cox, JR. 

Departments of Chemistry and Physics, Indiana University, Bloomington, Indiana 

(Received 22 January 1964) 

Integral transforms are used to evaluate many-center two-electron repulsion integrals involving Slater 
s-type functions. The reduction of a general four-center integral of this type to a form convenient for 
computational purposes is presented. The technique described has the important advantage that all lesser 
many-center and one-center integrals can be obtained from the four-center case by proper choice of con
stants. The form of the result is such that simple single-precision numerical techniques yield rapid and ac
curate evaluations of many-center integrals. Several numerical examples are presented. 

I. INTRODUCTION 

THERE are a number of integral transforms which 
have proved useful in solving scattering problems.1-3 

It is the central purpose of this paper to show the 
utility of applying these same techniques to the 
evaluation of certain multicenter integrals found in 
molecular quantum mechanics. The main integral 
transform which is used is the momentum space 
representation of the Green's function for an outgoing 
scattered wave 

exp[ik I fl- f21] 

I fl-f21 

We can obtain two very useful relations from (1.0) 
by first setting k=O to obtain the relation 

! fl-f2!-1= (27r2)-ljdK exp[i~: (fl-f2)], (Ll) 

and secondly by letting k = iZ and by making use of 
Leibnitz's rule to get 

I fl-f2lN exp[ -Z I fl-f21] 

=(2 2)-1(_dl dZ)N+ljdK exp[iK· (fl-f2)J . (1.2) 
11' (10+Z2) 

Equation (Ll) is used to separate the 1/1 fl-f21 
term in electron repulsion integrals while Eq. (1.2) 
serves as a means of transforming s-type Slater func
tions from one center to another. 

It should be pointed out that the Fourier transform 

* The authors wish to thank the U. S. Atomic Energy Commis
sion, the U. S. Air Force Office of Scientific Research and the 
Petroleum Research Fund for their financial aid. 

t Contribution Number 1190 from the Chemical Laboratories of 
Indiana University. 

1 P. M. Morse and H. Fechbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2, 
p.1076. 

2 R. A. Mapleton, Phys. Rev. 112, 479 (1960); K. Ruedenberg 
(private communication). 

3 A closely related approach has been given for certain cases 
which utilize the convolution theorem. F. P. Prosser and C. H. 
Blanchard, J. Chem. Phys. 36, 1112 (1962) and M. Geller, J. 
Chem. Phys. 39, 84 (1963). 

of Eq. (1.1) yields the familiar Bethe relation4~, 

j dfl exp[iK· flJ= 411' exp[iK· f2] (1.3) 

I f l- f 21 K2' 

II. FOUR-CENTER ELECTRON REPULSION INTEGRAL 

Application of the techniques outlined above will be 
applied to the most difficult and general electron 
repulsion integral first as it will be shown later that all 
the other electron repulsion integrals can be obtained 
from this result. A general four-center integral can be 
reduced to the calculation of two one-electron two
center integrals by application of (1.1) 

(cPa(1)cI>b(2) 1(1 fl-f2 \)-1 I cf>e(1)cM2» 

fdK 
= (211'2)-1 K2 exp[iK· fubJ 

(cf>a(l) I exp[iK· flJ I cf>e(1) > 

• (cf>b(2) I exp[-iK'f2J I cf>d(2), (2.0) 

where the term exp[iK· fab] must be introduced to 
translate exp[ -iK'f2] from Center a to Center b. 

Equation (1.2) is used to simplify the remaining 
one-electron integrals so that 

(cf>a(l) I exp[iK· flJ I ePc(l) ) 

= (J 1211'3) (ZaZc)!( -dldZe) 

j dq exp[iq ·faeJ j . 
X (q2+Zc2)' dfl exp[ -Zarl+~(q+K) 'fl], 

(2.1) 

where cf>a(l) = (ZN11'!) exp[ -Zarl], and cf>e(l) = (ZN11'!) 
exp[ -ZerlJ. Slater l=s functions have been used to 
simplify the algebra. The integration over fl can be 
carried out resulting in 

(2.2) 

4 N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Oxford University Press, London, 1949), p. 226. 
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The q integration can also be carried out by making 
use of the Feynman identity 

fl dOl. 
(ab)-l= 0 [a+ (b-a)a]2 (2.3) 

and the substitution p= q+ak. This reduces Eq. (2.2) 
to 

2 d2 
(<Pa(l) I exp[ik·rl] I <Pe(l)}= ,/ZaZc)ldZadZe 

f l • fdP exp[ip· rae] 
X odaexp[-tak.rae] [p2+M]2 ' (2.4) 

where M is given by 

M=k2a(1-a)+(Za2-Ze2)a+Ze2. (2.5) 

The integral over q has thus been reduced to a simple 
form in terms of the variable p and can be integrated 
and differentiated with respect to the Z's to yield 

(<Pa(l) I exp[iK·rl] I <Pc(1»=2(ZaZe)t[da a(1-a) 
o 

(
exp[ -iak· rae-raeM])( 2 3rae+~) 

X Mi rae + M' M' (2.6) 

In like manner the remaining one-electron integral can 
. be written as 

(<pb(2) I exp[ -iK.r2] I <Pd(2) )= 2 (ZbZd) t[df3 f3(1-f3) 
o 

(2.7) 

where 
N = k2f3(1-f3) + (Zb2- Zi) f3+Z,l. (2.8) 

Putting Eqs. (2.6) and (2.7) into Eq. (2.0) and 
performing the angular in~egrations yields the final 
'formula for the four-center case as 

(<Pa(1)<Pb(2) 11/1 rl- r 211 <Pe(1)<Pd(2» 

= (8/71') (ZaZbZeZd)! 

X [daa(l-a) [df3f3 (l- f3 ) tc 

dk 
o 0 0 

Xjo(k I rab-arae+f3rbd I) 

{(
exp[ -raeM -rbdN])(r. 2+ 3rac +~) 

X (MN)1 ae Mi M 

It is of interest to note that all the Z dependence is 
contained in that part of the integral in (2.9) which is 
in the { } brackets and all the angular dependence 
of the geometry of the four centers is contained in the 
argument of the zero-order spherical Bessel function. 

These facts can be useful in economizing on computing 
time. 

Equation (2.9) can be also readily modified for the 
cases of high-order s-type Slater functions (i.e., 2s, 
3s, etc.) simply by differentiation with respect to the 
appropriate Z value. Also of importance is the fact that 
Eq. (2.9) is valid for the case where the term 1/1 rl- r21 
is placed on a fifth center, say Center e, if the argument 
of the spherical Bessel function is replaced by the 
expression (k 1 rae+ rbe-arae+f3rbd I). All the three
center, two-center, and one-center cases can be ob
tained from Eq. (2.9) by proper choices of the Z and r 
parameters. The details are given in Table 1. It should 
be noted that only the main types of integrals have been 
listed and that additional permutations within a given 
type may take place requiring certain redefinitions of 
rand Z parameters. 

As a check of the foregoing results it is worthwhile to 
consider the one-center case which can be obtained 
from Eq. (2.9) by allowing Z=Za=Zb=Ze=Zd and 
rab=rae=rbd=O. Equation (2.6) can then be written as 

(<Pa(t) 1 exp[iK· rl] 1 <Pe(1) ) 

fl daa(l-a) 
=6Z5 

o [k2a(1-a) +Z2]1 

which upon integration reduces to 

(2.10) 

(<Pa(l) I exp[iK.rl] I <Pe(l) )=8Z4/(k2+4Z2)2. (2.11) 

Substituting the square of Eq. (2.11) into Eq. (2.0) 
and performing the integration over k yields the 
familiar result 

(<Pa(1)<Pb(2) 11/1 rl-r211 <Pe(l) <Pd(2) }=5Z/8. (2.12) 

An attempt has also been made to include higher 
spherical harmonics in the Slater-type one-electron 
functions but so far we have been unable to evaluate 
the integrals. 

fd exp[iq·rae] I q+k I /1 . k 
q(q2+Zn (I q+k 12+Za2) 0 dOl. exp[ta . rae] 

.fd exp[ip·rae] 1 p+(l-a)k 1 (2.13) 
P (p2+M)2 . 

These integrals are the only ones which arise from the 
introduction of functions of p-type symmetry which we 
have not been able to reduce to a form as simple as the 
one presented in Eq. (2.9). 

III. NUMERICAL EXAMPLES 

As the main purpose of this paper is to present a new 
approach to evaluating multicenter integrals no 
attempt has been made to construct an optimum 
computer program for the calculation of Eq. (2.9). 
Rather a seven-point Gauss quadrature scheme" was 

6 J. B. Scarborough, Numerical Mathematical Analysis (The 
Johns Hopkins Press, Baltimore, Maryland, 1930), pp. 131-139. 



TWO-ELECTRON REPULSION INTEGRALS 

TABLE 1. Multicenter 1s electron repulsion integrals obtainable from Eq. (2.9) by redefinition of the rand Z parameters. 

Number of 
centers 

5 

4 

3 

2 

Integral type 

(rt>.(1)rt>b(2) 11/'121 rt>.(1)rt>a(2»· 

(rt>.(1)rt>b(2) 11/r121 rt>,(1)rt>a(2» 

(rt>.(1)rt>b(2) 11/r121 rt>.(1)rt>d(2»· 

(rt>.(1)</>.(2) 11/1121 rt>b(1)rt>a(2»a 

(rt>.(1)rt>b(2) 11/r121 rt>. (1)rt>d (2) ) 

(rt>.(1)rt>.(2) 11/r121 rt>b(1)rt>d(2» 

(</>.(1)rt>.(2) 11/r121 rt>.(1)rt>b(2»a 

(rt>.(1)rt>.(2) 11/r121 rt>b(1)rt>b(2»a 

(rt>.(1)rt>b(2) 11/r121 rt>.(1)rt>b(2»a 

(rt>.(1)rt>.(2) 11/r121 rt>.(1)rt>b(2» 

(</>.(1)rt>.(2) 11/r121 rt>b(1)rt>b(2) ) 

(rt>.(1)rt>b(2) 11/T121 rt>. (1) rt>b(2) ) 

(rt>.(1)rt>.(2) 11/r121 rt>.(1)rt>.(2»

(rt>. (1)rt>. (2) 11/r121 </>. (1)rt>. (2) ) 

Choice of Z parameters 

Z.=Z. 

Z.=Z. 

Z.=Z. 

Z.=Z. 

Zb=Z.=Z., Za=Zb 

Zb=Z., Z.=Zb, Zd=Z~ 

Z.=Z., Za=Zb 

Zb=Z.=Z., Za=Zb 

Zb=Z., Z.=Zb, Za=Zb 

Z.=Z., Zd=Zb 

Zb=Z.=Zd=Z. 

Zt=Z.=Za=Z. 

- In these cases the term 1/ru is on a different center which has been designated Center •• 

Choice of r parameters 

r •• =O, rab=r.,+rb. 

rab=2r •• 

r.,=O 

r.,=O, rab=2r." rba=rab 

r.,=rba=r.b, rab=2r •• 

r .,= rba= roo, r 00= 2r., 

r.b=r.,=O, rbd=rab 

r.o=O, r •• =rbd=r.o 

r.,=rba=O 

r •• =rb.=O, r.o=2r., 

r.o=r.,=T[a=O 

TABLE II. Values of various electron repulsion integrals calculated from Eq. (2.9). 

Value from Comparison Computing 
Integral Eq. (2.9) value time Parameters 

3085 

(</>.(1)</>.(2) 11/r121 </>.(1)</>a(2» 0.0127424 0.0127405- 8 min '.b=r •• =r.a=2.0, Z.=5.7, Zb=Z.=Za=1.0 
o (r.b·r •• ) = 0(1'.0'1' .d) = 109.4712 deg 
<1>=120.000 deg 

(rt>.(1)rt>.(2) 11/r121 </>.(1)rt>d(2» 0.28477401 0.28477434b 7 sec 'ab=r.a=1.66, Z.=Zb=Z.=Zd=1.4 
,. •• =0 
o (r.o·r.d) =60.00 deg 

(rt>.(1)</>.(2) 11/r121 rt>. (1)rt>a (2) ) 0.1644556 0.1644528b 7 sec '.o=".d=1.66, r •• =O, Z.=Zb=Z.=Zd=1.4 
o (r •• ·r.d) =60.00 deg 

(</>.(1)rt>.(2) 11/r121 rt>.(1)rt>.(2» 0.624995 0.625000· 3 min r.o=r •• =r.d=O 
Z.=Z.=Z.=Zd= 1.0 

a Calculated using the program discussed by Ref. 7. 
b Calculated by R. Christoffersen using programs based on Barnett and Coulson Reiman zeta-function technique. 
• Exact value. 

TABLE III. Survey of four-center homonuclear electron repulsion integrals for a tetrahedron as a function of internuclear distance ,. 
and screening constant Z. 

, 0.8 1.0 1.2 

1.0 0.475152 0.413102 0.351481 
1.5 0.527222 0.399780 0.292882 
2.0 0.482206 0.312306 0.193460 
3.0 0.290190 0.132750 5. 73186X 10-2 
4.0 0.13453()a 4. 25902X 10-2- 1. 263117X10-2b 

- These values are accurate to at least four significant figures. 
b These values are accurate to at least five significant figures. 

Z 

1.4 1.8 2.2 2.8 

0.293494 0.195255 0.123506 5. 78498X 10-2 
0.208582 9. 89604X 10-2 4.38856 X 10-2 1. 18489X 10-2 
0.115700 3.82124XlO-2 1.16772X 10-2 1. 78555X 10-8 
2.36977XlO-z 3. 68697X 10-8 5. 25019X 10-4 2.52514XlO-6 
3. 57111 X 1O-8b 2. 57795X 1O-4b 1. 69213 X 1O-6b 2 . 52601 X 10-7b 
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employed to evaluate the integrals and the programs 
and computations were carried out in Fortran using an 
IBM 709 computer. The accuracy of the computations 
was checked by comparison with known values and 
values obtained from other multicenter integral 
routines.6 In Table II some actual comparisons are 
presented along with the computation times involved. 

In order to further illustrate the utility of the 
method an investigation of a four-center integral for a 
tetrahedral arrangement of the four centers was car
ried out with respect to variation of rand Z. The results 
are presented in Table III. The computing time per 
integral was 7 sec. 

With the crude techniques that were employed to 
integrate (2.9) it was found that for small values of 
Z (Z< 2) all the integrals could be obtained to six-place 
accuracy in from 7 to 30 sec. The introduction of large 
Z (Z>4) values, however, caused a substantial in
crease of computing time since more than seven points 
were needed to evaluate the a and f3 integrals. For sym
metrical cases (i.e., homonuc1ear diatomics, three-

6 R. M. Pitzer, ]. P. Wright, and M. P. Barnett, Technical 
Note No. 23, Cooperative Computing Laboratory, Massachusetts 
Institute of Technology. 

center homonuc1ear equilateral triangles, and four
center homonuc1ear tetrahedrons), it can be shown 
that the a and f3 integrals need only be evaluated from 
o to !, thus reducing the computation time for these 
special cases by a factor of 4. 

It would appear that a substantial improvement in 
accuracy and computing time can be gained by using 
integration schemes which made use of the functional 
forms contained in the integrand function in Eq. (2.9) 
as weighting functions. Another advantage of the ap
proach used here which became apparent during the 
course of the numerical investigations was the fact 
that rounding errors are not serious and in one example 
it appeared that only two significant figures were lost 
because of rounding errors when more than 60 000 
Gaussian points were used in the evaluation of Eq. 
(2.9) . 
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