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Network Formalism for Modeling Functionally
Gradient Piezoelectric Plates and Stacks and
Simulations of RAINBOW Ceramic Actuators

John Ballato, Member, IEEE, Robert Schwartz, Member, IEEE, and Arthur Ballato, Fellow, IEEE

Abstract—A simple network representation is given for
a stack of thin, homogeneous piezoelectric plates, executing
a single thickness mode of motion. All plates may differ in
thickness and material properties, including dielectric loss,
ohmic conductivity, and viscous loss. Each plate is driven by
a thickness-directed electric field, and all stack elements are
connected electrically in series. Functionally gradient single
plates and composites are readily modeled by the network,
to a desired precision, using a sequence of circuit elements
representing stepwise variations in material properties and
layer thicknesses. Simulations of RAINBOW (Reduced And
Internally Biased Oxide Wafer) ceramics are given.

I. Introduction

Materials deliberately fashioned to have spatially
varying characteristics are designated as “function-

ally gradient.” These range from nanoscale modulation-
doped semiconductors [1] to macroscopic RAINBOW ce-
ramics [2], [3] and various other devices, configurations,
and systems [4]–[11]. Spatial distributions in parame-
ters (e.g., elastic, thermoelastic, piezoelectric, and dielec-
tric material properties), result in unique operational at-
tributes, but make characterization and modeling more
difficult. Many of the devices in this category are piezo-
electrics used for sensing and actuation, such as micro-
electro-mechanical structures (MEMS). For these electro-
mechanical systems, characterization usually takes the
form of an equivalent network because the device itself
forms part of the overall circuitry.

Equivalent electrical networks have been utilized suc-
cessfully for many years to model the behavior of both indi-
vidual and cascaded piezoelectric resonator and transducer
structures. Lumped-element circuits of the Butterworth-
Van Dyke (BVD) type [12]–[14] are apt for simulat-
ing resonator and transducer behavior in a narrow fre-
quency band centered about a single harmonic. Dis-
tributed (acoustic transmission line) equivalent networks
are suited to wideband operation and fall into two main
categories: Mason-type circuits, [15]–[20] and those of
Krimholtz, Leedom, and Matthaei (KLM) [19], [21]–[23].
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These network embodiments both realize exactly the
three-port immittance relations derived from the physics
of the situation but are distinguished by internal topology
and circuit components. Transmission-line (TL) circuits of
the Mason type have been derived for homogeneous piezo-
electrics, and attempts have been made to apply them to
the case of spatially nonuniform piezoelectric constants
[24]. The KLM networks, in their current form, permit
modeling of layers with arbitrary piezoelectric gradients
but require unvarying elastic properties and the evalua-
tion of Hilbert and Fourier transforms. Further, the in-
corporation of losses into KLM-type circuits has not been
explored. In the vicinity of a single resonance, Mason-type
circuits are often reduced to a lumped representation, ei-
ther of the simple BVD variety or extensions thereof [25],
for which the effects of loss mechanisms are manifested by
the presence of one or more resistors.

We furnish here a network realization, of relatively
simple form, of a practical and widely occurring electro-
mechanical implementation: a one-dimensional stack of
piezoelectric plates driven by thickness excitation (TE).
It is based on a cascade of circuits of the Mason type, but
provision is also made for inclusion of three separate types
of material loss mechanisms in each plate: viscous and di-
electric loss and ohmic conductivity. The network model
is applied to the characterization of functionally gradient
structures by matching the parameters of the individual
TL circuits to the local environment of the material at
each increment of the thickness coordinate. As the num-
ber of TLs grows, their individual sizes diminish, and the
overall network approximates a continuous distribution of
material parameters [26].

Although the number of discrete plates that can be ac-
commodated by the network model is not limited, when
applied to many practical implementations of functional
grading, the number of circuits in the cascade required
to yield good modeling accuracy can be surprisingly few.
Explicit forms of the overall electromechanical network
impedance matrix are given for stacks consisting of one
to six layers, from which the rule of formation for the gen-
eral case is obtained.

As examples, the formalism is applied to two types of
simulations. In the first, a ceramic/cermet composite res-
onator is simulated both as a two-layer asymmetric stack
and as a single ceramic plate with asymmetric lumped sur-
face mass representing the effect of the cermet. Results
are given for a variety of ceramic/cermet ratios. In the
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second set of simulations, a linear spatial gradation in ma-
terial properties, from pure ceramic to pure cermet, is ap-
proximated using a sequence of stacks of varying numbers.
These structures are representative of RAINBOW ceramic
transducers. For all cases, lists of symbols used, with units
and dimensions, are provided in Appendix A.

II. Single Plate Resonator [27]

We assume only one acoustic thickness mode of vibra-
tion. This is the case for a thin piezoelectric plate of sym-
metry class 6 mm, such as a piezoceramic, excited by TE
along the thickness-directed polar axis. This mode is the
familiar thickness-stretch mode (also called thickness ex-
tension). The piezoelectric constant is e33, and the piezo-
electrically stiffened elastic constant is c̄ = cE33 + e233/ε33.
If the polar axis is in the plane of the plate instead, the
mode driven by TE is thickness shear, via the e15 constant.
Displacement is still along the polar axis, and the effective
elastic stiffness for this mode is c̄ = cE44 + e215/ε11. The
subsequent analysis applies rigorously to either of these
ideal cases, and approximately to many practical embod-
iments, as long as one is dealing with a substantially lat-
erally invariant single mode, well separated in frequency
from other resonances, and uses the appropriate numerical
values. These assumptions allow a one-dimensional treat-
ment to be used. If the polarization is not strictly along
the thickness, and/or the driving field is not strictly in the
thickness direction, then the situation is somewhat more
complicated [28] and is not covered here although the ap-
proach described here would apply.

A. The Plate Impedance Matrix

A three-port electromechanical network, N, represent-
ing the plate is shown in Fig. 1. Because the plate is TE
driven, it is simplest to characterize it by an impedance
matrix [17]. Port 1 is the ‘left’ surface; Port 2 is the ‘right’
surface; and Port 3 is the electrical port, consisting of the
connections to the two outer electrodes. Variables at Port
3 are electrical voltage and current; those at mechanical
Ports 1 and 2 are, correspondingly, force (surface stress
times electrode area) and particle velocity (angular fre-
quency times particle displacement for time-harmonic mo-
tion). Subscripts on immittance relations refer by number
to these ports.

The following definitions hold throughout the rest of the
paper: electrode area, A; plate thickness, t = 2h; piezoelec-
trically stiffened acoustic velocity, v; acoustic impedance,
Zo = A · ρ · v; static capacitance, Co = ε · A/t; piezo-
electrically stiffened elastic stiffness, c̄ = ρ · v2; piezo-
coupling coefficient, k = e

/√
εc̄; piezoelectric transformer

turns ratio, n = A · e/t; angular frequency, ω = 2πf,
where f is the frequency variable; fundamental mechani-
cal frequency, fo = v/2t; normalized frequency variable,
X = (π/2) · (f/fo); and mechanical loads at Ports 1 and 2,
ZL and ZR, respectively.

Fig. 1. Piezoelectric plate resonator and its three-port electrome-
chanical network representation. a) Electroded plate resonator. Ports
1 and 2 are the major surfaces characterized by force and particle
velocity as analogs to electrical voltage and current; Port 3 is the
electrical attachment to the electrodes. b) Schematic representation
of the three-port electromechanical network.

Elements of the lossless symmetric impedance matrix,1

[z0], of network N are as follows [19]: z11 = z22 = Zo/[j ·
tan(2X)]; z12 = Zo/[j · sin(2X)]; z13 = z23 = n/[j ω Co];
and z33 = 1/[j ω Co]. Elements of the symmetric mechan-
ical load impedance matrix, [zLOAD], are defined as fol-
lows: z11LOAD = ZL; z22LOAD = ZR; z33LOAD = z12LOAD =
z13LOAD = z23LOAD = 0. The total impedance matrix,
[z], is the sum of these two matrices, and its reciprocal
is the admittance matrix, [y], of the piezoresonator with
mechanical loads at Ports 1 and 2. All elements of the
piezoelectric impedance matrix are functions of frequency;
this will usually also be true for the mechanical load ma-
trix elements ZL and ZR. Material loss mechanisms within
the plate have not yet been introduced, yet [y] will, in
general, still be complex because ZL and ZR may have
resistive components caused by energy transport and/or
dissipation.

1Impedance and admittance matrices, [z] and [y], respectively, writ-
ten with superscripts (e.g., [z0]) are not to be construed as exponents.
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B. Mechanical Surface Loadings

When the resonator surface is mechanically loaded only
by electrode masses, ZL and ZR are purely reactive and
represent inertial effects. The lumped electrode masses are
represented in normalized form by the quantities µL and
µR. These electrode masses are equal to the areal mass
(me = ρe te) divided by the mass per unit area of a piezo-
electric plate of half-thickness, (ρh). The acoustic loads are
given in this case by the lossless relations: ZL = jµL Zo X =
A · j ω meL and ZR = jµR Zo X = A · j ω meR.

As an important aside, when electrode loading is neg-
ligible but the resonator is immersed in a fluid, one must
distinguish among the modes of vibration executed by the
piezoresonator. If the resonator vibrates in an extensional
mode, the fluid loading is represented, to a very good ap-
proximation, by a purely resistive, and generally disper-
sionless impedance: ZL = ZR = A · ρfluid · vfluid. This resis-
tance is due to the transport of acoustic energy outward
from the active surfaces of the plate. If the vibrational
mode is shear, the Newtonian shear viscosity of the fluid
produces a combination of viscous and inertial effects. The
viscous part is due to the lossy drag of the evanescent shear
‘wave’ in the fluid; the inertial portion arises from fluid
entrainment. The complex load impedance is ZL = ZR =
A·

√
(j · ω · ρfluid · ηfluid) = A·(1+j)·

√
(ω · ρfluid · ηfluid

/
2).

These relations permit the methodology developed here to
be applied to the characterization of piezoelectric sensors
subjected to fluid loadings. Accordingly, the network rep-
resentations presented here are equally useful to simulate
and model fluid pumps and sensors based on technologies
utilizing functionally gradient structures. [29]

C. Inclusion of Material Losses

One includes the effects of loss within the material dif-
ferently, depending on the loss mechanism. Viscous loss,
resulting from various acoustic scattering mechanisms, for
example, is incorporated by adding an imaginary compo-
nent to the acoustic stiffness: c∗ = c̄ · (1 + j ω η). Dielec-
tric losses are modeled by making the permittivity com-
plex: ε∗ = ε′(ω)−jε′′(ω); if negligible compared with other
losses, ε∗ reduces to ε′, a purely real quantity. These sub-
stitutions render v, Zo, X, Co, and k complex. With the
presence of only elastic and dielectric losses, [zo] is written
as [z1], and [y] = [z]−1 = {[z1] + [zLOAD]}−1.

Ohmic conductivity, σ, is incorporated differently from
dielectric loss and appears as a shunt conductance, Go =
σ · A/t, across the electrical port. When ohmic conduc-
tivity is present, [y] is obtained as follows: [y] = [z]−1 =
{[z2] + [zLOAD]}−1, where [z2] = {[z1]−1 + [G]}−1 and [G]
consists of null elements, except for G33 = Go.

D. Network Functions

The symmetric 3 × 3 admittance matrix, [y], describes
the behavior with frequency of the boundary-loaded, lossy,

single-plate resonator. Because it is driven by an excita-
tion voltage at electrical Port 3, matrix elements yq3, (q =
1, 2, 3) are pertinent. The array elements y13 and y23 give
the particle velocities, per volt applied, at surfaces 1 and
2, respectively. Division of these by ω yields the surface
displacements, UL and UR, which, in general, will be com-
plex numbers that represent motions in phase and in time
quadrature with the applied voltage. Element y33 is the
input electrical admittance observed looking into Port 3;
its real and imaginary parts are the input conductance and
susceptance.

III. The Two-Layer Stack

It is assumed that both plates have common electrode
area, A. If shear motion is considered, then it is further
assumed that the polar axes of both plates are parallel.
The network representation of a two-layer stack is shown
in Fig. 2. The structure has mechanical surface loadings
on the outer surfaces and is driven in TE with excitation
voltage impressed across the total thickness, resulting in a
common electrical current. The mechanical surface load-
ings may be lumped electrode masses or represent addi-
tional plates.

Each plate of the stack is represented by a network NL,
NR whose lossy 3 × 3 impedance matrix is formed as dis-
cussed in the last section, giving [z2]L and [z2]R. In this
paper, the elements of [z2] will be written, henceforth, with
the superscript ‘2’ dropped. The explicit impedance rela-
tions, including symmetries, for both plates are

V1L
V2L
V3L


 =


z11L z12L z13L
z12L z11L z13L
z13L z13L z33L





I1LI2L
I3L





V1R
V2R
V3R


 =


z11R z12R z13R
z12R z11R z13R
z13R z13R z33R





I1RI2R
I3R


 .

Port 1 of NL is connected on its left to mechanical
impedance ZL; Port 2 of NL is joined to Port 1 of NR. Port
2 of NR is connected on its right to mechanical impedance
ZR. The electrical Ports 3 are connected in series and have
total voltage V impressed. Boundary conditions for the
stack are therefore given as follows:

• outer mechanical ports: V1L = −ZL I1L and V2R =
−ZR I2R

• junction of NL and NR: V2L = V1R = VA and
I2L = −I1R = IA

• electrical ports: I3L = I3R = I and V3L +
V3R = V

where I1L = IL; I2R = IR; ζ11L = (z11L + ZL), and
ζ22R = (z11R + ZR); subscript ‘A’ denotes the junction of
the plates. VA and IA are the mechanical voltage (propor-
tional to stress) and mechanical current (proportional to
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Fig. 2. Two-layer stack and its TL schematic representation. a) Res-
onator stack. b) Schematic representation of the network model
showing the electrical port connections. c) Equivalent circuit con-
sisting of cascade of TLs, including mechanical boundary impedances
and electrical port.

particle velocity), respectively, at the interface between the
plates. Substitution from the boundary conditions yields

0 = ζ11LIL + z12LIA + z13LI (1)
VA = z12LIL + z11LIA + z13LI (2)
V3L = z13LIL + z13LIA + z33LI (3)

VA = z11R(−IA) + z12RIR + z13RI (4)
0 = z12R(−IA) + ζ22RIR + z13RI (5)

V3R = z13R(−IA) + z13RIR + z33RI. (6)

Add (3) and (6), and put it first; subtract (4) from (2),
and put it second. (This eliminates the common mechan-
ical port voltage VA.) Put (1) third and (5) last. Then,
with [V] = {V, 0, 0, 0}t and [I] = {I, IA, IL, IR}t, one gets
[V] = [z][I]. The resulting total impedance matrix, [z], is
symmetric and equals

V
0
0
0


 =



(z33L + z33R) (z13L − z13R) z13L z13R
(z13L − z13R) (z11L − z11R) z12L −z12R

z13L z12L ζ11L 0
z13R −z12R 0 ζ22R






I
IA
IL
IR


 .

The admittance matrix, [y], is the inverse of [z]. Because of
the rearrangement of the elements of the composite [z] for
the two-plate stack, matrix elements yq1 are pertinent. The
electrical input admittance Yin is y11; y21 is proportional
to the mechanical displacement at the junction of the two
plates; y31 and y41 are proportional, respectively, to the
mechanical displacements at the left and right surfaces (at
the electrodes). In general, all elements of [y] are complex.
The extension to multilayer stacks, with resulting matrices
up to six layers, is given in Appendix B, along with the
dual case of excitation by lateral fields [i.e., so-called lateral
excitation (LE)].

IV. Simulations of RAINBOW

Structures [30]–[32]

RAINBOW structures are produced by subjecting one
surface of a lead-containing planar ceramic to a reducing
ambient at high temperatures. After a suitable time, which
determines the reduced (cermet) layer thickness, the sam-
ple is returned to room temperature. The thermoelastic co-
efficients of the original ceramic and of the reduced cermet
are found to differ substantially. Elissalde et al. [30] quote
α = 10 ppm/K for the cermet phase and α = 5 ppm/K for
the ceramic. These are typical numbers [31]. During the
cooling phase, the cermet portion shrinks faster than the
ceramic, producing a warped structure with the cermet
layer on the concave side. The combination of domed ge-
ometry and internal stresses within the unreduced ceramic
layer provide RAINBOW with unique operational char-
acteristics [2], [3]. Although ceramics are relatively well
characterized in their physical properties, the cermet layers
produced by chemical reduction in the processing of RAIN-
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BOW are insufficiently studied to date. Pertinent areas re-
quiring additional future study include the gamut of pro-
cessing variables; cermet spatial uniformity and isotropy;
width of the ceramic/cermet transition region; cermet elec-
trical conductivity, elastic constants, acoustic loss, mass
density, and dimensional changes. Because of the absence
of adequate experimental data in the literature, a number
of assumptions regarding the cermet properties utilized in
the simulations have been made. These are briefly given
in Appendix C, which also contains remarks pertinent to
the material coefficients of the ceramic and the resulting
input data used in the simulations.

The departure of the RAINBOW from a planar geom-
etry will be neglected. This is permissible provided that
the two principal radii of lateral curvature are much larger
than the nominal acoustic wavelength. In plates, this wave-
length at the fundamental thickness resonance is about
twice the total thickness. For our purposes, sufficiently ac-
curate results are obtained even when the curvatures are
only moderately larger than the plate thickness. In ad-
dition, the plate lateral extent must, of course, be much
greater than its thickness; in practice, ratios exceeding 25
are usually found to be sufficient for the one dimensional,
simple thickness mode approximation to yield answers suf-
ficiently accurate for most engineering applications. We
also neglect the stress dependencies of the piezoelectric
coefficients although these and other effects (e.g., non-
linear elastic constants or radial stress gradients) could
be treated parametrically in the mathematics of the net-
work representations provided their dependencies were ac-
curately known. To begin to enable even more accurate
simulations, nonlinear finite element methods are being
used to model the stress profiles of these structures [9].

A. Lumped Mass Approximation
Versus Two-Layer Stack

The lumped-mass approximation is the simplest and
most primitive. It consists of modeling a RAINBOW ce-
ramic plate by replacing the reduced (cermet) layer with
an equal mass lumped at the surface of the remaining ce-
ramic. The treatment follows that in Section II. The acous-
tic propagation time within the cermet layer is thus ne-
glected, and one can expect adequate answers only when
the reduced layer is but a small fraction of the total plate
thickness. The limit of validity of the lumped approxima-
tion is determined by comparison with the more realistic
case of a two-layer stack, wherein one layer is ceramic, and
the other is cermet, and where each occupies a complemen-
tary fraction of the total plate thickness. Here, an abrupt
ceramic-cermet transition is assumed, and the treatment
follows that in Section III. This comparison is given sub-
sequently for various ceramic thicknesses.

Table I gives the computed frequencies for the funda-
mental harmonic of a single plate with lumped cermet
mass, with and without 100-nm silver electrodes placed
on the major surfaces. The frequencies listed are fR, the
resonance frequency (lower zero reactance point); fϕ, the

frequency of maximum phase; and fA, the antiresonance
frequency (upper zero reactance point). It is observed that
fϕ is approximately the arithmetic average of fR and fA.
All absolute frequencies are in MHz; the results can be
rescaled using the nominal fundamental frequency of the
unelectroded ceramic, fo = v/(2t) = 2.163066 MHz and
the total stack thickness of 1 mm. Simulation results are
carried out to six places for the purpose of accommodating
various comparisons. In practice, unless measurements are
made under laboratory conditions, particularly including
temperature control, such frequency stability is very of-
ten hard to obtain with current piezoceramic resonators.
Table II lists the critical frequencies for a two-layer stack
with abrupt ceramic/cermet transition, at the fundamen-
tal harmonic, as a function of decreasing ceramic thickness.
It is observed that the fR values monotonically increase,
and the fA values at first increase, then decrease, finally
equaling the corresponding fR values and becoming com-
plex. The fϕ values are again approximately the arithmetic
means of fR and fA; they remain real and measurable. The
effect of lumped electrode mass is to shift the frequencies
downward; the amount varies somewhat with the other
variables. The lumped model (Table I) and the two-layer
stack (Table II) approach common frequencies in the limit
of vanishing cermet. The zeroth-order lumped model de-
parts significantly from the more realistic results of the
two-layer stack as the cermet fraction increases.

Normalized frequency difference, often associated with
‘bandwidth’ in transducer applications, may be defined as
(fA − fR)/fϕ. This, in turn, is approximately equal to 1/2r,
where r is the effective capacitance ratio of an equivalent
four-element BVD network, provided that Q � r. From
Table I or Table II, for small values of the cermet thickness,
(fA − fR)/fϕ ≈ 11%, so that the effective electromechanical
coupling factor in either instance is keff = (π/2)/

√
(2r) ≈

52%, in rough agreement with the coupling factor of the
ceramic used; see Appendix C.

The appearance of complex roots seen in Table II arises
primarily from the cermet losses. These are of two types,
frictional losses characterized by the usual mechanical Q,
and a combination of ohmic and dielectric losses described
by an electrical Q. In the usual BVD circuit, the mechan-
ical Q is defined as Q1 (mechanical) =

√
(L1C1)/R1, but

the electrical Q is undefined. A more refined lumped circuit
model is the five-element BVD, with shunt resistor Ro used
to model the effects of dielectric and ohmic losses [33]. Ro
appears in parallel with the static capacitor Co. With the
addition of Ro, the electrical Q is defined as Qo (electri-
cal) = RoCo/

√
(L1C1). Because ohmic conductivity and

dielectric loss are included in our model, it is appropriate
to consider the possible effect of Qo on the critical fre-
quencies. An examination of the network response at very
low frequencies shows, however, that Qo � Q1, and the
influence of Qo is negligible for all entries in Table II. It
is thus the mechanical Q that is lowered, with increasing
cermet fraction, to the point at which the resonator fails
to become inductive. This occurs when Q1/r falls below
approximately 2. As this ratio is approached, the ‘band-
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TABLE I
Critical Fundamental Frequencies, in MHz, for a Single Plate as a Function of Cermet Fraction,

Which Is Considered as a Concentrated Mass Lumped on One Surface. The Influence of Lumped

Electrode Mass Is Also Given. The Total Stack Thickness Is 1 mm.

tceramic (mm) fR fϕ fA fR fϕ fA

Surface electrodes present Surface electrodes absent

1.0 1.939934 2.051472 2.162476 1.940515 2.052058 2.163066
0.9 1.953614 2.072188 2.190319 1.954174 2.072761 2.190904
0.8 2.001727 2.124865 2.247580 2.002273 2.125424 2.248153
0.7 2.100617 2.229316 2.357559 2.101180 2.229891 2.358145
0.6 2.269147 2.406802 2.543937 2.269777 2.407441 2.544584
0.5 2.540066 2.692462 2.844245 2.540842 2.693246 2.845036
0.4 2.980660 3.157619 3.333828 2.981740 3.158707 3.334922
0.3 3.750779 3.971366 4.190978 3.752551 3.973146 4.192765
0.2 5.333338 5.644420 5.954082 5.337119 5.648221 5.957898
0.1 10.145431 10.733174 11.318167 10.160103 10.747939 11.333011

TABLE II
Critical Fundamental Frequencies, in MHz, for a Two-Layer Stack with Abrupt Ceramic/Cermet Transition

as a Function of Cermet Fraction. The Influence of Lumped Electrode Mass

Is Also Given.

tceramic (mm) fR fϕ fA fR fϕ fA

Surface electrodes present Surface electrodes absent

0.999 1.939966 2.051600 2.162701 1.940547 2.052186 2.163291
0.99 1.940313 2.052780 2.164723 1.940893 2.053365 2.165314
0.9 1.948759 2.065860 2.183652 1.949335 2.066453 2.184260
0.8 1.966015 2.077598 2.196183 1.966596 2.078207 2.196811
0.7 1.987496 2.083851 2.192869 1.988090 2.084469 2.193510
0.6 2.009468 2.085578 2.173001 2.010074 2.086199 2.173637
0.5 2.029473 2.083428 2.143739 2.030086 2.084043 2.144360
0.4 2.047120 2.080158 2.115566 2.047738 2.080768 2.116171
0.3 2.063980 2.080292 2.097149 2.064600 2.080901 2.097749
0.2 2.082410 2.087842 2.093333 2.083035 2.088454 2.093940
0.1 ** 2.104341 ** ** 2.104971 **

** Frequencies are complex.

TABLE III
Critical Fundamental Frequencies, in MHz, for Resonator Stacks Consisting of One to Six Plates. Plates Are of Equal

Thickness and Have Averaged Compositions to Approximate a Linear Material Gradient Along the Thickness Coordinate.

Plates fR fϕ fA fR fϕ fA

Surface electrodes present Surface electrodes absent

1 2.022210 2.050585 2.078950 2.022808 2.051183 2.079548
2 2.040041 2.067253 2.095222 2.040643 2.067843 2.095826
3 2.035063 2.062664 2.090764 2.035660 2.063253 2.091363
4 2.033722 2.061473 2.089668 2.034318 2.062140 2.090266
5 2.033145 2.060968 2.089211 2.033741 2.061557 2.089809
6 2.032842 2.060704 2.088975 2.033437 2.061293 2.089572
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Fig. 3. Mode spectrograph of input admittance magnitude in an ex-
tended frequency range for a single plate with lumped mass repre-
senting the cermet layer. Ceramic thickness is 0.90 mm; electrode
mass is neglected. Resonances, including the even harmonics result-
ing from the plate asymmetry, are reasonably well predicted in fre-
quency, but absolute admittance levels are somewhat low compared
with the more realistic model whose behavior is plotted in Fig. 4.

Fig. 4. Extended range mode spectrograph of input admittance mag-
nitude for a two-layer ceramic/cermet stack with abrupt transition.
Ceramic thickness is 0.90 mm; electrode mass is neglected. Both the
usual odd-harmonic resonances and the additional resonances asso-
ciated with even harmonic numbers, arising from asymmetry [34],
are well predicted in frequency and in absolute admittance level.

width’ ceases to be determined by r exclusively and is a
function jointly of both r and Q1. A simple method of
determining Q1/r is given subsequently.

In Fig. 3 is plotted a mode spectrograph of input ad-
mittance magnitude, in an extended frequency range, for
a single plate with lumped mass representing the cermet
layer. Ceramic thickness is 0.9 mm; electrode mass is ne-
glected. Because of the asymmetry, both odd and even
harmonics are represented [34]. Resonances are reasonably
well predicted in frequency, but absolute admittance lev-
els are somewhat low compared with the more realistic
two-layer model whose behavior is plotted in Fig. 4. The
extended range mode spectrograph of Fig. 4 shows input
admittance magnitude for a two-layer stack with abrupt
ceramic/cermet transition. Ceramic thickness is 0.9 mm;
electrode mass is neglected. Both the usual odd-harmonic
resonances and the additional resonances associated with
even harmonic numbers arising from asymmetry are well
predicted in frequency and in absolute admittance level. As
the cermet fraction diminishes, the resonator asymmetry
lessens, the even harmonics become sharper and weaker,
and they approach an integer relation to the antiresonance
of the fundamental.

Fig. 5. Magnitude plots of real and imaginary components of dis-
placement at the ceramic (left) surface and of input admittance for
a two-layer ceramic/cermet stack with abrupt transition. Frequency
range is confined to the vicinity of the resonance frequency. Ceramic
thickness is 0.50 mm; electrode mass is neglected. Displacements are
in units of 1000s of angstroms per volt.

For the stack plotted in Fig. 4, the resonance at fϕ =
2.066453 MHz has a value of Q1/r = Q/r = 1638 and
has, therefore, a strong response; the next response, at
fϕ = 4.359416 MHz, corresponds to the second harmonic
and has a value of Q/r = 1.01, so that it does not be-
come inductive. The third harmonic, with critical fre-
quencies fR = 6.471568 MHz, fϕ = 6.495574 MHz, and
fA = 6.519902 MHz, has a value of Q/r = 25.1 and achieves
an inductive region with a reasonably strong response. The
fourth harmonic, at fϕ = 8.660099 MHz, has a value of
Q/r = 1.46 so that it, similar to the second harmonic, does
not become inductive. In the absence of electrode mass,
and for small loss, the antiresonance frequencies should ap-
proach integers; because the second and fourth responses
do not possess real fA values, use of fϕ may be substituted
in these cases to obtain an approximate check. It is found
that [(fϕ)2nd/(fA)fund] ∼ 1.996; similar values are observed
for the others.

Fig. 5 shows magnitude plots of the real and imaginary
components of displacement at the ceramic (‘left’) surface
and of input admittance for a two-layer stack with abrupt
ceramic/cermet transition. Frequency range is confined to
the vicinity of the resonance frequency. Plate thicknesses
are 0.5 mm, and electrode mass is neglected. Displace-
ments are in units of 1000s of angstroms per volt. One sees,
as expected, a phase reversal in the real part of the dis-
placement, which is proportional to the imaginary compo-
nent of particle velocity, when passing through resonance.
All curves monotonically decrease to both sides of plot
until other resonances appear at higher frequencies.

B. Reduction of a Two-Layer Stack
to the Simple BVD Circuit Form

It was found previously that Qo � Q1, so the simple
four-element BVD circuit may be used as a rough indica-
tion of input immittance behavior of the stack in a narrow
frequency region about resonance. One simple method by
which to extract the BVD equivalent is to use the com-
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TABLE IV
Particle Displacements, in Angstroms per Volt, for a Single

Resonator. Real and Imaginary Components

and Absolute Magnitudes Are Given at the

Left (Ceramic) and Right (Cermet) Surfaces

at the Three Critical Frequencies.

L R

fR
Re(u) −4.5942 +4.5942
Im(u) +372.368 −372.368
|U| 372.3962 372.3962

fϕ
Re(u) −9.6670 +9.6670
Im(u) +0.2578 −0.2578
|U| 9.6705 9.6705

fA
Re(u) −4.7721 +4.7721
Im(u) +0.0645 −0.0645
|U| 4.7726 4.7726

TABLE V
Particle Displacements, in Angstroms per Volt, for a

Two-Layer Stack. Real and Imaginary Components

and Absolute Magnitudes Are Given at the Left (Ceramic)

and Right (Cermet) Surfaces and at the Plate Junction

for Each of the Three Critical Frequencies.

L A R

fR
Re(u) −4.9243 −0.1098 +5.3403
Im(u) +362.489 −4.6639 −371.3520
|U| 362.5225 4.6652 371.3904

fϕ
Re(u) −9.7799 +0.0283 +10.2170
Im(u) +0.2794 −0.0058 −0.2833
|U| 9.7839 0.0289 10.2209

fA
Re(u) −4.7123 −0.0376 +5.0270
Im(u) +0.0689 −0.0020 −0.0690
|U| 4.7128 0.0377 5.0275

TABLE VI
Particle Displacements, in Angstroms per Volt, for a

Three-Layer Stack. Real and Imaginary Components and

Absolute Magnitudes Are Given at the Left (Ceramic) and

Right (Cermet) Surfaces and at the Plate Junctions for

Each of the Three Critical frequencies.

L A B R

fR
Re(u) −4.5508 −2.3939 +2.4248 +4.9524
Im(u) +368.366 +176.359 −192.574 −375.185
|U| 368.3937 176.3755 192.5893 375.2173

fϕ
Re(u) −9.6897 −4.7989 +5.1222 +10.0898
Im(u) +0.2702 +0.1278 −0.1416 −0.2724
|U| 9.6935 4.8006 5.1242 10.0935

fA
Re(u) −4.6866 −2.4044 +2.5068 +4.9955
Im(u) +0.0672 +0.0313 −0.0353 −0.0669
|U| 4.6871 2.4046 2.5070 4.9959

puted input capacitance curve of the resonator stack; this
is found from the input admittance as Cin = Im(Yin)/ω.
For the BVD circuit, Cin is obtained from the normalized
input capacitance relation

(
Cin

Co
− 1

)
=

(
1 − Ω2

)
r

(1 − Q2)2 +
(
Ω
Q

)2

where the definitions Ω = (ω/ω1) = f/f1, r = Co/C1, Q =

Q1 =
√(

L1
/
C1

) /
R1, and ω2

1L1C1 = 1 have been used.
Then, Q/r is found from the extrema of the stack input
capacitance curve using, with the assumption (2Q)2 � 1,

Q
r
=

(Cin)max − (Cin)min

Co
.

The capacitance ratio, r, follows from

1
r
=

(
1 − Ω2) [

Cin

Co
− 1

]
.

In this last relation, Ω and the corresponding values of
Cin for the stack are confined to the nearly hyperbolic re-
gion of normal dispersion, viz., somewhat away from the
region between the extrema of Cin. As a check, at the ex-
trema, Ω2 = 1 ± 1/Q. Knowing the static capacitance,
Co of the stack and its nominal resonance frequency, f1,
yields C1, L1, and R1. Applying this method to the fun-
damental mode of the abrupt ceramic/cermet transition,
two-equal-layer stack with negligible electrode mass gives
Co = 15.8 pF, f1 = 2.030 MHz, Q = 1526, r = 7.30,
C1 = 2.16 pF, L1 = 2.84 mH, and R1 = 23.7 ohm. One
may easily represent the effect of electrodes by the ad-
dition of an inductor, Le, in series with L1, as described
in [25]. To determine the effective piezoelectric coupling
factor from the capacitance ratio requires that it be re-
duced by unity because we posited a BVD circuit without
a negative Co, yet we are exciting the stack by a thickness-
directed electric field [25]. Therefore, rTE = r − 1 = 6.30
and keff = (π/2)/

√
(2rTE) ≈ 44.3%.

C. Linear Gradation Approximated by
Stacks of Varying Numbers of Layers

In this second set of simulations, a linear gradient in
material constants is successively approximated by using
a sequence of layers. Surprisingly few layers are needed
to model the convergence of the critical frequencies and
motional displacements toward limit points.

Input data are as follows, and the values of the com-
position of each layer are computed from the averaging
relation

(1 − F) · Mceramic + F · Mcermet

where M is ρ, 1/σ, τ1, e, or cE. The fraction F is F =
n/2N with N equal to the number of layers, and n =
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TABLE VII
Particle Displacements, in Angstroms per Volt, for a Four-Layer Stack. Real and Imaginary Components

and Absolute Magnitudes Are Given at the Left (Ceramic) and Right (Cermet) Surfaces and at the Plate Junctions

for Each of the Three Critical Frequencies.

L A B C R

fR
Re(u) −4.5347 −3.2955 −0.0125 +3.4638 +4.9364
Im(u) +370.258 +252.959 −9.0272 −269.964 −376.459
|U| 370.2859 252.9804 9.0272 269.9866 376.4917

fϕ
Re(u) −9.6638 −6.7625 +0.1635 +7.1759 +10.0546
Im(u) +0.2676 +0.1817 −0.0080 −0.1943 −0.2692
|U| 9.6675 6.7649 0.1637 7.1785 10.0582

fA
Re(u) −4.6771 −3.3562 +0.0413 +3.5407 +4.9859
Im(u) +0.0666 +0.0449 −0.0024 −0.0481 −0.0662
|U| 4.6776 3.3565 0.0414 3.5410 4.9863

TABLE VIII
Particle Displacements, in Angstroms per Volt, for a Five-Layer Stack. Real and Imaginary Components

and Absolute Magnitudes Are Given at the Left (Ceramic) and Right (Cermet) Surfaces and at the Plate Junctions

for Each of the Three Critical Frequencies.

L A B C D R

fR
Re(u) −4.4330 −3.6546 −1.4389 +1.4639 +3.8939 +4.8334
Im(u) +371.122 +291.423 +105.026 −123.824 −307.835 −377.046
|U| 371.1487 291.4463 105.0357 123.8331 307.8591 377.0768

fϕ
Re(u) −9.6521 −7.7271 −2.8619 +3.2313 +8.1734 +10.0390
Im(u) +0.2664 +0.2084 +0.0738 −0.0896 −0.2195 −0.2678
|U| 9.6558 7.7299 2.8629 3.2325 8.1763 10.0426

fA
Re(u) −4.6727 −3.8175 −1.4536 +1.5698 +4.0441 +4.9816
Im(u) +0.0664 +0.0517 +0.0180 −0.0225 −0.0543 −0.0659
|U| 4.6732 3.8179 1.4537 1.5700 4.0445 4.9820

TABLE IX
Particle Displacements, in Angstroms per Volt, for a Six-Layer Stack. Real and Imaginary Components

and Absolute Magnitudes Are Given at the Left (Ceramic) and Right (Cermet) Surfaces and at the Plate Junctions

for Each of the Three Critical Frequencies.

L A B C D E R

fR
Re(u) −4.5436 −3.9846 −2.3503 +0.0034 +2.4472 +4.2733 +4.9460
Im(u) +371.584 +313.386 +175.793 −9.6825 −194.647 −328.924 −377.359
|U| 371.6117 313.4114 175.8086 9.6825 194.6620 328.9518 377.3909

fϕ
Re(u) −9.6460 −8.2691 −4.7164 +0.1835 +5.1221 +8.7272 +10.0307
Im(u) +0.2657 +0.2236 +0.1243 −0.0083 −0.1392 −0.2334 −0.2671
|U| 9.6497 8.2721 4.7180 0.1837 5.1240 8.7303 10.0343

fA
Re(u) −4.6703 −4.0731 −2.3632 +0.0532 +2.5159 +4.3239 +4.9792
Im(u) +0.0662 +0.0556 +0.0306 −0.0024 −0.0347 −0.0577 −0.0658
|U| 4.6708 4.0734 2.3634 0.0533 2.5161 4.3243 4.9796
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1, 3, 5, . . . (2N−1). The value n = 1 labels the least reduced
layer and is assigned, in the network formalism, to the
‘left’ plate. Values of Mceramic and Mcermet used are found
in Appendix C. Arithmetic averaging of material proper-
ties to approximate a linear gradient can be replaced by
other schemes; for example, harmonic averaging is applied
here to the electrical conductivities and, in [29], to elastic
stiffnesses. Total stack thickness is 1 mm. All plates are
assumed to be of equal thickness (each 1/Nth of 1 mm).
This assumption is again made in the absence of adequate
data relating the final thicknesses of ceramic/cermet hy-
brids to the initial thickness of the ceramic portions from
which they were partially reduced. When available, more
accurate experimental data may be incorporated simply
into the network model. Electrodes are assumed to consist
of a 100-nm thickness of silver.

Table III shows the convergence of the critical frequen-
cies to limit points, e.g., approximately 2.0880 MHz in the
case of the electroded antiresonance, fA. The case of a sin-
gle plate is anomalous in that a single plate cannot be
asymmetric. It is seen that as few as three plates suffice
to obtain frequencies accurate to 0.2%, and six give an ac-
curacy better than 0.05%. The corresponding particle dis-
placements at the stack surfaces and at the plate junctions
are given in Tables IV through IX for stacks with differ-
ent numbers of plates. These are obtained simply in the
network model from the currents in the pertinent ports.
In a lossless network, the currents are in phase quadrature
with the voltage. The presence of loss renders the cur-
rents complex. The real parts of the currents are in phase
with the driving voltage and are proportional to the real
components of the particle velocities and, therefore, to the
imaginary components of the displacements and vice versa.

Tables IV through IX list the particle displacements
in angstroms per volt for stacks consisting of one to six
layers, respectively. Real (reactive) and imaginary (lossy)
components and absolute magnitudes are given at the left
(ceramic) and right (cermet) surfaces and at the plate
junctions for each of the three critical frequencies. It is
seen that very few layers are needed to approximate the
displacements along the thickness coordinate with reason-
able accuracy. Comparing surface amplitudes at fR, which
is very nearly the point of maximum displacement, the
values for two plates through six plates agree within 2.5%;

between four and six plates, the agreement is within 0.1%.
For frequencies fϕ and fA, where the amplitude levels fall
off considerably, the agreement is comparable. Appendix D
provides relations for obtaining the displacements within
a given plate, if the displacements at its boundaries are
known, so that one may interpolate if necessary.

V. Conclusions

A network realization is given of the one-dimensional vi-
brations of a stack of piezoelectric plates driven by thick-
ness excitation. Provision is made for inclusion of three
separate types of material loss mechanisms in each plate:
viscous and dielectric loss and ohmic conductivity. The
network model is applied to the characterization of func-
tionally gradient structures. The number of discrete plates
that can be accommodated by the network model is not
limited, but when applied to functional grading, the num-
ber of circuits required to yield good modeling accuracy
is shown to be relatively few. Explicit forms of the overall
electromechanical network impedance matrix are given for
stacks consisting of one to six layers from which the rule
of formation for the general case is obtained.

The formalism is used in two sets of simulations. In
the first, a ceramic/cermet composite resonator (e.g., a
RAINBOW ceramic actuator), considered both as a two-
layer asymmetric stack and as a single ceramic plate with
asymmetric lumped cermet mass, is simulated and the dif-
fering results compared. In the second set, a linear spatial
gradient from pure ceramic to pure cermet is approximated
using a sequence of stacks of varying numbers. The results
are shown to converge rapidly with number, in both fre-
quency and displacement amplitude, with the conclusion
that the network formalism can yield practically significant
results without undue complication.

In the majority of actuator/sensor/transducer/MEMS
applications, the piezoelectric device is embedded in the
using circuitry. Therefore, it is highly advantageous to have
a characterization of the structure, which is itself a net-
work, and this is the thrust of the developments of this
paper. The inclusion of various loss mechanisms in a con-
sistent manner allows the prediction of practical device
characteristics such as displacement amplitude, impedance
level, and insertion loss.
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Appendix A

Symbols, Units, and Dimensions.

Material coefficients
Dielectric permittivity, ε farad/meter = F/m = C/(m-V)
lossy, ε∗

Elastic stiffness, c Pa = N/m2 = J/m3

piezoelectrically stiffened, c̄
lossy, c∗

Mass density, ρ kg/m3

Ohmic conductivity, σ siemens/meter = S/m
Piezo constant, e; d C/m2 = N/(m−V); C/N = m/V
Poisson’s ratio, ν dimensionless
Thermoelastic coefficient, α K−1

(“thermal expansion”)
Viscosity, η Pa-s
Young’s modulus, Y Pa = N/m2 = J/m3

Geometry
Electrode area m2

A
Plate thickness meter
t = 2h

Thickness coordinate meter
x

Frequency
Antiresonance frequency Hz
fA (upper zero reactance
point)

Frequency variable hertz = Hz = s−1

f, ω
Fundamental mechanical
frequency Hz
fo = v/2t

Maximum phase frequency Hz
fϕ

Normalized frequency variable dimensionless
X = (π/2) · (f/fo)

Resonance frequency Hz
fR (lower zero reactance
point)

Time constant second = s
τ1 = η/c̄ (motional, dynamic)
τo = (ε/σ) (static)

Network and resonator
parameters
Acoustic impedance kg/s
Zo = A · ρ · v

Admittance matrix s/kg for mechanical terms (11, 12, 21, 22 matrix elements),
[y], [yo], [y2] A/N for piezoelectric terms (13, 31, 23, 32 matrix elements),

siemens for electrical terms (33 matrix element)
Current ampere = A
I, [I]

Electrical input admittance siemens
Yin

Electrical port impedance
sum ohm∑
Electrical half-length of TL dimensionless

θ
Impedance matrix kg/s for mechanical terms (11, 12, 21, 22 matrix elements),
[zo], [z1], [z2], [z] N/A for piezoelectric terms (13, 31, 23, and 32 matrix elements),

ohm for electrical terms (33 matrix element)
Mechanical load admittance s/kg
YL, YR
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APPENDIX A (continued)

Mechanical load impedance kg/s
ZL, ZR

Mechanical load impedance matrix kg/s
[zLOAD]

Piezoelectrically stiffened acoustic velocity m/s
v

Piezoelectric transformer turns ratio C/m
Shunt conductance siemens
Go = σ ·A/t,

Shunt conductivity matrix siemens
[G]

Surface displacement m/V
U, Ureal, Uimag

Three-port electromechanical network —
N

Total mechanical admittance s/kg
υ

Total mechanical impedance kg/s
ζ

Voltage volt = V
V, [V]

Wave amplitude m/V
P, Q

Wavenumber m−1

κ = (ω/v) = X/h = θ/t

Electrode
Areal mass kg/m2

me = ρe te
Inductance henry = H
Le

Normalized mass dimensionless
µ = me/ρ h

BVD
Capacitance ratio dimensionless
r = Co/C1

Electromechanical coupling factor dimensionless
k = (π/2)/

√
(2r)

Input admittance siemens = S
Yin

Input capacitance F
Cin = Im(Yin)/ω

Motional capacitance F
C1

Motional inductance H
L1

Motional resistance ohm
R1

Normalized frequency dimensionless
Ω = ω/ω1 = f/f1

Quality factor dimensionless
Qo (electrical) =
RoCo/

√
(L1C1)

Q1 (mechanical) =√
(L1/C1)/R1

Series resonance angular frequency Hz
ω1 = 2πf1 = 1/

√
(L1C1)

Series resonance frequency Hz
f1

Shunt resistance ohm
Ro

Static capacitance farad = F
Co = ε ·A/t

TABLE B-I
Matrix for Single Plate, TE.[∑

3A 3A
ζ11L 2A

ζ22R

]

TABLE B-II
Matrix for Two-Layer Stack, TE.


∑

(3A− 3B) 3A 3B
(1A + 1B) 2A −2B

ζ11L 0
ζ22R




Appendix B

Matrices for Multi-Layer Stacks of Plates

It is again assumed that all plates have common electrode area,
A. If shear motion is involved, then it is further assumed that the
polar axes of all plates are parallel. To arrive at the total impedance
matrix [z] for N lossy plates, electrically connected in series, the same
sequence of steps is carried out as for the two-plate prototype. One
writes out the three equations of the [z2] matrix, characterizing each
plate, and applies the boundary conditions. The 3N equations that
result are assembled as follows. The sum of the third member of all
sets yields one equation in the applied voltage, V; then, pairs are sub-
tracted to eliminate the (N− 1) voltages at the internal mechanical
ports. The remaining two equations (containing the ζ terms) furnish
the final equations for a total of (N + 2). The resulting (N + 2) by
(N + 2) impedance matrix is denoted [z]. Its inverse is denoted [y].
Given subsequently are the total impedance matrices resulting

from mechanical cascades consisting of up to six plates. The thick-
ness excitation driving voltage appears across the series connection of
the electrical ports. For the sake of simplifying the notation, we intro-
duce the following conventions. The left and right total mechanical
impedances are denoted ζ11L and ζ22R. The three-port networks are
labeled NA,NB, . . . , etc. These are each represented by a lossy 3× 3
impedance matrix [z2] with an additional subscript to denote the
layer represented.
The superscript ‘2’ on [z2] is now dropped, and the two nu-

merical subscripts on its elements contracted to one, so that a to-
tal of only two subscripts is required for each element. We make
z11 = z22 = z1, z12 = z2, z13 = z23 = z3, and z33 = z4. Now

TABLE B-III
Matrix for Three-Layer Stack, TE.

∑

(3A− 3B) (3B− 3C) 3A 3C
(1A + 1B) −2B 2A 0

(1B + 1C) 0 −2C
ζ11L 0

ζ22R




TABLE B-IV
Matrix for Four-Layer Stack, TE.



∑
(3A− 3B) (3B− 3C) (3C− 3D) 3A 3D
(1A + 1B) −2B 0 2A 0

(1B + 1C) −2C 0 0
(1C + 1D) 0 −2D

ζ11L 0
ζ22R



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TABLE B-V
Matrix for Five-Layer Stack, TE.



∑
(3A− 3B) (3B− 3C) (3C− 3D) (3D− 3E) 3A 3E
(1A + 1B) −2B 0 0 2A 0

(1B + 1C) −2C 0 0 0
(1C + 1D) −2D 0 0

(1D + 1E) 0 −2E
ζ11L 0

ζ22R




TABLE B-VI
Matrix for Six-Layer Stack, TE.



∑
(3A− 3B) (3B− 3C) (3C− 3D) (3D− 3E) (3E− 3F) 3A 3F
(1A + 1B) −2B 0 0 0 2A 0

(1B + 1C) −2C 0 0 0 0
(1C + 1D) −2D 0 0 0

(1D + 1E) −2E 0 0
(1E + 1F) 0 −2F

ζ11L 0
ζ22R




z11A(= Z0A/j tan(2XA)), for example, becomes simply z1A. The next
simplification is to enter into the subsequent tables only the sub-
scripts for the matrix elements with the understanding that these
represent impedances; that is, z11A(= z1A), e.g., will be listed merely
as ‘1A’ in the matrix element entry. The quantity ‘

∑
’ stands for

the sum of the z4 impedances; if there are five layers, e.g., then∑
= z4A + z4B + z4C + z4D + z4E.
The matrices are arranged so that the column vector repre-

senting the voltage forcing function has the form {V, 0, 0, . . . , 0}t.
The column vector representing the current responses has the form
{I, IA, IB, IC, . . . , IL, IR}t. That is, the first current is the true elec-
trical current, common to all the electrical ports. This is followed by
the mechanical currents (proportional to the particle velocities) at
each mechanical junction between adjacent plates, in order, starting
from the left-most plate to the right-most plate. Finally, the last two
entries are the mechanical currents at the mechanical junction be-
tween the left and right boundary impedances and the outer surfaces
of the end plates to which they are attached.
The resulting impedance matrices are symmetric, so only the up-

per diagonal terms are given; the order of the matrix is always the
number of layers plus two.
The rules of formation for N plates can be seen from this sequence.

The 11-matrix element, denoted
∑
, is the sum of the electrical port

impedances (z33A + z33B + · · · + z33N). The 12, 13, . . . entries are
differences (z33(k))−z33(k+1) of adjacent electrical port impedances;
except that the last two entries are the first (z33A) and last (z33N)
electrical port impedances. The principal diagonal entries, starting
with the 22 entry, are sums (z11(k)+z11(k+1)) of adjacent mechanical
port impedances; except that the last two main diagonal entries are
the mechanically loaded left (ζ11L = ζ11A) and right (ζ22R = ζ22N)
mechanical port impedances. The negative entries appearing to the
right of the principal diagonal terms, in the positions 23, 34, 45, . . . ,
(N−1)N, are equal to −z12B, −z12C, −z12D, . . . , except that the two
last such entries, those in the last two columns, are zero. Finally,
the entry in the second row of the penultimate column is 2A, and
the entry in the last column, second-to-last row, is (−z12N). All other
entries are zero. [By relabeling variables, one can interchange the last
two rows and columns, retain the symmetry, and have the (−z12N)
entry appear on the same diagonal as the other negative elements;
this has not been done to keep the IL and IR columns in the sequence
given.]
The above formalism applies to stacks of piezoelectric plates

driven by TE, wherein all plates are connected electrically in se-

ries (common current). The formalism applies as well to stacks of
piezoelectric plates driven by LE, wherein all plates are connected
electrically in parallel (common voltage). For each plate, one starts
with the [yo] matrix, which is appropriate to LE [17], and incorpo-
rates the three internal loss mechanisms in the manner described in
the text to arrive at [y2] matrices. With respect to the TE bound-
ary conditions (BCs) discussed earlier, the LE mechanical BCs at
the plate junctions are identical; the BCs at the electrical Ports 3,
and the BCs at the mechanically loaded end surfaces are duals. The
procedure given for the two-plate TE stack yields, mutatis mutandis,
the two-plate LE stack admittance matrix, [y], which equals


(y33L + y33R) (y13L + y13R) y13L y13R
(y13L + y13R) (y11L + y11R) y12L y12R

y13L y12L υ11L 0
y13R y12R 0 υ22R


 .

The total mechanical admittances υ11L and υ22R equal, respectively,
(y11L+YL) and (y11R+YR), where YL and YR are the mechanical
admittances of the boundary loadings at the outer surfaces of the
stack, respectively. The absence of negative signs in all elements of
[y], for the LE situation, compared with those in the TE case, arises
from the lack of complete duality among the BCs in the two cases.
The rule for extending the LE case beyond that of two plates follows
by a procedure analogous to that sketched previously for the TE
case.

Appendix C

Input Data for the Simulations

The thickness-stretch mode is used in the simulations for illus-
tration, and, therefore, ‘33’-subscripted material coefficients are per-
tinent. Data characterizing the ceramic are derived from those re-
ported in [29]. The listed cE33 value is used, along with values of e33
and εS33 calculated via the relations

e31 = d31(cE11 + c
E
12) + d33c

E
13,

e33 = 2d31cE13 + d33c
E
33, and

εS33 = εT33 − 2 e31 d31 + e33 d33

with the exception that d31 has been modified. The coefficient d31
was changed from d31 = −271 (10−12) to −171 (10−12) because the
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TABLE C-I
Input Data.

Quantity Unit Ceramic Cermet

ρ 103 kg/m3 7.70 6.90
εS33 10−9 F/m 7.54 7.54
k33 % 47.93∗ 0
v m/s 4326.1∗ 4257.1∗

τ1 s 10−11 10−10

σ33 S/m 10−9 10+6

c̄ GPa 144.1∗ cE33 = 125
e33 C/m2 15.8 0
cE33 GPa 111 125
τ0 s 7.54∗ 7.54 10−15∗

∗Indicates entry derived from the relations:

c̄ = cE33+e
2
33/εS33; k33 =

∣∣e33∣∣√(
εS33c̄

)
; v =

√(
c̄
/

ρ
)
; τ0 =

(
εS/σ

)
.

reported value, taken with the other coefficients, predicts an un-
physical coupling coefficient; the modified value brings an overall
consistency to the complete set of elastic, piezoelectric, dielectric,
and coupling coefficients when compared with values reported in the
literature for similar materials. We assume the permittivity to be
nondispersive in the frequency range of the simulations.
A mass density value appropriate to the sintered ceramic is used.

Acoustic loss is taken to be roughly 103 times that of crystal quartz,
and the total effect of DC electrical conductivity shunted by dielectric
loss is assumed to be equivalent to that of a moderate insulator.
The cermet is assumed to be isotropic with longitudinal stiffness

calculated from the relation

c33 =
Y · (1− ν)
(1− ν)− 2ν2

using elastic data for a reduced PLZT 5.5/53/47 material: Y =
66.8 (109) Pa and ν = 0.380. Dielectric permittivity is taken, for
convenience, to be the same as that of the ceramic. This is of no con-
sequence, as it is dominated by electrical conductivity when ωτo 	 1,
which is the situation here. The viscous loss is taken to be 10 times
greater than the viscous loss in the ceramic, and the resistivity
roughly five times that of lead metal. A nominal value for mass den-
sity of reduced PLZT 5.5/53/47 is also used. The thickness of the
cermet is assumed for simplicity and in the absence of sufficient ex-
perimental data to be equal to the thickness of the ceramic portion
from which it was reduced. It is a simple matter to accommodate
thickness changes in the model. These choices are reflected in the
material values listed in Table C-1.

Appendix D

Displacements Within an Individual Plate

The displacements within each plate in the stack are completely
determined by the displacements at the plate’s boundaries. This is
true for the components Ureal and Uimag separately. Because the dis-
placements satisfy the TL equations, the displacements within plate
‘N’ are of the form [PN • sin(κN xN) +QN • cos(κN xN)]. The ampli-
tudes PN and QN are found from the boundary displacements. The
wavenumber, κN, equals (ω/vN) = XN/h = θN/t, where vN is the
stiffened velocity, and ω the radian frequency of interest (often res-
onance). The thickness coordinate, measured from the plate center,
is xN. The plate half-thickness is hN, −hN ≤ xN ≤ +hN.
Amplitudes PN and QN are found as follows. The network pro-

cedure given in the text provides displacements Ureal(N−1) and
Uimag(N−1) at the left of plate ‘N’, as well as displacements Ureal(N)
and Uimag(N) at the right of plate ‘N’. Consider, for example, Ureal

at both sides of plate ‘B’; one then has UrealA and UrealB as known
inputs. At the left surface, where xB = −hB:

UrealA = PrealB • sin(−κB hB) + QrealB • cos(κB hB),

and at the right surface, where xB = +hB:

UrealB = PrealB • sin(κB hB) + QrealB • cos(κB hB).

Therefore,

PrealB =
UrealB −UrealA

2 · sin(κB hB)
and

QrealB =
UrealB +UrealA

2 · cos(κB hB)
.

So,

Ureal(xB) = (UrealB −UrealA) ·
sin(κBxB)
2 · sin(κBhB)

+ (UrealB +UrealA) ·
cos(κBxB)
2 · cos(κB hB)

and similarly for Uimag (xB), etc.

Note in References.2

References

[1] F. Capasso, “Band-gap engineering: From physics and materials
to new semiconductor devices,” Science, vol. 235, pp. 172–176,
1987.

[2] G. H. Haertling, “Rainbow ceramics—A new type of ultra-high-
displacement actuator,” Amer. Ceramic Soc. Bull., vol. 73, no.
1, pp. 93–96, 1994.

[3] G. H. Haertling, “Ferroelectric ceramics: History and technol-
ogy,” J. Amer. Ceramic Soc., vol. 82, no. 4, pp. 797–818, 1999.

[4] I. A. Aksay, “Smart materials systems through mesoscale pat-
terning,” in “US Army Research Office MURI on Function-
ally Gradient Structures,” Princeton University, ARO Contract
DAAH04-95-1-0102, Jun. 1995–Nov. 1999.

[5] M. Mehregany, “A multidisciplinary research proposal for
MEMS-based smart gas turbine engines,” in “US Army Research
Office MURI on Functionally Gradient Structures,” Case West-
ern Reserve University, ARO Contract DAAH04-95-1-0097, Jul.
1995–Nov. 1999.

[6] N. Hagood, “Multidisciplinary research in smart composite
structures,” in “US Army Research Office MURI on Function-
ally Gradient Structures,” Massachusetts Inst. Technol., ARO
Contract DAAH04-95-1-0104, Jun. 1995–Nov. 1999.

[7] G. P. Carman, “Developing innovative mesoscale actuator de-
vices for use in rotorcraft systems,” in “US Army Research Of-
fice MURI on Functionally Gradient Structures,” Univ. Califor-
nia, Los Angeles, CA, ARO Contract DAAH04-95-1-0095, Jun.
1995–Nov. 1999.

[8] J. S. Vartuli, J. H. Prévost, R. K. Prud’homme, and I. A. Aksay,
“Finite element simulations of multilayer cellular piezoelectric
transducers,” in Proc. Amer. Ceramic Soc. 101st Annu. Mtg.
& Expo., 1999, p. 71.

[9] P. Laoratanakul, R. W. Schwartz, E. Skaar, W. Nothwang, and
B. T. Han, “Modeling and characterization of stress and geo-
metric effects on the performance of rainbow ceramics,” in Proc.
Amer. Ceramic Soc. 101st Annu. Mtg. & Expo., 1999, p. 96.

2Ref. [1] mentions ‘compositionally graded semiconductors,’
‘graded-gap transistors,’ and ‘modulation-doped superlattices.’ One
may consider these as microscale precursors to what are now re-
ferred to as ‘functionally gradient materials/structures’. In Ref. [2],
compositional variations as functions of thickness coordinate can be
produced by subjecting one surface of the ceramic to a reducing
atmosphere for limited periods of time. This treatment yields the
structure known as RAINBOW (reduced and internally biased oxide
wafer).

Authorized licensed use limited to: University of Missouri System. Downloaded on April 20, 2009 at 13:49 from IEEE Xplore.  Restrictions apply.



476 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 48, no. 2, march 2001

[10] W. F. Shelley, II, S. Wan, and K. J. Bowman, “Layered and func-
tionally graded piezoelectric ceramics,” in Proc. Amer. Ceramic
Soc. 101st Annu. Mtg. & Expo., 1999, p. 240.

[11] W. E. Windes and E. D. Steffler, “Fabrication of large func-
tionally graded materials,” in Proc. Amer. Ceramic Soc. 101st

Annu. Mtg. & Expo., 1999, p. 240.
[12] S. Butterworth, “On a null method of testing vibration gal-

vanometers,” in Proc. Phys. Soc., vol. 26, pp. 264–273, 1914.
[13] K. S. Van Dyke, “The electric network equivalent of a piezo-

electric resonator,” in Phys. Rev., vol. 25, no. 6, p. 895, 1925.
[14] K. S. Van Dyke, “The piezo-electric resonator and its equivalent

network,” in Proc. IRE, vol. 16, pp. 742–764, 1928.
[15] W. P. Mason, Electromechanical Transducers and Wave Filters,

2nd ed. Van Nostrand, 1948.
[16] D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and

piezomagnetic materials and their function in transducers,” in
Physical Acoustics: Principles and Methods, vol. 1A, W. P. Ma-
son, Ed. Academic Press, 1964, ch. 3, pp. 169–270.

[17] A. Ballato, H. L. Bertoni, and T. Tamir, “Systematic design of
stacked-crystal filters by microwave network methods,” IEEE
Trans. Microwave Theory Tech., vol. MTT-22, no. 1, pp. 14–25,
1974.

[18] A. Ballato and T. Lukaszek, “Distributed network modeling of
bulk acoustic waves in crystal plates and stacks,” U.S. Army
Electronics Command, Fort Monmouth, NJ, Tech. Rep. ECOM-
4311, May 1975.

[19] B. A. Auld, Acoustic Fields and Waves in Solids, vol. I, 2nd
ed. Krieger Publishing Company, 1990.

[20] J. Rosenbaum, Bulk Acoustic Wave Theory and Devices. Artech
House, 1988.

[21] R. Krimholtz, D. A. Leedom, and G. L. Matthaei, “New equiva-
lent circuits for elementary piezoelectric transducers,” Electron.
Lett., vol. 6, no. 13, pp. 398–399, 1970.

[22] D. A. Leedom, R. Krimholtz, and G. L. Matthaei, “Equivalent
circuits for transducers having arbitrary even- or odd-symmetry
piezoelectric excitation,” IEEE Trans. Sonics Ultrason., vol. SU-
18, no. 3, pp. 128–141, 1971.

[23] R. Krimholtz, “Equivalent circuits for transducers having arbi-
trary asymmetrical piezoelectric excitation,” IEEE Trans. Son-
ics Ultrason., vol. SU-19, no. 4, pp. 427–436, 1972.

[24] R. J. Kaz̆ys, “Equivalent circuit of the non-uniform piezoelectric
transducer,” Ultrasonics, vol. 14, pp. 115–118, 1976.

[25] A. Ballato and J. Ballato, “Accurate electrical measurements
of modern ferroelectrics,” Ferroelectrics, vol. 182, no. 1–4, pp.
29–59, 1996.

[26] M. Onoe and K. Okada, “Analysis of contoured piezoelectric
resonators vibrating in thickness-twist modes,” in Proc. 23rd
Annu. Freq. Contr. Symp., 1969, pp. 26–38.

[27] A. Ballato, “Resonant strain levels in modern ceramic plate actu-
ators,” in Ceramic Transactions. vol. 100, K. M. Nair and A. S.
Bhalla, Eds. Westerville, OH: The American Ceramic Society,
1999, pp. 443–454.

[28] A. Ballato, “Lateral and thickness excitation of obliquely poled
ferroelectric ceramic plates,” in Ceramic Transactions. vol. 106,
K. M. Nair and A. S. Bhalla, Eds. Westerville, OH: The Amer-
ican Ceramic Society, 2000, pp. 309–332.

[29] G. Haertling, “RAINBOWs and ferrofilms—Smart materials for
hybrid microelectronics,” in Ceramic Transactions. vol. 68, K.
Nair and V. Shukla, Eds. Westerville, OH: The American Ce-
ramic Society, 1996, pp. 71–96.

[30] C. Elissalde and L. E. Cross, “Dynamic characteristics of rain-
bow ceramics,” J. Amer. Ceram. Soc., vol. 78, no. 8, pp. 2233–
2236, 1995.

[31] C. Elissalde, L. E. Cross, and C. A. Randall, “Structural-
property relations in a reduced and internally biased oxide wafer
(RAINBOW) actuator material,” J. Amer. Ceram. Soc., vol. 79,
no. 8, pp. 2041–2048, 1996.

[32] G. Li, E. Furman, and G. H. Haertling, “Stress-enhanced dis-
placements in PLZT rainbow actuators,” J. Amer. Ceram. Soc.,
vol. 80, no. 6, pp. 1382–1388, 1997.

[33] A. Ballato, “Piezoelectric resonators,” in Design of Crystal and
Other Harmonic Oscillators. New York: John Wiley & Sons,
1983, pp. 66–122; 432–436.

[34] A. Ballato, T. J. Lukaszek, and G. J. Iafrate, “Subtle effects in
high-stability quartz resonators,” Ferroelectrics, vol. 43, no. 1/2,
pp. 25–41, 1982.

John Ballato (M’97) is an Assistant Profes-
sor of Ceramic and Materials Engineering at
Clemson University, where he serves as lead
investigator in photonic and opto-electronic
materials research and Director of the Cen-
ter for Optical Materials Science and Engi-
neering Technologies (COMSET). Dr. Ballato
received the PhD in 1997 from Rutgers Uni-
versity in ceramic and materials engineering
where he studied rare-earth-doped glasses and
crystals for applications in fiber and planar
lasers, amplifiers, and optical isolators, as well

as the drawing of optical fibers. He was recipient of the 1997 Norbert
J. Kreidl award from the American Ceramic Society and has been
twice honored with the Clemson University Board of Trustees Award
for Faculty Excellence. Dr. Ballato has authored over 25 technical ar-
ticles and holds one patent all dealing with the processing and prop-
erty characterization and simulation of photonic and opto-electronic
materials.

Robert W. Schwartz (M’98) is an Associate Professor of Ceramic
and Materials Engineering at Clemson University. Dr. Schwartz re-
ceived his BS degree in science education in 1977 and his MS degree
in Chemistry in 1981, both from North Carolina State University.
He received his PhD degree in ceramic engineering in 1989 from the
University of Illinois, Urbana-Champaign, where he studied the crys-
tallization behavior of lead titanate. Prior to Clemson University, Dr.
Schwartz was employed by the BFGoodrich Corporation and San-
dia National Laboratories. Dr. Schwartz has authored more than 65
technical articles, has written four book chapters, and has edited two
books. In addition, he holds one patent. Dr. Schwartz’s current in-
terests include stress-biased piezoelectric actuators and transparent
conducting electrode materials.

Arthur Ballato (S’55–M’59–SM’71–F’81)
received the SB degree in electrical engineer-
ing from the Massachusetts Institute of Tech-
nology, Cambridge, in 1958; the MS degree in
EE from Rutgers University, New Brunswick,
NJ, in 1962, and the PhD degree in elec-
trophysics from the Polytechnic Institute of
Brooklyn, NY, in 1972. He is Chief Scientist
of the US Army CECOM Research, Develop-
ment & Engineering Center, Fort Monmouth,
NJ, and is author of over 300 technical arti-
cles and book chapters, more than 50 patents,

and editor of several books. Dr. Ballato is a member of the American
Physical Society, American Ceramic Society, and Sigma Xi. He is a
Chartered Engineer and Fellow of the Institution of Electrical En-
gineers (London) and Fellow of the Acoustical Society of America.
He is an IEEE Ultrasonics, Ferroelectrics, and Frequency Control
Society AdCom member, and is its Standards Activities Chairman.
He was the Society’s Distinguished Lecturer on the topic “Frequency
and Time Sources” and received its 1992 Achievement Award.

Authorized licensed use limited to: University of Missouri System. Downloaded on April 20, 2009 at 13:49 from IEEE Xplore.  Restrictions apply.


	Network Formalism for Modeling Functionally Gradient Piezoelectric Plates and Stacks and Simulations of RAINBOW Ceramic Actuators
	Recommended Citation

	Network Formalism for Modeling Functionally Gradient Piezoelectric Plates and Stacks and Simulations of RAINBOW Ceramic Actuators

