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Theory of the Effect of Temperature on the Electron Diffraction Patterns of Diatomic 
Molecules* t 

R. A. BONHAM 

Department of Chemistry, Indiana University, Bloomington, Indiana 

AND 

J. L. PEACHER 

Department of Physics, Indiana University, Blooming/on, Indiana 

(Received 10 December 1962) 

The effect of temperature on the electron diffraction pattern of a diatomic molecule is considered from the 
standpoint of the simple kinematic scattering theory utilizing a quartic vibrational potential. The potential 
is obtained by an expansion of fi,2J(J+l)/2/Lr2+Dexp[-2a(r-r,)]-2Dexp[-a(r-r.)] about its 
minimum value roo The second-order wavefunction for the nth vibrational and Jth rotational state of the 
system has been obtained, and expressions for the electron diffraction quantities rg , l,2, and M (s) have been 
computed. General results for the quantity M (s) utilizing the approximate eigenfunctions of the complete 
Morse potential and incorporating an approximate treatment of the effect of centrifugal stretching are also 
presented. Explicit expressions for M(s) for the first three vibrational states as derived by this treatment 
are given. Appropriate sums over all the vibrational and rotational states have been carried out to obtain 
the temperature dependence for the above quantities. Estimates of the effect of temperature on the param­
eters r. and l,2 at 3000 and 15000 K for representative diatomic molecules are given. 

ANUMBER of authors have considered the effects 
of anharmonic molecular vibrations on electron 

diffraction results.l- 4 Approximate corrections for the 
effects of centrifugal stretching have also been con­
sidered by Bartelll and Iwasaki and Hedberg.3 How­
ever, a detailed general treatment of the effects of tem­
perature on the electron diffraction parameters rg , l,2, 
and the M(s) function, for cases where one or more ex­
cited vibrational states make an important contribution 
to the scattering, has not been treated either for the 
diatomic or poly atomic cases. It is the purpose of this 
paper to outline two general solutions to this problem 
for the case of diatomic molecules. 

* This research was carried out with financial aid from the 
Atomic Energy Commission and the U.S. Air Force Office of 
Scientific Research. 

t Contribution Number 1106 from the Chemical Laboratories 
of Indiana University. 

1 L. S. Bartell, J. Chern. Phys. 23, 1219 (1955). 
2 K. Kuchitsu and L. S. Bartell, J. Chern. Phys. 35, 1945 

(1961) . 
3 K. Hedberg and M. Iwasaki, J. Chern. Phys. 36,589 (1962). 
4 A. Reitan, Acta Chern. Scand. 12, 131 (1958). 

PERTURBED HARMONIC OSCILLATOR 
APPROXIMATION 

For the case of a diatomic molecule, the complete 
quantum-mechanical description of the system in the 
center of mass coordinates may be approximately sepa­
rated into a rotational and vibrational part and an 
electronic part.5 Further separation of the rotational­
vibrational problem can be accomplished by using the 
rigid rotor as an approximation for the rotational 
problem.6 

This then reduces the vibrational problem to a 
solution of the radial equation 

(d2/dr2) Qn(r) +[En- W(r) JQn(r) =0 (1.0) 

for the vibrational eigenfunctions Qn(r). Here, W(r) is 
(2}J/jj,2)V(r)+J(J+1)/r2, where }J is the reduced 
mass for the molecule and VCr) is the vibrational 
potential function. The separation term J (J + 1) / r2 
is commonly referred to as the centrifugal stretching 

• M. Born and E. Oppenheimer, Ann. Physik 84, 457 (1927). 
6 See for instance, H. Eyring, J. Walter and G. Kimball, Quan­

tum Chemistry (John Wiley & Sons, Inc., New York, 1954), p. 268. 
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2320 R. A. BONHAM AND J. L. PEACHER 

term. The energy En is, of course, 2)L/h2 times the true 
vibrational energy En. 

For our purposes, it will be convenient to define a 
new variable z such that 

z=B\(r-ro) , 

where B is a constant given by 

B= C!WII(ro)]\ 

(1.1) 

(1.2) 

where the Roman numeral two signifies the second 
derivative of the function, W(r). ro is the minimum 
of W (r) given as 

r~r.+4la4J(J+1)/r.3, (1.3) 

where r. is the minimum of VCr) and la is given by the 
relation 1,.2=h/[2a(2/LD) I] where ais the anharmonicity 
constant appearing in the Morse function, J..I. is the rest 
mass of the molecule, and D is the dissociation energy 
of the molecule. The function W(r) can then be ex­
panded about its minimum ro in a Taylor series.' In 
this treatment, the Morse potential,S which is suffi­
ciently accurate for our purposes,2 is used for V(r). 
This results in the series 

(1.4) 

where C and D are given as 

(1.5) 
and 

(1.6) 

The unperturbed Hamiltonian is then 

where 

A .. = 1-C2(87+256n+246n2+ 164n3)/(576B2) , 

(1.11) 
An+!= [C(2n+2)1/(16B)] 

X {-6(n+1) +D(392+646n+317n2-27n3)/(16B)}, 

(1.12) 
A n- 1= [C(2n)I/(16B)] 

X [6n-D(90+69n+398n2+27n3)/(16B) ], (1.13) 

A n+2= {[(n+1) (n+2) ]1/(8B)} 

X[-D(2n+3) +C2(27+33n+7n2)/(8B)], (1.14) 

A n_2= {[n(n-l) ]l/ (8B) } 

X [D(2n-l) +C2(1-19n+7n2)/(8B)], (Ll5) 

An+3= -[Hn+1) (n+2) (n+3) JI[C/(12B)], (1.16) 

A n_3= [!n(n-l)(n-2) ]t[C/(12B)], (1.17) 

An+4= ([(n+l) (n+2) (n+3) (n+4) JI/(32B)} 

X[ -D+C2(4n+7)/(4B)], (Ll8) 
and 

An-4= {[n(n-1) (n-2) (n-3) Ji/(32B) } 

X[D+C2(4n-3)/(4B)]. (1.19) 

With this wavefunction, expressions were obtained 
for rg , defined by the relation2 

rv=ro+B-IL:dZ z P(z) (1.20) 

and 1.2 defined as2 

Ho= B[(d/dz) 2_ Z2], (1.7) 1.2=B-1L:dz Z2P(Z) +2(rg-ro) (ro-r.) + (ro-r.) 2, 

with normalized eigenfunctions 

and eigenvalues 

E",(0)=W(ro)+B(2n+1). (1.9) 

Using second-order time-independent perturbation 
theory,9 the wavefunction which will give results for 
rv and 1.2 correct through terms in C3 and CD was 
found to be 

Qn(2)(Z) = AnQ .. (O)(z) +A .. +1Q"+1(O)(z) +An_1Qn_l(0)(Z) 

+ An+~n+2(O)(Z) + An_~n_2(O)(Z) + A n+3Qn+3(0) (z) 

+ A n_3Qn_S(0) (z) + A n+4Qn+4(O) (z) + A n-4Qn-4(O) (z), 

(1.10) 

7 This treatment is similar to that outlined in L. I. Schiff, Quan­
tum Mechanics (McGraw-Hill Book Company, Inc., New York, 
1955), p. 305. 

S P. M. Morse, Phys. Rev. 34,57 (1929). 
9 See reference 7, page 154. 

(1.21) 

where P(z) is simply the square of Qn(2) (z). It should 
be noted that to first-order terms, the first term in 
(1.21) is 1.2 for a nonrotating molecule, the second term 
is a rotation-vibration coupling term, and the last is 
the effect of rotation on 1.2.10 With the wavefunction 
given by (1.10), the results for ro and 1.2, containing 
only terms in the first power of J (J + 1), are 

r~r.+3al",2H2n+ 1) -a81,/ 

X rtz(1091+2282n+ 1675nL 1214n3-607n4) 

+4l", 4 J (J + 1) /r.3+1,,6( 13a2- 27 a/r.+ 24/rl) 

X (2n+1)J(J+l)/r.3 

-la8 (95a4-189a3/r.+84a2/rl+ 180a/r.3) 

X (31+78n+78n2) J(J+ 1) /(18r.3) 

+la8(5a4-12a3/r.+ 12a2/r.2) 

X (645+ 2086n+ 2693n2+ 1214n3+607n4) 

XJ(J+l)/(48r.3) (1.22) 
10 The authors are indebted to L. S. Bartell for pointing out the 

physical significance of the terms in (1.21). 
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and 

1.2~la2(2n+ 1) +a21a4 HI5+46n+46n2) 

+ 61a6 
( 3a-1/r.) (Zn+ 1) J(J+ 1)/r.3 

-a31a8(1091+2Z8Zn+ 1675n2-lZ14nL 607n4) 

X J(J + 1) /(Z4r.3) +la8(Z6a3- 54a2/r.+48a/r.2) 

X (11+30n+30n2) J(J+l)/(3r.3) 

-la8(Z7 a3-4Za2/r.+60/rn 

X (1+Zn+Zn2) J(J+1)/r.3. (1.23) 

The temperature dependence of (1.ZZ) and (1.23) 
can then be obtained by summing over all the vibra­
tional and rotational states, which results in the ex­
pressions 

rrr.+3a1a2 !coth(hv/ZkT) 

and 

+a31a4 ah[707-4710 coth2(hv/ZkT) 

+ 18Z1 coth4(hv/ZkT) J 

+41a4 cot[h! (2IkT)tJ/[r.3h/ (2IkT)!J 

+la6(13a2- Z7a/r.+Z4/r.2) coth(hv/ZkT) 

Xcot[h/ (2IkT) tJ/[re
3h/ (2IkT) tJ, (1.24) 

1.2~la2 coth(hv/ZkT) +a21a4 t[Z3 coth2(hv/ZkT) -8J 

+6Ia6(3a-l/re) [coth (hv/Zk T) J 

X cot[h/ (2IkT) lJ/[re
3h/ (2IkT) tJ 

+a31a8[707 -4710 coth2(hv/ZkT) 

+ 18Z1[coth4 (hv/Zk T) J 

Xcot[h! (ZIkT) tJ/[ 48re3h/ (2IkT)!J 

-la8(Z7 aL4Za2/re+60/re3) [coth2(hv/ZkT) J 
X cot[h/ (2IkT)tJ/[r.3h/ (2IkT)!J 

+la8(Z6aL54a2/re+48a/re2) [15 coth2(hv/ZkT) -4J 

Xcot[h/ (2IkT) !J/[3re3/ij (2IkT)t]. (1.25) 

In obtaining the above averages, the energy terms 
proportional to (Zn+ 1)2, (Zn+ 1) J (J + 1) , and 
[J (J + 1) J2 were neglected in the Bol tzman weighting 
factor and equilibrium frequencies were used in the 
calculations. It can be easily shown that the neglect 
of these terms will introduce an error of less than 15% 
in the normalization in the worst case considered by 
this work. Since the correction terms are both multi­
plied and divided by the normalization factor in the 
computation of the averages, the error in the correc­
tions given by (1.24) and (1.25) should be accurate 
to better than 15% at 15000 K for the worst case con­
sidered. There is, of course, the possibility that con­
tributions of the order of C4, C2D, and D2 from the 

third-order wavefunction will make an important con­
tribution at high temperatures. 

In Tables I and II, the results for rg and I. are given 
for some selected diatomic molecules at 300° and 
1500oK. In the case of the halogens, the correction 
terms proportional to C3 give rise to extremely large 
corrections at 1500oK, and in fact, give an incorrect 
result for T=OoK so that the contributions from the 
third-order wavefunction mentioned previously should 
be considered for accurate work. The results for rg 
indicate that at most temperatures the classical 
treatment of the centrifugal stretching effect given by 
Bartell! is adequate. However, at low temperatures for 
molecules with small moments of inertia, such as H2, 
the term cot[Ii/(2IkT)tJ/(Ii/(2IkT)t] may differ 
appreciably from 2IkT /h2, and the former expression 
is therefore a better approximation in these cases. In 
the calculation of 1e2, the contribution of terms de­
pending only on J are less than 1/10 000 of an angstrom 
unit for all the cases studied. The rotation-vibration 
coupling terms on the other hand make significant 
contributions-even at 3000 K which in the case of O2 

amounts to about O.OOOZ A. Some of the details of the 
rotational averaging are given in Appendix I. 

It is also possible to calculate the effect of the 
anharmonicity and centrifugal stretching terms on the 
M(s) function using the wavefunctions given in (1.10). 
Since this approach is rather cumbersome, it will be 
presented here only through terms in the first power of 
C, the cubic coefficient in the potential. A more de­
tailed treatment of the effects of temperature on the 
M(s) function is presented in a later part of this paper. 

The M(s) function calculated with a cubic potential 
and a first-order wavefunction is given as 

M(s) =Kc(s) f: exp[ - (hv/ZkT) (Zn+l)J 
n=O 

X f: exp[ - (1i2/2IkT) J( J + 1)] 
J=O 

J 

X L (YJm(o, f/J)Qn(1) (r, J) \ exp (isor) 
m=-J 

X \ YJm(O,f/J)Qn(!)(r, J», (1.Z6) 

where c(s) is a coefficient depending on the scattering 
of the individual atoms,!! the yJm(o, f/J) are the nor­
malized spherical harmonics which are the eigenfunc­
tions of the rigid rotor Hamiltonian, the Qn(l)(r, J) are 
the first-order vibrational wavefunctions for a cubic 
Morse oscillator and K is a normalization constant. 
Making use of the sum rule for spherical harmonics!2 
and integrating over the angular coordinates, (1.Z6) 

11 See for instance, R. A. Bonham, and T. Ukaji, J. Chern. 
Phys. 36, 72 (1962). 

1. P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. II, 
p. 1327. 
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TABLE 1. Vibrational, rotational, and vibrational-rotational coupling contributions to To at 300° and 15000K for selected diatomic 
molecules. 

Vibrational Rotational Vibration-rotation 
contribution contribution coupling term ro 

r, T=300oK T= 15000K T=3000K T=15000K T=300oK T= 15000K T=300oK T=15000K 

Hz1 0.7417& 0.020z 0.0208 0.001. 0.0106 0.0001 0.000, 0.7639 0.7736 

H1Cj36 1. 2746& 0.0152 0.0171 0.001, 0.0066 0.0002 1.291t 1.298. 

N21. 1.0976" 0.0041 0.0051 0.000, 0.001; 1.1020 1.104z 

N"016 1.1508" 0.0047 0.006, 0.000. 0.002, 1.1560 1.1598 

0 216 1.207,& 0.0059 0.009, 0.0007 0.003. 0.0001 1. 2140 1.220z 

CIz36 1.9890b 0.0051 0.0392 0.001, 0.006, 0.000, 1.995, 2. 0349 

Br79Br81 2.2836& 0.0060 0.129,c 0.001, 0.0067 0.000. 2.2909 2.4202 

12127 2.6666& 0.0078 0.449,• 0.0018 0.0091 0.0008 2.6762 3.126z 

& The parameters necessary for the calculation of the terms in this row were obtained from G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nos­
trand Company, Inc., New York, 1950) 2nd ed. Note that all calculations are based on pure isomeric forms of the diatomic molecules and that la'=16.860,/w,ILA 
and a=1.355,XlO-' We <lLA/DoO)! in Herzberg's units and notation. 

b The r. value in this case was obtained from the reference: W. G. Richards and R. F. Barrow, Proc. Chern. Soc. 1962, 297. 
C The large corrections in these cases are due to the term proportional to a'ia ' and may be due partly to the neglect of terms of the order C', C'D, and D'. 

To include these terms in the calculation would require the use of the third-order wavefunction. 

reduces to 

M(s) = Kc(s) f: exp[ - (hv/2kT) (2n+1)J 
n=0 

X:E(2J+1) exp[ -UN2IkT)J(J+1)J 
J=O 

x fOO dr 1 Qn(1) (r, J) 12 sin (sr) / (sr). (1.27) 
o 

The calculation of (1.27) may be simplified by using 
the expression for 1 Qn (1) (r, J) 12 

I Qn(1)(r, J) 12=Qn(0)(Z)2 

+C[Z8+Z( 4n+ 1) J[Qn(O) (z)2/3BJ 

- C[z2+2(2n+ 1) J(2n+2)1[Qn(0)(Z)Qn+l(0)(Z) /3BJ, 

( 1.28) 
and expanding 1/r so that 

1/~(1/ro) [1-B-!(z/ro)]' ( 1.29) 

The sum over n in both the numerator and de­
nominator can be evaluated before integrating over z. 
The sums can be easily evaluated by making use of the 
relation18 

:E exp[ - (hv/kT) (n+!) JHn2(z) exp( -Z2) /2nn! 
10=0 

=exp[ -Z2 tanh(hv/2kT)J/2 cosh (hv/kT) , (1.30) 

and the differentiation of (1.30) with respect to the 
parameter (hv/kT). Further details are presented in 
Appendix II. 

I'See reference 12, Vol. I, p. 786. 

The approximate result for M(s) is 

M(s) = c(s) exp[ -!s2102 coth(hv/2kT) J 
X [sin (sro) A (T) / (sro) +cos(sro) B( T) / (sro) J, (1.31) 

where 

ro""r,+41,,4 cot[h/ (2IkT) !J/[re
3h/ (2IkT) 'J, 

102""1,,2+ 61,,6 ( a-1/r,) 

( 1.32) 

Xcot[h/ (2IkT) IJ/[re8h/(2IkT)!J (1.33) 

A (T) = 1-3al,,2 coth(hv/2kT)/(2ro) 

+s2al,,4[3 coth2(hv/2kT) -1J/ro, (1.34) 
and 

B(T) = -sl,,2 coth(hv/2kT)/ro+3sal,,2 !coth(hv/2kT) 

- s8al,,4 i[3 coth2(hv/2kT) - 2]. (1.35) 

Usually the factor A (T) is taken to be nearly unity 
and the terms in B (T) are incorporated into the phase 
of sines ro). For cases where the above approximation 
is not adequate,!4 the M(s) function should be charac­
terized in terms of the more exact formulas derived in 
the next section of this paper. 

MORSE MODEL FOR EXCITED VIBRATIONAL STATES 

The approximate solutions to the Morse potential 
function,!· 

VCr) = D exp[2a(re-r) J- 2D exp[a(re- r) J, (2.0) 

I. Bartell has recently shown that the errors in (1.31) are of 
two types. The first is due to the truncation of the series expansion 
of the potential, and the second is due to errors in the perturba­
tion approximation. Bartell's calculations for CR, and Clz indi­
cated that these errors were largely compensating at 3000K (L. S. 
Bartell, private communication). 

16 Reference 12, p. 1672. 
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TABLE II. Vibrational and vibration-rotation coupling contributions to 1.2 at 300° and 15000 K for selected diatomic molecules. 

Vibrational Vibration-rotation 
la2 coth (hv/2k T) contribution coupling terms 1. 

I • a T=300oK 

H2' 0.0872 0.007610, 

H'CP' 0.075. 0.005755, 

N2" 0.03h 0.0010202 

N14016 0.034. 0.0011858 

O2'6 0.036, 0.OO133~ 

Ch35 0.041, 0.001948. 

Br'9Br81 0.036, 0.002007. 

12127 0.0352 0.0026136 

• See footnotes a and b of Table 1. 
b See footnote c of Table 1. 

T= 15000 K T=300oK 

0.007838. 0.0008680 

0.006445, 0.0004510 

0.001256. 0.0000286 

0.0016400 0.000040. 

0.002241, 0.000048. 

0.006450, 0.000066. 

0.0084990 o.oooon 
0.012072. 0.0001260 

have been given by Morse and can be written as 

Qn=N-1/2Za-n-i exp[ -z/2JLn2a-2n-l(Z) , (2.1) 

where z is 2a exp[a(re-r) J, D is the dissociation 
energy, N and a are constants, and Ln2a-2n-l(z) is an 
associated Laguerre polynomial. The effect of centrif­
ugal distortion can be included approximately in this 
solution by approximating r02/r2 as16 

where ro is the minimum of the combined potential 
used in the previous section. The complete potential 
W(r) can then be approximated as 

W(r)'" J(J + 1) (4/aro-6/a2r02) exp[a(ro-r) J/r02 

+J(J+l) (1/aro-3/a2r02) 

X exp[2a(ro-r)J/r02+2,uV(ro-r)/h2. (2.3) 

The definition of a in (2.1) now becomes 

and the M(s) function can be calculated quite readily 
by employing the following scheme. First, the normali­
zation integral can be shown to be 

N= [Odzexp(-z)z(Pn-ll[LnPn(z)J2 
o 

where P n is 2a- 2n-1. The general solution to inte-

18 C. H. Townes and A. L. Schawlow, Microwave SPectroscopy 
(McGraw-Hill Book Company, Inc., New York, 1955), p. 8. 

T=1500oK T=300oK T= 15000 K T=300oK 

0.0009490 0.0000800 o . 0004582 0.092. 

0.000629. 0.000049. 0.0002822 0.079, 

0.000051s 0.000003. 0.0000148 0.032. 

0.000096. 0.0000058 0.000041, 0.035, 

0.0001830 0.000010. 0.000097, 0.037. 

0.0009700 0.000020, 0.000812. 0.045, 

0.0016170 0. 0000248 0.003575, 0.045. 

0.0029150 0.000041a 0.0156740 0.052, 

grals of this type has been given as17 

t° dz exp( -z)z(Pn+B)[L"Pn(z) J2 
o 

T= 15000 K 

0.09~ 

0.0858 

0.036. 

0.0422 

0.0502 

0.090, 

0.1170b 

0.175,b 

= (-l)nr(l+Pn+n) t( -l)r[B+rJ 
r=0 n 

xr(Pn+ B+r+ 1) /[r!r(n-r+ 1) r(l +P,,+r) J, 
(2.6) 

where B may be a complex number, and the long 
brackets indicate a bionomial coefficient. 

The M(s) function for the nth excited vibrational 
state can then be written as 

Mn(s) =N-l[O dz exp( -z)z(P,,-l)[LnPn(z) J2 
o 

Xjo{s[re- a- 1ln (z/2a) Jl, (2.7) 

where the function jo(x) is a spherical Bessel function 
of order zero. The integral over z can be easily evalu­
ated if the functionjo(x) is represented by its integral 
transform18 and the integration over z carried out so 
that 

where 

Fn(t) = (-l)n t( -l)rr(p,,-ist/ a+r) 
r=O 

X r(r-ist/ a) /[r!r( - ist/ a-n+r) r(n-r+ 1) 

xr(l+Pn+r)]. (2.9) 

The F,,(t) function for the ground and first two excited 

17 H. Buchholz, Die Konfluente Hypergeometrische Funktion 
(Springer-Verlag, Berlin, 1953), p. 143, formulas 20 and 21. 

18 See reference 12, p. 1575. 
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vibrational states is 

Fo(t) = r (Po-ist/a)/r(Po+ 1) , 

Fl(t) = [r(P1-ist/a) /r(P1+ 1) J 
(2.10) 

X [1+ (ist/a-s2t2/a2) /(P1+ 1) J, (2.11) 
and 

F2(t) = [r(P2-ist/a) /r(P2+ 1) J 
X 11+2 (ist/a-s2t2/a2)/(P2+ 1) 

- [( ist/ a) - (s2t2/2a2) + (is3t3/ a3) 

- (sit4/2a4)J/[(P2+2) (P2+1)]I. (2.12) 

Since P n is a very large parameter in the above cases, 
it is possible to expand the gamma functions in powers 
of (ist/ Pna) and perform the integrations over t. 
The details of this expansion are given in Appendix II. 
The application of this procedure to the expressions 
for Mn(s) given above result in the approximate 
formulas 

Mo( Uo)""'exp[- A2+ A4] 

Xsin[Uo-2A2/Uo-A3+Asl![Uo-2A2/Uo+2ANUo], 

(2.13) 
M1( Ul)""' Mo( U1) +sa1a2(d/dUl)Mo( U1) 

+s21a2(d/ dU1)2Mo( U1), (2.14) 
and 

M2( U2)""' MoC U2) +2sa1a2(d/dU2)Mo( U2) 

+2s21a2(d/dU2)2Mo( U2) -sa31a4(d/dU2)Mo( U2) 

-s2a21a4(d/dU2)2Mo( U2) +s3a1a4(d/dU2)3Mo( U2) 

+tcs41a4
) (d/dU2)4Mo( U2), (2.15) 

where 

Unf'Vs{r.+41a4J(J + 1) /r.3+a1a2 tc 4n+3) 

+3a21a6 J(J + 1) (4n+3) [(1-1/ar.)/r.3] 

+a31a4 1\ (24n2+36n+ 13) + ... j, (2.16) 

A~s2{la2/2+3a1a6J(J+ 1) [(l-l/ar.) Ir.3] 

+a21a4 H 4n+3) 

+3a31a8 J(J+ 1) (4n+3) [(l-ljar.) Ir.3J+ .•. j, 

(2.17) 

A3~S3{ (a1a4/6) + (2a21a8) [J(J + 1) (l-l/ar.) Ir.3J 

+a31a6 i(4n+3)+···j, (2.18) 

and 
A~s4(a21a6/12+' •. ), 

A {"'S5 (a31a8/20+ ••• ). 

(2.19) 

(2.20) 

It is also possible to simplify (2.13) by defining an 
effective bond length, rm , and an effective amplitude 
of vibration, 1m , such that 

(2.21) 

and 
Im2= 2(A2- A4) /S2. 

Using this notation, (2.13) reduces to 

Mo(s)f'Vexp( -lm2s2/2) 

(2.22) 

Xsin[(srm- A3+ As) / (srm+2ANUo)]. (2.23) 

It is easily seen that the main terms in (2.21), (2.22) 
and (2.23) check with those given by Kuchitsu and 
BartelJ.2 As a check of the approach used here, both 
ro and 1.2 were computed for the ground vibrational 
state where J=O. To do this, the term In (z/2a)-I/a was 
expanded in the usual series for a logarithml9 

In (z/2a)-I/a= [(z/2a)-I/a-1] 

-![(zI2a)-I/a-1]2+ ... , (2.24) 

keeping only the first two terms. Using this approxi­
mation, ro and l.2 were found to be 

ro= re+!a1a2+Ha31a4+Ha51a6--\l.( a1a4Ir.2) (2.25) 

and 
l/= 1a2+ 14

5 a21a4+Ha41aL (21a4Ir.2). (2.26) 

The expression for ro agrees with that given in reference 
2 to the first three terms and with the first two terms 
in 1/. It should be noted that the approximation used 
here in the expansion of the log(zI2a)-I/a term does not 
enter into the calculation of the Mn(s) function. 

CONCLUSIONS 

A detailed study of the effects of temperature on the 
reduced molecular intensity function has been pre­
sented. For diffraction work at room temperature, it 
has been shown that the effects of centrifugal distortion 
are much smaller than those due to anharmonic vibra­
tions. In the case of the electron diffraction parameter, 
ro, the effect of centrifugal distortion can be char­
acterized accurately by the usual classical treatment 
over a wide range of temperatures for most molecules. 
The main exceptions are hydrogen and the lighter 
hydrides where a more exact treatment is needed at 
lower temperatures (see Appendix I). 

The parameter Ie at room temperature is not 
effected by centrifugal distortion, but corrections of the 
order of 0.0002 A may result from a coupling of the 
vibrational and rotational effects. At higher tempera­
tures, this coupling between vibrational and rotational 
effects can become quite large and would have to be 
considered in precise work. 

In the case of the halogens, rotational and vibra­
tional effects produce appreciable corrections to 
diffraction data even at room temperature. For higher 
temperatures, the corrections to diffraction parameters 
become extremely large and the calculations presented 

,. C. D. Hodgman, Mathematical Tables (Chemical Rubber 
Publishing Company, Cleveland, Ohio, 1948), 9th Ed., p. 279. 
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here indicate that at 1500oK, a third-order perturbation 
treatment may be necessary. 

Expressions for the M(s) function have also been 
obtained and it should be possible with the use of these 
to characterize experimental scattering curves for 
diatomic molecules over a wide temperature range. 
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APPENDIX I 

The sum over rotational states, 

S(J) = I:(2J+l) exp[ - Ch,2f2IkT) J(J+l)], (3.0) 
J=O 

has been approximately evaluated20 and can be written 
as 

I:(2J+l) exp[ - (h2/2IkT) J(J+l)] 
J=O 

= (2IkT/hZ)+t+-hW/2IkT) 

+m(h2/2IkT)2+.... (3.1) 

The series expansion for the csc2x can be written asZ1 

csc2x= (1/x2) +t+ (x2/15) + 10 (x4/945) , (3.2) 

so that to very good approximation, the sum in (3.1) 
can be written as 

E(2J + 1) exp[ - (h2j2IkT) J(J + 1)] 

=csc2[h/(2IkT)l]. (3.3) 

APPENDIX II 

Integrals of the type 

A(a) = i:dZ exp( -z2)Hn(z)Hn+1(z) sin(az), (4.0) 

B(a) = i:dz exp( -z2)Hn(z) Hn- 1(z) sin (az) , (4.1) 

can be evaluated by using the following well-known 
relations among Hermite polynomials13 

zHn(z) = nHn_1(Z) +t[Hn+1(z)], 

(d/dz) Hn(z) = 2nHn_1(Z) , 

(4.2) 

(4.3) 

20 See for instance, S. Golden, Introduction to Theoretical Chem­
istry (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1961), p. 134. 

21 B. O. Pierce, A Short Table of Integrals (Ginn and Company, 
Boston, Massachusetts, 1929), The expansion for the csc2x may 
be obtained from Eq. 775, p. 91 by taking the negative first deriva­
tive term by term. 

and 

(d/dz) [exp( -z2)HnCz)]= -exp( -Z2) Hn+1(z) . (4.4) 

Eliminating Hn+1(Z) in (4.0) by using (4.2), it can 
easily be shown that 

A(a)=-2nB(a)-2(d/da)l(a), (4.5) 
where 

A second equation can be obtained by using relations 
(4.4) and (4.3) with A(a) and then integrating by 
parts. This results in the second relation, 

A(a)=al(a)+2nB(a), (4.7) 

so that A (a) may be obtained solely in terms of lea) as 

A (a) = tal (a) - (d/da)l(a). (4.8) 

By use of (4.2) all the integrals encountered in this 
work may be reduced to either A (a) or l(a). 

APPENDIX III 

The term r(Pn -ist/a)/r(Pn+l) which occurs in 
equations (2.10) through (2.12) can be very accurately 
approximated by use of the gamma function expan­
sion.22 

r(z) = (271')lz-l exp( -z+z lnz)(l+~+_l __ ... ). 
12z 288z2 

This results in the approximate relation 

r(Z+E) /r(z)"'-'z' exp{ - (E/2z) [1+ (6Z)-1] 

+ (E2/2z) [1 + (2Z)-1+ (6z2)-1] 

- (E3/6z2) (1 +Z-l) + (E4/12z3) [1 + (3/2z)] 

(5.0) 

-(E5/20z4)[1+(2/z)]}, (5.1) 

where Z»E and which is accurate through terms of 
order 1/z2 in Eq. (5.0). 

It should be pointed out also that all the necessary 
integrals needed in the calculation of the M n (s) func­
tions can be obtained approximately from the integral 

~11 dt exp(iUnt- A2t2) 
2 -1 

"'-'exp( - A 2) [sin ( Un) /Un ][1+ (2A2/Un2) (1- 2A2) 

+ (4ANUn4) (4A 22-12A2+3)···] 

-exp( - Az) [cos ( Un) fUn] { (2A 2/Un) 

X[1+(2Az/Un2) (3-2Az) 

+ (4ANUn4) (4A zL 20A2+15)··· ]}. (5.2) 

22 E. Jahnke and R. Emde, Funktionentafeln (Dover Publica­
tions, Inc., New York, 1945), 4th Ed., p. 10. 
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