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Infinite-randomness critical point in the two-dimensional disordered contact process

Thomas Vojta, Adam Farquhar, and Jason Mast
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

�Received 13 October 2008; published 12 January 2009�

We study the nonequilibrium phase transition in the two-dimensional contact process on a randomly diluted
lattice by means of large-scale Monte Carlo simulations for times up to 1010 and system sizes up to 8000
�8000 sites. Our data provide strong evidence for the transition being controlled by an exotic infinite-
randomness critical point with activated �exponential� dynamical scaling. We calculate the critical exponents of
the transition and find them to be universal, i.e., independent of disorder strength. The Griffiths region between
the clean and the dirty critical points exhibits power-law dynamical scaling with continuously varying expo-
nents. We discuss the generality of our findings and relate them to a broader theory of rare region effects at
phase transitions with quenched disorder. Our results are of importance beyond absorbing state transitions
because, according to a strong-disorder renormalization group analysis, our transition belongs to the univer-
sality class of the two-dimensional random transverse-field Ising model.

DOI: 10.1103/PhysRevE.79.011111 PACS number�s�: 05.70.Ln, 64.60.Ht, 02.50.Ey

I. INTRODUCTION

Many-particle systems far from equilibrium can undergo
phase transitions if external parameters are varied. These
transitions, which separate different nonequilibrium steady
states, are characterized by large-scale fluctuations and col-
lective behavior over large distances and long times very
similar to the behavior at equilibrium critical points. Ex-
amples of nonequilibrium phase transitions occur in a wide
variety of systems ranging from surface chemical reactions
and growing interfaces to traffic jams and to the spreading of
epidemics in biology. Reviews of some of these transitions
can be found, e.g., in Refs. �1–7�

In recent years, a large effort has been directed toward
classifying possible nonequilibrium phase transitions �5�. A
particularly well-studied type of transitions separates active,
fluctuating steady states from inactive absorbing states where
fluctuations cease entirely. The generic universality class for
these absorbing state transitions is directed percolation �DP�
�8�. According to a conjecture by Janssen and Grassberger
�9,10�, all absorbing state transitions with a scalar order pa-
rameter, short-range interactions, and no extra symmetries or
conservation laws belong to this class. Examples include the
transitions in the contact process �11�, catalytic reactions
�12�, interface growth �13�, or Pomeau’s conjecture regard-
ing turbulence �14�. In the presence of conservation laws or
additional symmetries, other universality classes such as the
parity conserving class or the Z2-symmetric directed perco-
lation �DP2� class can occur �see Ref. �4� and references
therein�.

The DP universaity class is ubiquitous in theory and com-
puter simulations, but clear-cut experimental verifications
were lacking for a long time �15�. Partial evidence was mani-
fest in the spatiotemporal intermittency in ferrofluidic spikes
�16�. Only very recently was a full verification �the only one,
to the best of our knowledge� found in the transition between
two turbulent states in a liquid crystal �17�. Possible causes
for the surprising rarity of DP scaling in experiments are
impurities, defects, or other kinds of disorder that are present
in all realistic systems.

For this reason, the effects of quenched spatial disorder on
the DP universality class have been studied for many years.
However, a consistent picture has been very slow to emerge.
According to the general Harris criterion �18� �applied to the
DP universality class by Kinzel �19� and Noest �20��, a clean
critical point is �perturbatively� stable against weak spatial
disorder, if the spatial correlation length critical exponent ��

satisfies the inequality d���2, where d is the spatial dimen-
sionality. The correlation length exponents of the DP univer-
sality class are ���1.097 in one space dimension, 0.73 in
two dimensions, and 0.58 in three dimensions �4�; therefore,
the Harris criterion is violated in all dimensions d�4. The
instability of the DP critical behavior against spatial disorder
was confirmed by a field-theoretic renormalization group cal-
culation �21�. This study did not produce a new critical fixed
point but runaway flow toward large disorder, suggesting un-
conventional behavior �22�. Early Monte Carlo simulations
in two space dimensions �23,24� found logarithmically slow
dynamics, in violation of power-law scaling. Moreover, in
analogy with Griffiths singularities �25�, very slow dynamics
was found in an entire parameter region near the transition
�26–29�.

A crucial step toward resolving this puzzling situation was
taken by Hooyberghs et al. �30,31�, who used the Hamil-
tonian formalism �32� to map the one-dimensional disor-
dered contact process onto a random quantum spin chain.
They then applied a Ma-Dasgupta-Hu strong-disorder renor-
malization group �33,34� and showed that the transition is
controlled by an exotic infinite-randomness fixed point in the
universality class of the random transverse-field Ising model
�35,36�, at least for sufficiently strong disorder. This type of
critical point displays ultraslow activated rather than power-
law dynamical scaling. For weaker disorder, Hooyberghs et
al. relied on numerical simulations and predicted nonuniver-
sal continuously varying exponents, with either power-law or
exponential dynamical scaling. Using large-scale Monte
Carlo simulations, Vojta and Dickison �37� recently con-
firmed the infinite-randomness scenario. Moreover, their
critical exponent values agreed with the predictions of the
strong-disorder renormalization group �which can be solved
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exactly in one dimension�, and they were universal, i.e., in-
dependent of disorder strength.

In higher dimensions, a strong-disorder renormalization
group can still be applied, but, in contrast to the case of one
dimension, it cannot be solved analytically. By implementing
the renormalization group numerically, Motrunich et al. �38�
demonstrated the existence of an infinite-randomness fixed
point in two dimensions �and at least the flow toward larger
disorder in three dimensions�. However, reliable estimates
for the critical exponent values have been hard to come by
due to the small sizes available in the quantum simulations.

In this paper, we report the results of large-scale Monte
Carlo simulations of the contact process on two-dimensional
randomly diluted lattices. The purpose of this work is two-
fold. First, we intend to determine beyond doubt the charac-
ter and universality of the critical behavior; is it of conven-
tional power-law type, infinite-randomness type, or an even
more exotic kind? Second, we intend to perform a careful
data analysis that allows us to compute reasonably accurate
exponent values. These will be important beyond the disor-
dered contact process and apply to all systems controlled by
the same infinite-randomness fixed point, including the two-
dimensional random transverse-field Ising magnet �38�.

The paper is organized as follows. In Sec. II, we introduce
our model, the contact process on a randomly diluted lattice.
We then contrast the scaling theories for conventional critical
points and infinite-randomness critical points. We also sum-
marize the predictions for the Griffiths region. In Sec. III, we
present our simulation method and various numerical results
together with a comparison to theory. We conclude in Sec.
IV by summarizing our findings, discussing three space di-
mensions, and relating our results to a broader classification
of phase transitions with quenched disorder �39�.

II. MODEL AND PHASE TRANSITION SCENARIOS

A. Contact process on a diluted lattice

The contact process �11�, a prototypical system in the DP
universality class, can be interpreted as a simple model for
the spreading of a disease. The clean contact process is de-
fined on a d-dimensional hypercubic lattice. Each lattice site
r can be active �infected� or inactive �healthy�. In the course
of the time evolution, active sites can infect their neighbors
or they can spontaneously heal �become inactive�. Specifi-
cally, the dynamics of the contact process is given by a
continuous-time Markov process during which active sites
become inactive at a rate � while inactive sites become ac-
tive at a rate �n / �2d�. Here, n is the number of active
nearest-neighbor sites. The infection rate � and the healing
rate � �which can be set to unity without loss of generality�
are external parameters. Their ratio controls the behavior of
the system.

For ���, healing dominates, and the absorbing state
without any active sites is the only steady state �inactive
phase�. For sufficiently large infection rate �, there is a
steady state with a nonzero density of active sites �active
phase�. These two phases are separated by a nonequilibrium
phase transition in the DP universality class at a critical in-
fection rate �c

0.

We now introduce quenched spatial disorder into the con-
tact process by randomly diluting the underlying lattice. Spe-
cifically, we randomly remove each lattice site with probabil-
ity p �40�. As long as the impurity concentration p remains
below the percolation threshold pc, the lattice has an infinite
connected cluster of sites which can support the active phase.
Conversely, at dilutions above pc, the lattice is decomposed
into disconnected finite-size clusters. Because the infection
eventually dies out on any finite cluster, there is no active
phase for p� pc. Consequently, the contact process on a ran-
domly diluted lattice has two different nonequilibrium tran-
sitions �see also Fig. 1�, the generic transition for p� pc
which is driven by the dynamic fluctuations of the contact
process and a percolation transition at p= pc which is driven
by the lattice geometry �41�. The two transitions are sepa-
rated by a multicritical point which was studied in Ref. �42�.

The basic observable in the contact process is the average
density of active sites at time t,

��t� =
1

Ld�
r

�nr�t�� �1�

where nr�t�=1 if the site r is active at time t and nr�t�=0 if
it is inactive. L is the linear system size, and �¯� denotes the
average over all realizations of the Markov process. The
long-time limit of this density �i.e., the steady state density�

�stat = lim
t→	

��t� �2�

is the order parameter of the nonequilibrium phase transition.

B. Conventional power-law scaling

In this section, we briefly summarize the scaling theory
for absorbing state transitions controlled by conventional
fixed points with power-law dynamical scaling �see, e.g.,
Ref. �4��, using the clean contact process as an example.

active phase

0 0.1 0.2 0.3 0.4 0.5
p

0

0.2

0.4

0.6

λ c
-1

inactive phase

lattice
percolation
transition

generic transition

MCP

FIG. 1. �Color online� Phase diagram of the contact process on
a site-diluted square lattice �inverse critical infection rate �c

−1 vs
impurity concentration p�. MCP marks the multicritical point. The
black dots show the actual simulation results, the lines are guides to
the eye.
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When the critical point �c is approached from the active
phase, the order parameter �steady state density� vanishes,
following the power law

�stat 	 �� − �c�
 	 �
, �3�

where �= ��−�c� /�c is the dimensionless distance from the
critical point, and 
 is the order parameter critical exponent.
In addition to the average density, we also need to character-
ize the length and time scales of the density fluctuations.
When approaching the transition, the �spatial� correlation
length �� diverges as

�� 	 
�
−��. �4�

The correlation time �� behaves like a power of the correla-
tion length,

�� 	 ��
z , �5�

i.e., the dynamical scaling is of power-law form. The three
critical exponents 
, ��, and z completely characterize the
directed percolation universality class. The above relations
allow us to write down the finite-size scaling form of the
density as a function of �, t, and L,

���,t,L� = b
/�����b−1/��,tbz,Lb� , �6�

where b is an arbitrary dimensionless scale factor.
Two interesting observables can be studied if the time

evolution starts from a single active site in an otherwise in-
active lattice. The survival probability Ps�t� is the probability
that an active cluster survives at time t when starting from
such a single-site seed at time 0. For directed percolation, the
survival probability scales exactly like the density �43�,

Ps��,t,L� = b
/��Ps��b−1/��,tbz,Lb� . �7�

The pair connectedness function C�r , t�= �nr�t�n0�0�� de-
scribes the probability that site r is active at time t when
starting from an initial condition with a single active site at
r=0 and time 0. Because C involves a product of two den-
sities, its scale dimension is 2
 /��, and the full finite-size
scaling form reads �44�

C��,r,t,L� = b2
/��C��b−1/��,rb,tbz,Lb� . �8�

The total number of particles N when starting from a single
seed site can be obtained by integrating the pair connected-
ness C over all space. This leads to the scaling form

N��,t,L� = b2
/��−dN��b−1/��,tbz,Lb� . �9�

Finally, the mean-square radius R of the active cluster, being
a length, scales as

R��,t,L� = b−1R��b−1/��,tbz,Lb� . �10�

At the critical point, �=0, and in the thermodynamic
limit, L→	, the above scaling relations lead to the following
predictions for the time dependencies of observables. The
density and the survival probability asymptotically decay as

��t� 	 t−
, Ps�t� 	 t−
 �11�

with 
=
 / ���z�. In contrast, the radius and the number of
particles in a cluster starting from a single seed site increase
as

R�t� 	 t1/z, N�t� 	 t�, �12�

where �=d /z−2
 / ���z� is the so-called critical initial slip
exponent.

C. Activated scaling at an infinite-randomness fixed point

In this section we summarize the scaling theory for an
infinite-randomness fixed point with activated scaling, as has
been found in the one-dimensional disordered contact pro-
cess �30,37,39�. At an infinite-randomness fixed point, the
dynamics is ultraslow. The power-law dynamical scaling �5�
gets replaced by activated scaling,

ln���/t0� 	 ��
� , �13�

characterized by a new exponent � called the tunneling ex-
ponent. �This name stems from the random transverse-field
Ising model where this type of scaling was first found.� Here
t0 is a nonuniversal microscopic time scale. The exponential
relation between time and length scales implies that the dy-
namical exponent z is formally infinite. In contrast, the static
scaling behavior remains of power-law type.

Another important characteristic of an infinite-
randomness fixed point is that the probability distributions of
observables become extremely broad. Therefore, the average
and typical value of an observable do not necessarily agree
because averages may be dominated by rare events. None-
theless, the scaling form of the average density at the
infinite-randomness critical point is obtained by simply re-
placing the power-law scaling combination tbz by the acti-
vated combination ln�t / t0�b� in the argument of the scaling
function:

�„�, ln�t/t0�,L… = b
/���„�b−1/��, ln�t/t0�b�,Lb… . �14�

Analogously, the scaling forms of the average survival prob-
ability, the average number of sites in a cluster, and the
mean-square cluster radius starting from a single site are

Ps„�, ln�t/t0�,L… = b
/��Ps„�b−1/��, ln�t/t0�b�,Lb… , �15�

N„�, ln�t/t0�,L… = b2
/��−dN„�b−1/��, ln�t/t0�b�,Lb… ,

�16�

R„�, ln�t/t0�,L… = b−1R„�b−1/��, ln�t/t0�b�,Lb… . �17�

These activated scaling forms lead to logarithmic time
dependencies at the critical point �in the thermodynamic
limit�. The average density and the survival probability as-
ymptotically decay as

��t� 	 �ln�t/t0��−
̄, Ps�t� 	 �ln�t/t0��−
̄ �18�

with 
̄=
 / �����, while the radius and the average number
of particles in a cluster starting from a single seed site in-
crease as

R�t� 	 �ln�t/t0��1/�, N�t� 	 �ln�t/t0���̄ �19�

with �̄=d /�−2
 / �����.
In contrast to the case of one dimension, where the critical

exponents can be calculated exactly within the strong-
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disorder renormalization group, they need to be found nu-
merically in higher dimensions.

D. Griffiths singularities

Quenched spatial disorder not only destabilizes the DP
critical point, it also leads to interesting singularities, the
so-called Griffiths singularities �25�, in an entire parameter
region around the transition. For a recent review of this topic
at thermal, quantum, and nonequilibrium transitions, see Ref.
�39�. In the context of the contact process on a diluted lattice,
Griffiths singularities can be understood as follows.

Because lattice dilution reduces the tendency toward the
active phase, the critical infection rate of the diluted system
is higher than that of the clean system, �c��c

0. For infection
rates � with �c����c

0, the system is globally in the inactive
phase, i.e., it eventually decays into the absorbing state.
However, in the thermodynamic limit, one can find arbi-
trarily large spatial regions devoid of impurities. These rare
regions are locally in the active phase. They cannot support a
nonzero steady state density because they are of finite size,
but their decay is very slow because it requires a rare, ex-
ceptionally large density fluctuation.

As a result, the inactive phase of the contact process on a
diluted lattice can be divided into two regions. For infection
rates below the clean critical point, ���c

0, the behavior is
conventional. The system approaches the absorbing state ex-
ponentially fast in time. The decay time increases with � and
diverges as 
�−�c

0
−z�� where z and �� are the exponents of
the clean critical point �37,45�. Inside the Griffiths region,
�c����c

0, one has to estimate the rare region contribution
to the time evolution of the density �20,26�. The probability
w for finding a rare region of linear size Lr devoid of impu-
rities is �up to preexponential factors� given by

w�Lr� 	 exp�− p̃Lr
d� �20�

with p̃=−ln�1− p�. To exponential accuracy, the rare region
contribution to the density can be written as

��t� 	 � dLrLr
dw�Lr�exp�− t/��Lr�� , �21�

where ��Lr� is the decay time of a rare region of size Lr. Let
us first discuss the behavior at the clean critical point �c

0, i.e.,
at the boundary between the conventional inactive phase and
the Griffiths region. Here, the decay time of a single,
impurity-free rare region of size Lr scales as ��Lr�	Lr

z with
z the clean critical exponent �see Eq. �6��. Using the saddle
point method to evaluate the integral �21�, we find the lead-
ing long-time decay of the density to be given by a stretched
exponential,

ln ��t� 	 − p̃z/�d+z�td/�d+z�, �22�

rather than a simple exponential decay as for ���c
0.

Within the Griffiths region, �c
0����c, the decay time of

a single rare region depends exponentially on its volume,

��Lr� 	 exp�aLr
d� �23�

because a coordinated fluctuation of the entire rare region is
required to take it to the absorbing state �20,26,46�. The non-

universal prefactor a vanishes at the clean critical point �c
0

and increases with �. Close to �c
0, it behaves as a	��

−d

	��−�c
0�d�� with �� the clean critical exponent. Repeating

the saddle point analysis of the integral �21� for this case, we
obtain a power-law decay of the density,

��t� 	 t−p̃/a = t−d/z�, �24�

where z�=da / p̃ is a customarily used nonuniversal dynami-
cal exponent in the Griffiths region. Its behavior close to the
dirty critical point �c can be obtained within the strong-
disorder renormalization group method �31,36,38�. When ap-
proaching the phase transition, z� diverges as

z� 	 
� − �c
−���, �25�

where � and �� are the exponents of the dirty critical point.
Let us emphasize that strong power-law Griffiths singu-

larities such as Eq. �24� usually occur in connection with
infinite-randomness critical points, while conventional criti-
cal points display exponentially weak Griffiths effects �39�.
Thus, the character of the Griffiths singularities can be used
to identify the correct scaling scenario.

III. MONTE CARLO SIMULATIONS

A. Method and overview

We now turn to the main objective of our work, large-
scale Monte Carlo simulations of the contact process on a
randomly diluted square lattice. There are several efficient
computational implementations of the contact process, all
equivalent with respect to the universal behavior at the phase
transition. We followed the algorithm described, e.g., by
Dickman �47�. The simulation starts at time t=0 from some
configuration of active and inactive sites. Each event consists
of randomly selecting an active site r from a list of all Na
active sites, selecting a process: creation with probability
� / �1+�� or annihilation with probability 1 / �1+�� and, for
creation, selecting one of the four neighboring sites of r. The
creation succeeds, if this neighbor is empty �and not an im-
purity site�. The time increment associated with this event is
1 /Na.

Using this method, we investigated systems with sizes of
up to 8000�8000 sites and impurity �vacancy� concentra-
tions p=0, 0.1, 0.2, 0.3, and p= pc=0.407 254. To explore
the ultraslow dynamics predicted in the infinite-randomness
scaling scenario, we simulated very long times up to t
=1010 which is, to the best of our knowledge, significantly
longer than all previous simulations of the disordered two-
dimensional contact process. In all cases, we averaged over
many disorder realizations, details will be mentioned below
for each specific simulation. The total numerical effort was
approximately 40 000 CPU days on the Pegasus Cluster at
Missouri S&T.

To identify the critical point for each parameter set, and to
determine the critical behavior, we carried out two types of
simulations, �i� runs starting from a completely active lattice
during which we monitor the time evolution of the density
��t�, and �ii� runs starting from a single active site in an
otherwise inactive lattice during which we monitor the sur-
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vival probability Ps�t� and the size Ns�t� of the active cluster.
Figure 1 gives an overview of the phase diagram resulting
from these simulations. As expected, the critical infection
rate �c increases with increasing impurity concentration. In
the following sections we discuss the behavior in the vicinity
of the phase transition in more detail.

B. Clean two-dimensional contact process

We first performed a number of simulations for clean un-
diluted lattices �p=0�, mainly to test our numerical imple-
mentation of the contact process. Figure 2 shows the density
��t� for runs starting from a completely active lattice. The
data are averages over 60 runs of a system of linear size L
=4000 except for the two infection rates closest to the tran-
sition, �=1.648 74 and 1.648 75, for which we performed 42
runs of a system of size L=8000. From these simulations, we
estimate the critical infection rate to be �c

0=1.648 74�2�
where the number in parentheses gives the error of the last
digit. The critical exponent 
 can be determined from a
power-law fit of ��t�; we find 
=0.4526�7�.

We then perform a scaling analysis of ��t� �based on Eq.
�6�� on the inactive side of the transition, using 12 different
infection rates between 1.60 and �c

0=1.648 74. This allows
us to find the exponent combination z��=1.290�4�. Finally,
we carry out several runs right at the critical point but with
system sizes varying from L=25 to 8000. A finite-size scal-
ing analysis �again based on Eq. �6�� gives the dynamical
exponent z=1.757�8�. All other critical exponents can now
be calculated from the scaling relations �6�, �7�, and �9�. We
find ��=0.734�6�, 
=0.584�3�, and �=0.233�6�.

To verify the results we also carried out simulations start-
ing from a single active seed site. Using 500 000 runs with a
maximum time of 106, we arrived at the same value �c

0

=1.648 74�2� for the critical infection rate. We measured the
survival probability Ps�t�, the number of active sites, Ns�t�,
and the mean square radius of the active cluster, R�t�. The
resulting estimates of the exponents 
, �, and z confirmed
the values quoted above.

Our results are in excellent agreement with, and of com-
parable accuracy to, those of other large-scale simulation of

the DP universality class in two dimensions �see, e.g., Ref.
�47� and references therein�.

C. Diluted two-dimensional contact process: Overview

We start our discussion of the diluted contact process by
showing in Fig. 3 an overview of the survival probability
Ps�t� for a system with impurity concentration p=0.2, cov-
ering the � range from the conventional inactive phase, �
��c

0, all the way to the active phase, ���c. The data repre-
sent averages over 5000 disorder configurations, with 128
runs for each disorder configuration starting from random
seed sites. The system size, L=2000, is chosen such that the
active cluster stays much smaller then the sample over the
time interval of the simulation �thus eliminating finite-size
effects�.

For infection rates below and at the clean critical point
�c

0=1.648 74, the density decay is very fast, clearly faster
than a power law. Above �c

0, the decay becomes slower and
asymptotically appears to follow a power law with an expo-
nent that varies continuously with �. For even larger infec-
tion rates, the decay seems to be slower than a power law. At
the largest infection rates, the system will ultimately reach a
nonzero steady-state survival probability, i.e., it is in the ac-
tive phase.

Let us emphasize that the behavior in Fig. 3, in particular,
the nonuniversal power-law decay over a range of infection
rates, already provides support for the infinite-randomness
scenario of Sec. II C while it disagrees with the conventional
scenario �Sec. II B� of power-law behavior restricted to the
critical point and exponentially weak Griffiths effects.

D. Finding the critical point

A very efficient method for identifying the critical point in
the clean contact process and other clean reaction-diffusion
systems is to look for the critical power-law time dependen-
cies of various observables. To use the same idea in our
diluted contact process simulations, we plot ln Ps�t�, ln Ns�t�,
and ln ��t� vs ln ln t. In such plots, the anticipated logarith-
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FIG. 2. �Color online� Time evolution of the average density
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mic laws �18� and �19� correspond to straight lines. Figure 4
shows these plots for several infection rates close to the criti-
cal point. The parameters are as in Sec. III C. At the first
glance, the data at the appropriate critical infection rate ap-
pear to follow the expected logarithmic behavior over sev-
eral orders of magnitude in time t. However, a closer inspec-
tion reveals a serious problem. The survival probability Ps
suggests a critical infection rate �c in the range 2.105 00 to
2.106 25 while the cluster size Ns appears subcritical even at
the larger value 2.107 50. Such a discrepancy suggests strong
corrections to scaling.

The origin of these corrections can be easily understood

by rewriting Ps�t�	�ln�t / t0��−
̄= �ln�t�−ln�t0��−
̄. The micro-
scopic time scale thus provides a correction to scaling; and
since we cover only a moderate range in ln�t�, it strongly
influences the results. We emphasize that this problem is in-
trinsic to the case of activated scaling �and thus unavoidable�
because logarithms, in contrast to power laws, are not scale-
free. Identifying straight lines in plots like Fig. 4 is thus not
a reliable tool for finding the critical point, even more so
because simulations in one dimension �1D� �where the analy-
sis is much easier because the critical exponents are known
exactly� have given sizable t0�100–500 for typical param-
eter values �37�.

To circumvent this problem, we devised a method for
finding the critical point without needing a value for the mi-
croscopic scale t0. It is based on the observation that, in the
infinite-randomness scenario, t0 has the same value in the
scaling forms of all observables �because it is related to the
basic energy scale of the strong-disorder renormalization
group�. Thus, if we plot Ns�t� vs Ps�t�, the critical point cor-
responds to power-law behavior provided all other correc-
tions to scaling are weak. The same is true for other combi-
nations of observables.

Figure 5 shows a plot of Ns�t� vs Ps�t� for several infec-
tion rates close to the phase transition. The figure shows that
the data for �=2.1075 follow the expected power law for
about a decade in Ps �10−3� Ps�10−2, corresponding to four
decades of time, from about 104 to 108�, while the data at
higher and lower � curve away as expected. We therefore
identify �c=2.1075�1� as the critical infection rate for dilu-
tion p=0.2. This value agrees well with an estimate based on
Dickman’s �23� heuristic criterion of �c being the smallest �
supporting asymptotic growth of Ns�t�.

Figure 5 also reveals two remarkable features of the prob-
lem. �i� The asymptotic critical region is extremely narrow,

�
= 
�−�c
 /�c�10−3, at least for these two observables.
This follows from fact that the data for � outside the small
interval �2.1070, 2.1080� curve away from the critical curve
well before it reaches the asymptotic regime. �ii� The cross-
over to the asymptotic behavior occurs very late since Ps
�0.01 corresponds to a crossover time of tx�104, implying
that very long simulations are necessary to extract the true
critical behavior. Moreover, the mean-square radius of a sur-
viving active cluster at the crossover time is R�tx��55, cor-
responding to an overall diameter of about 200. This means
simulations with linear system sizes below about 200 will
never reach the asymptotic behavior. We confirmed this ob-
servation by carrying out simulations with smaller sizes.

Having determined the critical point, we can now obtain a
rough estimate of the microscopic time scale t0 by replotting
ln Ps�t� and ln Ns�t� as functions of ln ln�t / t0� with varying
t0. At the correct value for t0, the critical curves ��
=2.1075� of all observables must be straight lines. By per-
forming this analysis for Ps�t�, Ns�t�, and ��t� we find ln t0
=5.5�1.0 for dilution p=0.2. The results for all the observ-
ables agree within the error bars, providing an additional
consistency check for our method and the underlying
infinite-randomness scenario.

E. Critical behavior

According to Sec II C, the critical behavior at the infinite-
randomness fixed point can be characterized by three inde-
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pendent exponents, e.g., 
, ��, and �. The two “static” ex-
ponents 
 and �� can in principle be determined without
reference to t0, the value of the tunneling exponent � de-
pends on the above estimate for t0.

The combination 
 /�� �the scale dimension of the order
parameter� can be obtained directly from the critical curve in
Fig. 5. By combining Eqs. �18� and �19�, we find Ns

	 Ps
−�̄/
̄	 Ps

2�1−��/
�. A fit of the asymptotic part of the criti-
cal curve gives 
 /��=0.96�2�. Here, the error is almost en-
tirely due to the uncertainty in locating the critical infection
rate �c, the statistical error is much smaller. We obtained
independent estimates for 
 /�� from analyzing plots of Ns
vs R and Ps vs R in a similar fashion. The results agree with
the above value within their error bars.

To obtain the tunneling exponent �, we now fit the critical

survival probability Ps�t� to �ln�t / t0��−
̄ �for times up to t

=108� using our estimate ln t0=5.5�1.0. We find 
̄=1.9�2�
with the error mainly coming from the uncertainties in �c
and t0. An analogous analysis of the density of active sites
��t� in a simulation starting from a fully infected lattice �L
=8000, times up to t=109� gives exactly the same value �see
Fig. 6�. From the time evolution of Ns�t�, we also find the

estimate �̄=0.15�3� for the initial slip exponent. Using �

=
 / ���
̄� gives the tunneling exponent, �=0.51�6�. Esti-
mates obtained from Ns�t� and directly from fitting R�t� to
�ln�t / t0��1/� agree within the error bars with this value. It
must be emphasized that the value of � sensitively depends
on the correct identification of t0. A naive fit of Ps�t� to a

power of ln�t� would give a value of about 3.0 for 
̄ and thus
a much smaller value of about 0.33 for �.

Finding the final missing exponent in our triple �
 ,�� ,��
requires the analysis of off-critical simulation runs. Here, the
extreme narrowness of the asymptotic critical region causes
serious problems, because we have only three � values from
2.1070 to �c=2.1075. Moreover, a glance at Fig. 5 shows

that adding simulations runs at additional � closer to the
critical point would only make sense if we also significantly
increased the simulation time and/or the number of disorder
realizations. Because this appears to be beyond our present
computational capabilities, we determine an estimate for 

by extrapolating the effective exponent obtained outside the
asymptotic critical region. To this end, we analyze the time
evolution of the density ��t� starting from a fully infected
lattice show in Fig. 6 for various infection rates � below the
critical point. For each �, we define a crossover time tx at
which the density ��t� is exactly 2 /3 of the critical density at
the same time.

This crossover time can be analyzed in two ways. Accord-
ing to Eq. �14�, it should behave as ln�tx / t0�	
�
−���. The
inset of Fig. 6 shows a fit to this form, giving ���
=0.64�10�. However, this value depends on our estimate for
the microscopic scale t0. To avoid relying on t0, we plot

��tx�
 vs the critical ��t� �at t= tx� in Fig. 7. According to Eq.
�14�, the expected behavior is a power law �	
�

. The
same analysis can also be performed by analyzing the cross-
over of Ns�t� and plotting the resulting ��tx� vs Ps�t�. Both
data sets show significant curvature �i.e., deviations from the
expected power-law behavior�, which is not surprising be-
cause the underlying � are not in the asymptotic region. By
fitting the small-� part of both curves, we estimate 

=1.15�15�. A fit of ��tx� vs Ns�t� gives ��−
=0.045�15�.
Thus, our final estimate for the correlation length exponent
��=1.20�15�, in agreement with the Harris criterion ��

�2 /d=1.

F. Universality

The universality of the infinite-randomness scenario for
the critical point in the disordered contact process has been
controversially discussed in the past �31,37,48�. The under-
lying strong-disorder renormalization group becomes exact
only in the limit of broad disorder distributions and can thus
not directly address the fate of a weakly disordered system.
However, Hoyos �49� recently showed that within this renor-
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malization group scheme, the disorder always increases un-
der renormalization, even if it is weak initially. Moreover,
the perturbative renormalization group of Janssen �21�,
which is controlled for weak disorder, displays runaway flow
towards large disorder strength supporting a universal sce-
nario in which the infinite-randomness fixed point controls
the transition for all bare disorder strength.

To address this question in our simulations, we repeat the
above analysis for impurity concentrations p=0.1 and 0.3
albeit with somewhat smaller numbers of disorder realiza-
tions. We determine the critical infection rates from plots of
Ns�t� vs Ps�t� analogous to Fig. 5 and find �c=1.8462�3� for
p=0.1 and �c=2.4722�2� for p=0.3. Figure 8 shows the
critical Ns vs Ps curves for p=0.1, 0.2, and 0.3. In the long-
time �low-Ps� limit, all three curves follow power laws, and
the resulting values for the exponent 
 /�� agree within their
error bars, 
 /��=0.97�3� for p=0.1, 
 /��=0.96�2� for p
=0.2, and 
 /��=0.96�3� for p=0.3.

Having fixed the critical point for all p, we determine the
microscopic time scale t0 as in Sec. III D. Its value changes
significantly with p; it is ln t0�6.5 �for p=0.1�, 5.5 �for p
=0.2�, and 4.0 �for p=0.3�. Power-law fits of Ps�t� and Ns�t�
to ln�t / t0� give estimates for the exponents 
̄ and �̄. Within
their error bars, the values for p=0.1 and 0.3 agree with the
respective values for p=0.2 discussed in Sec. III E.

Our simulations thus provide numerical evidence for the
critical behavior of the disordered 2D contact process being
universal, i.e., being controlled by the same infinite-
randomness fixed point for all disorder strength. Note that
the bare disorder can be considered weak for p=0.1 as the
difference of the critical infection rate from its clean value is
small, ��c−�c

0� /�c
0�0.12.

G. Griffiths region

In addition to the critical point, we have also studied the
Griffiths region �c

0����c in some detail. Figure 9 shows a
double-logarithmic plot of the density ��t� �starting from a

fully infected lattice� for several infection rates in this region.
For all these �, the long-time behavior of the density follows
the expected power law over several order of magnitude in
time and/or density. The values of the �nonuniversal� dy-
namical exponent z� can be determined by fitting the long-
time behavior to Eq. �24�. The inset of Fig. 9 shows that z�
diverges with � approaching the critical point �c=2.1075.
Fitting this divergence to the power law �25� expected within
the infinite-randomness scenario, we find ����0.61, in
good agreement with the value extracted from the scaling
analysis of the density in Sec. III E. Performing the same
analysis with the survival probability data shown in Fig. 3
gives analogous results.

H. Spatial correlations

To study the spatial correlations in the diluted contact
process close to criticality, we calculate the average equal-
time correlation function G= �1 /N��r�nr�t�n0�t�� from the
late-time configurations arising in the simulations starting
from a fully infected lattice. Scaling arguments analogous to
those leading to Eq. �8� suggest the scaling form

G„�,r, ln�t/t0�… = b2
/��G„�b−1/��,rb, ln�t/t0�b�
… . �26�

To find the true stationary behavior of G, one would ideally
want to sample the quasistationary state which is not directly
available from our simulations for ���c. However, the
finite-time data allow us to extract the short-distance behav-
ior up to a crossover distance rx�t� given by the scaling com-
bination ln�t / t0�rx

−��1. Figure 10 shows the correlation
function for infection rates close to the critical point. The
data show a crossover at a length scale of about 200, com-
patible with the crossover scale identified at the end of Sec.
III D separating the preasymptotic behavior from the true
asymptotic long-distance form. Unfortunately, we cannot ex-
plore the asymptotic region because �i� fluctuations are too
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strong, and �ii� for larger distances, we violate the condition
ln�t / t0�rx

−��1 discussed above. Thus, the asymptotic func-
tional form of the spatial correlation function remains a task
for the future.

I. Nonequilibrium transition across the lattice
percolation threshold

So far, we have considered the generic transition occur-
ring for impurity concentrations p� pc. In the present sec-
tion, we briefly discuss the nonequilibrium phase transition
of the contact process across the percolation threshold pc of
the underlying lattice. It occurs at sufficiently large infection
rates and is represented by the vertical line at pc in the phase
diagram shown in Fig. 1.

Vojta and Lee �41� developed a theory for this transition
by combining the well-known critical behavior of classical
percolation with the properties of a supercritical contact pro-
cess on a finite-size cluster. They found that the behavior of
the contact process on a diluted lattice close to the percola-
tion threshold follows the activated scaling scenario of Sec.
II C. However, the critical exponents differ from those of the
generic transition discussed above; they can be expressed as
combinations of the classical lattice percolation exponents 
c
and �c which are known exactly in two space dimensions.
Specifically, the static exponents 
 and �� are identical to
their lattice counterparts 
=
c=5 /36 and ��=�c=4 /3. The
tunneling exponent � is given by �=Dc=2−
c /�c=91 /48
where Dc is the fractal dimension of the critical percolation
cluster �of the lattice�. This implies an extremely small value

for the exponent controlling the critical density decay, 
̄
=
 / �����=5 /91.

To test this prediction, we performed simulation runs at
p= pc and �=5.0, starting from a fully infected lattice. The
resulting time evolution of the density of active sites �aver-
aged over three samples of linear size L=8000� is presented
in Fig. 11. The data show the behavior predicted in Ref. �41�:
a rapid initial density decay toward a quasistationary density,

followed by a slow logarithmic time dependence due to the
successive decays of the contact process on larger and larger
percolation clusters. The asymptotic behavior is compatible

with the predicted exponent value 
̄=5 /91, however, deter-

mining an accurate value of 
̄ from the simulation data is
impossible because of the extremely slow decay and the lim-
ited time range we can cover.

IV. DISCUSSION AND CONCLUSIONS

In this final section of the paper, we summarize our results
and discuss some aspects of our data analysis. We then
briefly consider the diluted contact process in three space
dimensions. Finally, we relate our findings to a recent clas-
sification of phase transitions with weak disorder.

A. Summary

We have performed large-scale Monte Carlo simulations
of the contact process on a two-dimensional site-diluted lat-
tice. We have determined the infection-dilution phase dia-
gram und studied both the generic nonequilibrium phase
transition for dilutions below the percolation threshold of the
lattice and the transition across the lattice percolation thresh-
old.

Our main result is that the generic transition is controlled
by an infinite-randomness fixed point for all disorder
strength investigated, giving rise to ultraslow activated rather
than power-law dynamical scaling. Based on two types of
simulations, �i� spreading of the infection from a single seed
and �ii� simulations starting from a fully infected lattice, we
have determined the complete critical behavior. Our critical
exponent values are summarized in Table I. Note that the
spatial correlation length exponent satisfies the Harris crite-
rion �18� inequality d���2, as expected in a disordered sys-
tem �50�.

We have been able to obtain a rather accurate estimate for
the finite-size scaling exponent 
 /��. However, the other
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exponents are somewhat less accurate despite our extensive
numerical effort �system sizes up to 8000�8000 sites and
times up to 1010�. This is caused by three important charac-
teristics of our infinite-randomness critical point.

�i� The logarithmic time dependencies associated with ac-
tivated scaling are not scale-free; they contain a microscopic
time scale t0 which acts as a strong correction to scaling and
must be estimated independently �otherwise the exponent
values will be seriously compromised�. Since our simula-
tions cover only a limited range of ln�t�, our values for t0 are
not very precise, which limits the accuracy of the exponents


̄, �̄, and �.
�ii� The second problem consists in the extreme narrow-

ness in � of the asymptotic critical region for the weak to
moderate disorder strengths we have considered. We esti-
mated a relative width of 
�−�c
 /�c�10−3 for dilution p
=0.2. This hampers the analysis of off-critical data and thus
limits the accuracy of the exponents 
 and ��

�iii� The crossover of the time evolution to the asymptotic
critical behavior occurs very late. For p=0.2 the crossover
time tx is about 104. Moreover, the diameter of the active
cloud spreading from a single seed has reached about 200 at
that time. Thus, successful simulations require both large
systems and long times.

Let us finally comment on the universality of the critical
exponents. We have studied three different dilution values,
p=0.1, 0.2, and 0.3, ranging from weak to moderate disorder
as judged by the shift in the critical infection rate with re-
spect to its clean value. While the crossover time tx and the
microscopic time scale t0 vary significantly with dilution, the
asymptotic critical exponents remain constant within their
error bars �including the rather accurate finite-size scaling
exponent 
 /���. Our data thus provide no indication of non-
universal continuously varying exponents. However, it must
be emphasized that, due to the limited precision, some varia-
tions cannot be rigorously excluded.

In the case of the transition of the contact process across
the lattice percolation threshold, our simulation data support
the theory developed in Ref. �41�: The dynamical critical
behavior is activated, with the critical exponents given by
combinations of the exactly known lattice percolation expo-
nents.

B. Three dimensions

While the existence of infinite-randomness critical points
in one and two spatial dimensions is well established in the
literature, the situation in three dimensions is less clear.
Within a numerical implementation of the strong-disorder
renormalization group, Montrunich et al. �38� found that the
flow is toward strong disorder. However, the data were not
sufficient for analyzing the critical behavior quantitatively.

We are currently performing Monte Carlo simulations of
the three-dimensional contact process on a diluted lattice
analogous to those reported in Sec. III. Preliminary results
shown in Fig. 12 suggest that the phase transition scenario is
very similar to that in one and two-dimensions: the transition
appears to be controlled by an infinite-randomness fixed
point with activated dynamical scaling. A detailed quantita-
tive analysis of the critical behavior requires significantly
longer times and larger systems. It will be presented else-
where.

C. Conclusions

Recently, a general classification of phase transitions in
quenched disordered systems with short-range interactions
has been suggested �39,51�. It is based on the effective di-
mensionality deff of the defects �or, equivalently, the rare
regions.� Three cases can be distinguished.

TABLE I. Critical exponents for the nonequilibrium phase tran-
sitions of the disordered two-dimensional contact process. The val-
ues for the generic transition are from this work; the values for the
percolation transition are from Ref. �41�. The numbers in parenthe-
ses give an error estimate of the last given digits.

Critical
exponent

Value
�generic�

Value
�percolation�


 /�� 0.96�2� 5 /48


 1.15�15� 5 /36

�� 1.20�15� 4 /3

� 0.51�6� 91 /48


̄ 1.9�2� 5 /91

�̄ 0.15�3�

10-4

10-3

10-2

10-1

P
s

3 4 5 6 8 10
ln t

0.2

0.3

0.5

1

2

3

5

N
s

λ (bottom to top)
1.850
1.860
1.870
1.880
1.890
1.894
1.895
1.896
1.900

FIG. 12. �Color online� ln Ps�t� and ln Ns�t� vs ln lnt for the
three-dimensional contact process on a diluted lattice �p=0.3, L
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�A� If deff is below the lower critical dimension dc
− of the

problem, the rare region effects are exponentially weak, and
the critical point is of conventional type. �B� In the second
class, with deff=dc

−, the Griffiths effects are of strong power-
law type and the critical behavior is controlled by an infinite-
randomness fixed point with activated scaling. �C� For deff
�dc

−, the rare regions can undergo the phase transition inde-
pendently from the bulk system. This leads to a destruction
of the sharp phase transition by smearing �52�.

The results of this paper agree with this general classifi-
cation scheme as deff=dc

−=0 �this corresponds to rare regions
being marginal with their life time depending exponentially
on their size� leading to class B. In contrast, the contact
process with extended �line or plane� defects falls into class
C �53,45�.

We conclude by pointing out that the unconventional be-
havior found in this paper may explain the striking absence
of directed percolation scaling �15� in at least some of the
experiments. However, the extremely slow dynamics and

narrow critical region will prove to be a challenge for the
verification of the activated scaling scenario not just in simu-
lations but also in experiments. We also emphasize that our
results are of importance beyond absorbing state transitions.
Since the strong-disorder renormalization group predicts our
transition to be in the universality class of the two-
dimensional random transverse-field Ising model, the critical
behavior found here should be valid for this entire universal-
ity class.
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