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Order-parameter symmetry and mode-coupling effects at dirty superconducting
quantum phase transitions

Rastko Sknepnek and Thomas Vojta
Department of Physics, University of Missouri—Rolla, Rolla, Missouri, 65409, USA

Rajesh Narayanan
Institut fir Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
(Received 20 October 2003; revised manuscript received 20 April 2004; published 23 September 2004

We derive an order-parameter field theory for a quantum phase transition between a disordered metal and an
exotic (nons-wave) superconductor. Mode coupling effects between the order parameter and other fermionic
soft modes lead to an effective long-range interaction between the anomalous density fluctuations which is
reflected in singularities in the free energy functional. However, this long-range interaction is not strong
enough to suppress disorder fluctuations. The asymptotic critical region is characterized by run-away flow to
large disorder. For weak coupling, this asymptotic region is very narrow. It is preempted by a wide crossover
regime with mean-field critical behavior and, in tphewvave case, logarithmic corrections to scaling in all

dimensions.
DOI: 10.1103/PhysRevB.70.104514 PACS nuni®er74.20.Rp, 71.10.Hf, 64.60.Ak
I. INTRODUCTION effects were found for the transition between a dirty metal

and a conventionals-wave) superconducto® Here, the

Quantum phase transitions are one of the most intriguingnode-coupling effects lead to a critical point with exponen-
problems in today’s condensed matter phy&iésn addition  tial scaling, i.e., the correlation length behavestase!/,
to being of fundamental interest, they are believed to undemheret is the distance from the quantum critical point. Based
lie a number of interesting low-temperature phenomena, ion general symmetries of itinerant electronic systems, it was
particular, various forms of exotic superconductivity. recently showtf that homogeneou& =0)*"-*® order param-

In a seminal papér,Hertz introduced a general scheme eters in the particle-particlCoopey and spin-triplet
for the analysis of quantum phase transitions in itineranparticle-hole channels are generically affected by mode cou-
electronic systems. This scheme is based on the Landapling effects while order parameters in the particle-hole spin-
Ginzburg-Wilson(LGW) approach of integrating out the fer- singlet channel do allow for a local LGW theory.
mionic degrees of freedom and deriving a free energy func- All of the above examples are quantum phase transitions
tional in terms of the order parameter fluctuations only.with zero angular momentum order parameters. The effect of
However, in recent years, it has become clear that for manynode coupling on order parameters with finite angular mo-
transitions, there are problems with Hertz’ scheme because imentum are much less understood. Hetbtudied the
addition to the order parameter fluctuations, which are softl-wave superconducting quantum phase transition in two di-
(gapless at the critical point, there are additional fermionic mensions within Hertz’ schem@hich is equivalent to Gork-
soft modes in the system. These additional soft modes exisiv's mean-field theory He found that the typical Cooper
not only at the critical point but also in the bulk phases. Theychannel BCS) logarithmic singularities are demoted to irrel-
are related to conservation laws and/or broken symmetriesvant terms by theé-wave symmetry. This raises the impor-
and constitute examples of generic scale invaridnée¢he  tant general question: How does a finite order parameter an-
coupling between the order parameter and these additionglular momentum influence the coupling between order
soft modes is sufficiently strong it generates an effectivgparameter and additional fermionic soft modes?
long-range interaction between the order parameter fluctua- In this paper, we study this question for quantum phase
tions. This is reflected in a nonanalytic wave-number depentransitions between a metal and an exgtions-wave) su-
dence of the vertices of the LGW theory of the correspondperconductor in the presence of nonmagnetic quenched dis-
ing transition®~1°Generically, such nonlocalities in the LGW order. These transitions are of experimental importance since
theory will lead to non-mean-field critical behavior of the various superconducting states wiphd and maybe higher
guantum phase transition. symmetries have been observed recently, and their quantum

The precise influence of the mode-coupling effects on ghase transitions are experimentally acces$iBlen prin-
guantum phase transition depends on the structure of theple. Experiments performed on the weakly ferromagnetic
additional soft modes and their coupling to the order parameompounds UGg(Ref. 5 and ZrZn (Ref. 6 revealed the
eter. For the clean ferromagnetic transition, the modeexistence of a superconducting phase within the ferromag-
coupling effects can either lead to a fluctuation-induced firshetic phase at temperatures below 1K. It is beli@veht
order transition or to non-mean-field critical behavibt?  both superconductivity and ferromagnetism arise from the
For dirty electrons, the transitions is generically of secondsame electrons. One possible mechanism for this type of su-
order but with highly unusual exponenrfs!* Even stronger perconductivity isp-wave triplet pairing mediated by mag-
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netic fluctuations in the vicinity of a magnetic quantum criti- rio _
cal point29:2! glthough this is still not a settled issue. The S$=2 — | dXyp (%) MNeyor(X). (4)
onset of the phenomenon has proven to be very sensitive to {o}

the presence of nonmagnetic disorder, making it observabig/e use a(d+1)-vector notation, withx=(x,7), k=(k,Q),
only in highly pure samples. This fact also points to a non-fdx=f,, d’f% dr and =,=3, T2, , x is a real space coor-
s-wave order parameter. In Zr£ithe superconducting quan- dinate, r imaginary time,k momentum vector, an@ Mat-
tum phase transition as a function of disorder has alreadyybara frequencyn,,(x) is the p-wave anomalous density

been observed. _ whose Fourier transform in terms of the fermion fields is
Our results can be summarized as follows: Mode-giyen py

coupling induced singularities exist for all order parameter

angular momentd.. However, with increasing., they are Nyor () = 2, & ¢ (K+/2) i, (k= q/2), (5)
more and more suppress@ay a factor|g|?-.) As a result, the k

LGW theory of our superconducting transition is equivalent . . D oo
to that of );he itineraFr)n antiferromgagnetic transiti’?ﬁ"?.‘24 with &=k/|k], o, o” being spin indices and where a centered

While the asymptotic critical behavior of this theory is not dot o_Iethe_s a scalar _product in the orbital space. Due to the
understood because of runaway flow to large disorder, ngull prlnupl? the spin state 91the Cooper paur has to. be a
also show that for weak bare disorder the asymptotic region PIet -€-00” €{(11),(11), L/V2(T | + | 1)}. Which combi-

is exponentially narrow. It is preempted by a wide crossovetnatipn of the three possible triplet components .is actually
regime with mean-field critical behavior aith the p-wave realized depends on the system under consideration. The ref-

case logarithmic corrections to scaling. The paper is Orga_erence ensembl&, describes interacting electrons in the

nized as follows. In Sec. Il we derive the LGW free energypresence of nonmagnetic quenched disorder and no bare in-

functional. In Sec. I, we study the LGW theory by means Otteraction in thep-wave Cooper channe(A nonvanishing

the renormalization group and determine the critical behav'—"‘ter""ction in this channel will be generated in perturbatiqn
ior. In Sec. IV, we analyze our findings from a mode- theory) S, thus describes a general system of disordered in-

coupling point of view, and discuss differences betweenteracting electrons with the only restriction being that it must

paramagnetic and ferromagnetic as well as clean and dirt)Ot Undergo a phase transition in the parameter region we are
systems nterested in.

A standard proceduteis used to derive a LGW order-
parameter field theory. We decouple the interaction term us-
Il. LANDAU-GINZBURG-WILSON THEORY ing a Hubbard-Stratonovich transformati®A®introducing a
complex fieldA,,/(x) which plays the role of an order pa-
rameter. Quenched disorder treated using the replicafick,

In this section, we derive an effective LGW theory for the and fermionic degrees are integrated out, leading to an ex-
disorder-driven quantum phase transition between a pardression for the critical part of the partition function in terms
magnetic metal and @-wave triplet superconductor. Our Of the order parameter only
starting point is a microscopic action for interacting electrons
in d>2 dimensions and subject to a static, single-particle z:f D[A] e 2], (6)
random potentiaM(x). We assume a Gaussian distributed
potential with [V(x,)V(xp)]gis=Wé(x, ~Xp), with W being  gjnce our emphasis is on the mode-coupling effects, and in
measure of disorder strength. The partition func#orn be - ger to avoid unnecessary complications in notation, we re-
written as a functional integral over Grassmann Va”able%trictouranalysis to a certain spin compongnt’ =(11)] of

A. p-wave pairing case

b the order parameter. The LGW free enefbjA ] is expanded
in powers of the order paramet&e= A, ;. Up to quartic order
— — it reads
Z= f DLy, yJed 7. (1) _
®[A]= 2 A%Q)[1 - Ty (@)]A%(a)
q,a
We decompose the actid®+S,+S, into the p-wave interac- _
tion partS, and a reference systefy which comprises the - > T2, 0 A% (A AX(ap)
single-particle part, the random potential af¢ (the inter- Q.03
action in all channels other than tipewave channegi ap
v2 X AXgAar + g3 =g +0(8%), (D)
S= J dx> z//(,(x){aﬁ om +,u:| ,(X) (2)  where FJTEFI. Here «, B are replica indexes. The coeffi-

cients of the LGW functional are determined by the two-
point and four-point anomalous density correlation functions
of the reference systerB, which can be written ag®
+ f dx> ZU(X)V(X) $,(X) + Sy, (3) :(W‘r?%. and ngzﬁﬁﬁnﬁn% (with the spin and compo-
- nent indices suppressed
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FIG. 1. Contributions to the leading terms of the Gaussian part

of the LGW functional.(a) Provides a constant~Ng) and the (@)

frequency dependende|r while (b) gives the leading momentum ) ) o 4 _

dependencdg2 In (1/|q]). FIG. 2. Leading singular contributions ﬁéiag- After expansion
in small g, the leading order terms @&) and (b) cancel(see Ap-
pendix Q.

B. Anomalous density correlation functions

in the p-wave channel » ) ]
In addition to the BCS logarithmg® contains nonanaly-

In this subsection we use diagrammaticé) pertur(E’a‘tiorticities similar to that in the itinerant ferromagnet. They are
theory in disorder and interactions to calculaté and y caused by the leading corrections to scaling at the dirty
of the reference ensembf®, focusing on the behavior for cermj |iquid fixed point? and can be viewed as particle-
weak disorder. Thus, we neglect all diagrams with crossedhariicle analogs of the well known Altshuler-Aronov correc-

impurity lines, i.e., all weak localization effects, which be- yi5ns 1o density of states and conductiiFor s-wave order
come important only at higher impurity concentrations. Thisparameters these singularitieshich only arise for interact-
is justified for the ferromagnetic superconductérsvhere ing electrons are of the formg|¢2.32 For p-wave order pa-

the superconducting quantum phase transition occurs at Vepmeters, an inspection of the corresponding contributions

small disorder. , . _ (for details see Appendix Breveals that they are suppressed
We start our analysis by examining the two-point correla—by a factor|q[? by the same mechanism as the BCS loga-

tion function)((z):@n%. The leading contributions are ob- jthms. (Note that an analogous suppression occurs in the
tained from the diagrams shown in Fig. (letails of the  particle-hole channel, as can be seen from a power counting
calculation of these diagrams are given in AppendiX A analysis of the Altshuler-Aronov correction to the conductiv-
Here, the external vertices represent anomagpugve den- jty: so=&jj)/ w~ w@2/2~|q|42. Thus, the correction to

sities, the solid lines are fermionic propagators in Born apine current-current correlation functigjj ), which is propor-

proximation tional to the p-wave density, behaves a%jj)~|q|?. This
G K, ) =iw— e ,+ p+ (i/27)sgr{w), (8)  means it has picked up an additional fadml? compared to
’ the zero angular momentum chanipel.
where ¢, is the dispersion relation andis the scattering As a result, we find that the leading singularitiesyit?
time. The double line represents a particle-particle impurityare the Cooper channel logarithms, and the leading behavior
ladder of x? for (|q],®) —0 is given by
1 if Q(Q+w)<0, 2| |2
Wr(q, Q) = 1 XP(@,w) = &{m 2eem) - olr- 9 ]5.,-
” 55— if QQ+w)>0. 3 10
|2Q) + o| 7+ €?|g|*/d 2|2
9 + &qiq-liz[— i <€ a )} (10
3 5 3 3

€=ke7/m is the elastic mean free path akd=1/(27Ng7)

with Ng being the density of states at the Fermi level. Thewherei,j are the order parameter component indices. The
calculation of the diagrams in Fig. 1 foq|=w=0 leads to  anisotropicq dependence in the last term reflects the spatial
x?=(Ne/3)In(2e=7). The well-known logarithmic Cooper anisotropy of thep-wave order parameter.

channel(BCS) singularities are cut off by the disorder, re- We now turn our attention to the four-point correlation
flecting the suppression of exotic superconductivity by nonfunction x¥which can be split into a replica-diagonal part
magnetic scatterers in analogy to the suppressicmvedve  and a replica-off-diagonal pagt ;= d,sxj,* Xort- A detailed
superconductivity by magnetic impuritié$?°[We note that, discussion of our calculation is given in ﬁppendix C. We find
in contrast,s-wave superconductivity is not influenced by that the leading contributions béj‘l‘; in the long-wavelength,
weak nonmagnetic scatterers, as is signified by Anderson®w-frequency limit are coming from the diagrams shown in
theorent®] However, a closer investigation of Fig(t) for Fig. 2. While each of the two diagrams individually diverges
finite |g| reveals that a nonanalyticity of the form for (q,w)— 0, their leading singularities cancel, and the re-
laf? In(1/]q]) survives. Thus, th@-wave symmetry has de- maining contribution is finite and proportional M-72. The
moted the BCS singularity to quadratic order|g because leading contribution to the replica-off-diagonal partyé? is
each of the renormalized external vertices picks up an extrproduced by the diagram shown on the Fig. 3. Thus, we
power of|q].3! finally obtain
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mentumL >0, the renormalized anomalous density vertex is
proportional tolg|-. The leading non-analyticity in the static
anomalous density susceptibilixf)(q) is given by the BCS
logarithms in Fig. 1b). They take the form

FIG. 3. Leading contribution to thgf;;'z (see Appendix ¢ 5X§_2)(q) =M (@nM(@) ~ [g/* In (1/q)), (14
Xiitng=Ad Ne7 Fo(ay, @), (1) e, they are suppressed by a fackgP- compared to the
swave case. Here!"(q) ==, YM(@&) ¢, (k+a/2) i, (k-q/2)
x5 = Ay(NZ/IS)F (i, ), (12)  is a component of the anomalous density for angular momen-

tum L. Note that forL>1 the BCS logarithm is subleading
compared to the reguldg|? term coming from Fig. (a)
while in the p-wave case the BCS logarithm provides the
leading wave-number dependence in the LGW functional.
The same mechanism also suppresses the interaction induced
mode-coupling singularities related to corrections to scaling
at the dirty Fermi liquid fixed point. An explicit calculation
‘outlined in Appendix B shows that these mode coupling sin-
‘gularities behave at most #g/°-|q|%? (d is the spatial di-
mensionality. Therefore they are subleading compared to
the BCS logarithms for alti>2. We now turn to the four-
point anomalous density correlation functi)aﬁ). Because of

the momentum dependence of the renormalized anomalous

where Fy and Fy are dimensionless functions with values
between 0 and 1 an#ly andA, are dimensionless prefactors
of order 1.

The results(11) and (12) have been obtained from low
order perturbation theory. Within perturbation theory, it is
nontrivial to prove the leading nonanalyticity to all orders.
Therefore we follow the guidance of the corresponding re
sults for thes-wave case which have been rigorously estab
lished using Q field theory and renormalization group
arguments? (Corresponding rigorous results for finite angu-
lar momentum modes do not yet exjsndeed, simply cor-
recting thes-wave results from R;g 15 fo4r g@dependence
of the renormalized vertex leads 16"~ |q|*~*" in agreement . 4 .
with Egs.(11) and (12). Note that the|g|ingularit§/] becomes density vertex,X(,_) picks up an extra power dfj|* com-

stronger in the higher order anomalous density correlatior‘?ar(':'d Ito th((jas-w_attve casle:[. Mc;re ?lwgall_y,k anyn-point
functions, in agreement with general mode-coupling?h®Maous en;lLy corretation tuncti PICKS Uup an(zc-i;«
argumentds-34 tra power of|q[*"" compared to thes-wave case, i.e.y

Inserting Eqs(10)~(12) into Eq.(7) we obtain the LGW ~|q|**@=4n Therefore their singular contributions are de-
functional up to quartic order i ' moted to subleading order and do not play a role for the

critical behavior. As a result, the leading terms in the LGW

D= A"(g)(t+ || + c,lqlDA%(g) functional for d-wave and higher order parameter angular
qa momentum take the same for(@3) as in thep-wave case
i except for the missing logarithmic wave number dependence
in the Gaussian patf.
+ 3 A (g)og, -[—1+5m (—1 )}Mj( )
q |qlqj 5 3 €2|Q|2 q

q,a
ij IIl. RENORMALIZATION GROUP ANALYSIS

+US J drdr |A%(r, 7)|* In this section, we analyze the LGW thed@®B) by means

o of the renormalization group. There is a Gaussian fixed point

with mean-field static exponents=1/2, y=1, =0, and a

-v> | drdrd? |AY(r, 7)|AAB(r, 7). (13) dyna_mica_l exponent o£=2. In the p-wave case_thgre are

B logarithmic corrections to the mean-field behavior in all di-
12 mensions. In order to check the stability of this Gaussian
Here we have scaled the order parameter With:7)"“and  fjyaq point we study the importance of quantum and disorder
replaced the quartic coefficients by numbers which is suffifjyctuations. The scale dimensionsldfandV at the Gauss-
cient foerower counting purposes. The coefficients &re j3n fixed point can be calculated by power counting. We
~1/741/IT-In(2e7)], c,~¢~¢2/7, U~1/Ng, and V  obtain[U]=2-d and[V]=4-d. Thus, the conventional fluc-
~1/(KE72), with f:rtNF being a dimensionless measure of tuation termthe U term) is renormalization.group ir'relevant
the interaction strength. The parameteepresents the dis- for d>2, but the disorder ternithe replica-off-diagonal
tance from the quantum critical point. Generically>0, gquarticV term) is relevant ford<4. In three dimensions the

the derivation of the LGW theory. term, and thus the calculation of loops is necessary to deter-

mine the asymptotic critical behavior. This includes the pos-
sibility of replica-symmetry breaking in the replica-off-
diagonal quartic term.

In this subsection we generalize the findings to pairings in  Rather than carrying out this program explicitly, we
higher angular momenturfL) channels. For angular mo- use the analogy between our transition and the disordered

C. Higher angular momentum channels

104514-4
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V a T-T ~ 1
|~—C|<F:C3 exp{—:]. (15)

Ly I‘c c

Therefore, disorder effects become important only inside an
exponentially narrow region surroundihg. This asymptotic
critical region is preempted by a wide Gaussian crossover

region(region below dashed line on Fig) with mean-field
critical behavior. Fop-wave symmetry there are logarithmic

Disorder starts to  Gaussian fixed point correction to the power-law scaling whose tjig depen-
play role physics dence reflects the underlyingwave symmetry of the order
parameter.
0 ’G\‘\& IV. CONCLUSIONS
0 In this paper, we have studied the quantum phase transi-

tion from a dirty metal to an exotic superconductor. Starting
FIG. 4. Schematic flow diagram on the critical surface. Thefrom a microscopic action of disordered interacting elec-
Gaussian(G) fixed point is unstable; the flow goes toward large trons, we have derived the LGW theory for this quantum
disorderV. For weak bare disorder, the flow stays close tolthe phase transition which proved to be equivalam to loga-
axis until it almost reaches the Gaussian fixed point before crossingthmic corrections in the Gaussian part in the casp-afave
over (black dot$ to the asymptotic destination. The dashed line pairing) to the extensively studied LGW theory of the dirty
separates the region described by the Gaussian fixed point from thinerant antiferromagnetic transition. A renormalization
strong disorder region. group analysis yielded runaway flow toward large disorder.
As a result, the asymptotic fate of the quantum phase transi-

. . , . _tion is presently unknown. However, we could derive a
itinerant antiferromagnetic quantum phase transition to d'SGinzburg-type criterion for the importance of the disorder

cuss the asymptotic critical behavior: Except for the logarithcyyations. For weak bare disorder, as is realized in many
mic corrections, the LGW theory, E(L3) is identical to that oy herimental systems, the true asymptotic behavior is ob-
. . . L Served only exponentially close to the quantum critical point.
.bee.n investigated in grgat detail in reqent Yéé%! By tak- ¢ jg preempted by a wide region with mean-field behavior
ing into account rare disorder fluctuations it was found tha‘(and logarithmic corrections fqr-wave pairing. In this last

there is no critical fixed point in the perturbative region of getion e analyze our results from a general mode-coupling
parameter space, and the asymptotic critical behavior is Chaf)'oint of view, and we also discuss experiments

acterized by run-away flow toward large disord@ig. 4  * |5 geriving the LGW functional, we have paid particular
rendering the perturbation expansion unjustified. The physizyention to the coupling between the order parameter and
cal implications of this runaway flow are not fully under- aqgitional soft modes. Mode-coupling-induced singularities
stood so far. Possible scenarios include a nonperturbativgs indeed present in all angular momentum channels, but

fixed point with conventionalpower-law scaling, an infinite they are increasingly suppressed for higher angular momen-
randomness fixed pointelative magnitude of inhomogene- . | the static order parameter susceptibility the singular

?ties ir}creases Wi'thout limit under coarse graipingsulting terms pick up an extra power ¢j|?-. This suppression can

in activated scaling, or a complete destruction of a sharye ngerstood as follows. In the presence of nonmagnetic

phase transition. Thus, from the analogy with the quantum,,enched disorder, the dominant electronic soft modes are

phase transition in itinerant antiferromagnets we concludgose that involve fluctuations of the number density, spin

that _the asymptotic critical behavior of our theory is unco”'density, or anomalous density in the zero angular momentum

ventional anc_j, at present, unknown: channet? while the corresponding densities in higher angular
However, in many relevant experimental systems the barg,,mentum channels are not soft. Since the different angular

disorder is actually very small. Thus, one may ask at whap,omentum modes are orthogonal at zero wave number, the

length scale disorder effects start to play a role. The CroSSsapling between a finite angular momentum order param-

over scale between the Gaussian and the asymptotic critic@{a; and the zero angular momentum soft modes must in-

behavior. can pe det.ermined .from the condition that th%/olve powers of the wave numblg|. These arguments sug-
renor’mg\hzed dimensionless disorder coupling cons¥at  gast 4 very general difference between the mode-coupling
=VIytc;=1. Now, the quantum phase transition occurs at effects in clean and dirty electronic systems. While the only
=0 which leads to 1/.=In(2e:7), with I'; being the dimen-  soft modes in the dirty case are in the zero angular momen-
sionless critical coupling. Thus, the quantum phase transitiotum channel, in clean systems, the charge, spin, and anoma-
occurs at an exponentially small bare disorder strength whiclous density fluctuations in all angular momentum channels
implies thatVg~ 1 requires an exponentially large length are soft(corresponding to an infinite number of Fermi liquid
scale. Using the results above we find a Ginzburg-typgarameters Therefore, one expects the mode coupling sin-
criterion gularities in a clean systenotto be suppressed by a higher

104514-5
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order parameter angular momentum. This is known to be tru £
for the Cooper channel logarithmic singularities which do $+e
not pick up an extrgqg|? in clean electronic systems. A . f
systematic investigation of this question will be published
elsewheré® @ =5 (b)-Q
The explicit calculations in this paper were for a super- g
conducting quantum phase transition in a paramagnetic sy: Q+®
tem. We now discuss to what extent the results change if th
transition happens in a ferromagnetic system. Let us assun
the magnetization is in the direction. Obviously, not all
possible order parameter components are equivalent. Speci @)
cally, the symmetric triplet 1y2(1 | + | 1) (for p- or f-wave B

pairing as well as the singlet 42(1|-|1) (for s- and FIG. 5. Diagrams arising in the first order perturbation theory in

d-wave pairing are suppressed because the exchange gaRteraction of the reference ensemBig and produce a non analytic
cuts off the Cooper-channel singularities. In contrast, folq2tq/¢-2 term, which is a consequence of the mode-coupling

equal spin pairingTT and | ]), the leading behavior is the gffects.
same as discussed in Secs. Il and Il of this paper.
Possible candidates for an experimental verification of our 2012
predictions are the ferromagnetic superconductors JGe DP :&{’Zq-q- In ((M.Jr al ) (A3)
(Ref. 5 or ZrZm,.% For these systems, a likely mechanism for "9 a 3

superconductivity ip-wave triplet pairing mediated by mag- Adding Eqs.(A2) and(A3) completes derivation of EG10).

gﬁgggllu;;?ritz'?njtggjgtﬁ :L‘Ies Vr:gg'tgoioyaetmbaegennet'ecsgﬁgauergFor general angular momentulm the analogous calculation
) 1 b i
beyond doubt. In ZrzZnthe vanishing of superconductivity shows that the BCS logarithm I® picks up an extra factor

. . 2L compar hs-wav .
as a function of disorder has actually already been obsérved'.q| compared to the-wave case

A systematic study of this transition would therefore be very
interesting®’

AEXTIIFIRTIIIIIT
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APPENDIX B: INTERACTION EFFECTS
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from the German Research Foundation and from the Univerge|| known Altshuler-Aronov corrections to density of states

sity of Missouri Research Board. Parts of this work haveyng conductivity® We first consider a paramagnetic refer-
been performed at the University of Oxfofingland, atthe  once ensemble. To first order in the interactions, the relevant

Max-Planck-Institut fr Physik komplexer Systeme, Dresderyjagrams are those in Fig. 5 and their counterparts with bare

(Germany and at the Aspen Center for Physics. external vertices. The wiggly line represents the interaction
which is assumed to be short ranged and can thus be approxi-
APPENDIX A: TWO-POINT LGW VERTEX mated by a number,,,. (whereo, o’ denote the spin at the

In this appendix we sketch the derivation of expressiontw%eptﬁs IOfrth;" |rr11t'[ierna$rt1|ont It|)|)e id to the diaqramb and
(10) for the anomalous density susceptibilig?’ in 3D. In a c Wit{; b;l:eav:rtiiesoln tkllJ;se giggramos thee sSﬁeﬁ?al ?larmon-
suitable parametrization and fgrwave pairing, Fig. @) ics in the two external vertices are not independent. There-

can be written as fore, their contributions can potentially produce stronger
Df(0, @) =T Yi(&IY1(BIG (K + 0,2 + 0)G(-k,- ), terms thar|g[*g|*%. However, it turns out that these con-
K.Q tributions do not produce any nonanalytic terms and only
contribute to the regular terms. In the remaining contribu-
tions the angular variables of the external vertices are inde-
with i, j being the order parameter component indices angbendent. They can be analyzed along the lines presented in
q,0 the external momentum and frequency,(&) Ref. 38. After a straightforward calculation one finds that the
:Yt/‘(g, ¢) is a spherical harmonic and Green’s functi®ns interaction corrections produce singularities of at most of the
given by Eq.(8). A straightforward calculation leads to order|qg|?-|g|*? which means they are suppressed by a fac-
tor |g|?* compared to the zero angular momentum dése.
The above conclusion is easily generalized to ferromagnetic
reference ensembles: If the magnetization is in Ztdérec-
(A2) tion, the71 and || components of the order parameter have
the same type of singularity as discussed above, while the
{=ke7/m is elastic mean free path ardk the density of leading singularities in thé| components are cutoff by the
states at the Fermi level. Similarly, the diagram in Fign)is  exchange gap.

(A1)

N 1 N
Df = ?F In(2€r7) - |o|7- E€2|Q|2 S~ 1_;€ZQqu'-
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APPENDIX C: 4-POINT VERTICES

In this appendix we present details of calculation of four-
point susceptibilityy® in 3D, Egs.(11) and(12). We start
with replica diagonal parj(f;i‘a which is calculated from the
diagrams shown on Fig. 2. gI'he most singular contributions
are produced if the frequencies structure permits all four ex-
ternal vertices to be renormalized by an activetarded-
advancetlladder(four-ladder diagramsA direct calculation
of the first diagraniFig. 2(a)] leads to

o - 26572|q|4co§‘(a)2 O[QQ + w)]

2 81 €%qf*\*
T 0 q : - (4) i
[2Q + 0|7+ 3 FIG. 6. Diagrams contributing to the.. All four vertices are
renormalized, with two extra active particle-particle ladders con-
X (1-920 + w|7- €2|q|2). (Cy necting two fermionic loops. The zeroth order terms in smaihd

w of these diagrams cancel.
An analogous calculation for Fig(l® gives (the frequency . ) ]
constraint requires the extra impurity line to act as a singldiumber of active ladders. A set of such diagrams is shown on
impurity line rather than an active ladger Fig. 6. Here, at most six ladders can be active, leading to an
infrared singularity in each of the diagrams of the fornol./

€°7|q|*cos(a) O[O + w)] Similar calculations to the ones carried out above reveal that
b=~ 817 > 2[q2\* the singular contributions of diagrangs), (b), and(c) can-
o (|2Q +o|T+ —) celed each other. The remaining contribution is finite and can
3 be estimated from the simple diagram in Fig. 3.
X (1-122Q + w|7- 2¢9q|?). (C2) We emphasize once more that all the results for the sin-

gularities in the anomalous density correlation functions in

Each of these two diagrams individually has an divergencehe Appendixes A—C have been obtained in low-order pertur-
~1/|g|%. However, because the relative combinational factoation theory. Within perturbation theory one cannot prove
of Dy, is 2, the divergent contributions cancel, rendering thethat the terms obtained indeed represent the leading singu-
final value for)(f;i‘; finite [Eq. (1D)]. larities to all orders. We are nonetheless confident that we

Similar cancel?ations among individually diverging dia- indeed identified the leading terms, because in gheave
grams take place in the replica off-diagonal case, with thecase we reproduce the known rigorous results f@+field
strongest singularities coming from diagrams with the largestheory?532
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