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The spin-wave dispersion relation in both clean and disordered itinerant quantum ferromagnets is calculated.
It is found that effects akin to weak-localization physics cause the frequency of the spin waves to be a
nonanalyticfunction of the magnetizationm. For low frequenciesV, small wave vectorsk, andm→0, the
dispersion relation is found to be of the formV5const3m12ak2, with a5(42d)/2 (2,d,4) for disor-
dered systems, anda5(32d) (1,d,3) for clean ones. Ind54 ~disordered! and d53 ~clean!, V
}m ln(1/m)k2. Experiments to test these predictions are proposed.@S0163-1829~98!06045-7#

One of the best known examples of quantum long-range
order is the ferromagnetic~FM! state in itinerant electron
systems at zero temperature (T50). An important manifes-
tation of this order is the existence of spin waves.1 In con-
ventional Heisenberg ferromagnets the damping of the spin
wave is negligible, and the dispersion relation has the form2

V5D~m!k21o~ uku2!, ~1!

with o(e) denoting terms that are smaller thane. The coef-
ficient D depends on the dimensionless magnetizationm
5(n↑2n↓)/n, with n↑ and n↓ the densities of spin-up and
spin-down electrons, respectively, andn5n↑1n↓ . In the
conventional theory for clean ‘‘weak ferromagnets,’’2 D(m
→0)5D0m. D0'vF /kF , with kF the Fermi wave number
and vF5kF /m the Fermi velocity, is on the order of the
inverse of the electron massm, and Eq.~1! is valid for uku
,kFm!kF . We will show below that these results donot
correctly describe the small-m behavior of metallic ferro-
magnets.

A crucial assumption in the derivation of Eq.~1! is that
the interactions between spin fluctuations are short ranged.
This assumption is of doubtful validity in the context of itin-
erant ferromagnets, since in metals atT50 there exist soft
modes that can couple to the spin fluctuations and lead to an
effective long-ranged interaction. Indeed, recent work on the
T50 FM phase transition in both disordered3 and clean4

itinerant electron systems has shown that in spatial dimen-
sionsd52,3 the asymptotic critical behavior is largely de-
termined by the coupling of noncritical soft modes to the
critical spin fluctuations. In disordered systems, these soft
modes are the same ‘‘diffusons’’ that cause the so-called
weak-localization effects.5 In clean systems, they are the

usual particle-hole excitations that lead to the well-known
nonanalyticities in Fermi liquids6 that have recently been
shown to be the clean analogs of the weak-localization
effects.7 These noncritical soft modes cause the critical spin
fluctuations to interact via dimensionality-dependent long-
range effective forces. In the paramagnetic phase, the same
physics is known to lead to a nonanalyticity in the wave-
number-dependent spin susceptibility of the form

xs~k!;const1ukuz, ~2!

with z5d22 ~disordered! and z5d21 ~clean!,
respectively.8

In this paper we consider the FM phase, and show that the
long-ranged spin interactions that are mediated by the diffu-
sons, or their clean counterparts, render invalid the standard
results for the magnon dispersion. We find that a nonzero
magnetization cuts off the long-ranged interaction at a scale
l m;m21 ~clean! or l m;m21/2 ~disordered!, which trans-
forms the singular dependence on the wave number into one
on the magnetization. The magnon dispersion is then given
by Eq. ~1!, but with a nonanalyticm dependence ofD. For
disordered electronic systems, we find

D~m→0!5cdm@m2~42d!/21O~1!# ~2,d,4!,

D~m→0!5c4m@ ln~1/m!1O~1!# ~d54!, ~3a!

andD(m→0);m for d.4. For clean systems,
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D~m→0!5 c̃dm@m2~32d!1O~1!# ~1,d,3!,

D~m→0!5 c̃3m@ ln~1/m!1O~1!# ~d53!, ~3b!

and D(m→0);m for d.3. In these equations,cd and c̃d
are positive constants.

In the remainder of this paper we derive and further dis-
cuss these results. For simplicity, we consider ad-
dimensional continuum model of interacting clean or disor-
dered electrons,9 and pay particular attention to the particle-
hole spin-triplet contribution to the electron-electron
interaction term in the action, whose~repulsive! coupling
constant we denote byG t . Writing only the latter interaction
term explicitly, and denoting the spin density byns , the
action reads

S5S01Sint
t 5S01

G t

2 E dxns~x!•ns~x!, ~4!

whereS0 contains all contributions to the action other than
Sint

t . In particular, it contains the particle-hole spin-singlet
and particle-particle interactions, as well as the coupling to
the disorder.*dx[*dx *0

1/Tdt, and we use a (d11)-vector
notationx[(x,t), with x a vector in real space, andt the
imaginary time. We perform a Hubbard-Stratonovich decou-
pling of Sint

t by introducing a classical vector fieldM (x) with
componentsMi ( i 51,2,3) that couples tons(x) and whose
average is proportional to the magnetization, and we inte-
grate out all fermionic degrees of freedom.10 In this way we
obtain the partition function in the form

Z5e2F0 /TE D@M # exp@2F~M !#. ~5a!

HereF0 is the part of the free energy that does not depend on
the magnetization, andF is a Landau-Ginzburg-Wilson
~LGW! functional,

F~M !5
G t

2 E dxM ~x!•M ~x!

2 lnK expF2G tE dxM ~x!•ns~x!G L
S0

, ~5b!

where^ . . . &S0
denotes an average taken with respect to the

reference actionS0 .
Next, we expand in fluctuations about the ordered state. In

order to ensure that theO(3) symmetry is still manifest in
the ordered state, we write11

M ~x!5r~x!f̂~x!, ~6a!

with r(x) the amplitude ofM (x) andf̂(x) a unit vector,

f̂2~x!51. ~6b!

Further, we take the system to be ordered in the 3 direction
and parametrizef̂ andr by

f̂5~p,s!, ~7a!

with p5(p1 ,p2), s2512p2, and

r~x!5m1dr~x!, ~7b!

with m5^r(x)& proportional to the magnetization. Accord-
ing to Goldstone’s theorem, the transverse fluctuationsp(x)
are soft, or of long range.F(M ) can then be expanded in the
fluctuationsdr andp as

F~M !5F~mf3!1dF~M !, ~8a!

with f3 a unit vector in 3 direction, and

dF~M !5
G t

2 E dx@r2~x!2m2#

2 ln^e2G t*dx M ~x!•ns~x!2mns,3~x!&S
08

~8b!

with

S085S02G tmE dx ns,3~x!. ~8c!

The correlation functions in Eq.~8b! that one obtains by
expanding the exponential determine the coefficients in the
LGW functional. They are correlation functions of a refer-
ence ensemble whose action is given by Eq.~8c!, which
describes the reference ensembleS0 in an external magnetic
field given by2G tm. Here we are interested in the trans-
verse spin susceptibility, which can be obtained from the
imaginary frequency correlation function,

x t~k,Vn!5^up1~k,Vn!u2&, ~9!

with Vn a bosonic Matsubara frequency. Let us first consider
the terms in Eq.~8b! that are bilinear inp, which we denote
by dFpp . We further integrate outr(x) in saddle-point ap-
proximation, i.e., we neglect the fluctuationsdr. We will
justify this procedure later, and also discuss terms of higher
order inp. Taylor expanding Eq.~8b! gives

dFpp5
G tm

2 E dx dy(
i , j 51

2

p i~x!Ki j ~x,y!p j~y!,

~10a!

with

Ki j ~x,y!52G tm^ns,i~x!ns, j~y!&S
08
2d~x2y!d i j ^ns,3~x!&S

08
.

~10b!

In this approximation,

x t~k,Vn!5
K11~k,Vn!

G tm
@K11

2 ~k,Vn!2K12
2 ~k,Vn!#21 ,

~10c!

i.e., the kernelKi j determines the spin-wave spectrum. Note
the Goldstone mode structure of this result: Taking the Fou-
rier transform of Eq.~10b!, we have (i 51,2)

Ki j ~k,Vn!52G tmx i j
~ref!~k,Vn!2d i j ^ns,3&S

08
. ~10d!

x i j
~ref!~k,Vn!5^ns,i~k,Vn!ns, j~2k,2Vn!&S

08
~10e!

is the transverse part of the spin susceptibility in the refer-
ence ensemble with actionS08 . A Ward identity that relates
the reference system’s magnetization to its static, homoge-

14 156 PRB 58BRIEF REPORTS



neous transverse spin susceptibility11 ensures thatKi j (0,0)
50, i.e., transverse excitations are soft.

Expanding in powers of the frequency, one finds

x i j
~ref!~k,Vn!5d i j x t

~ref!~k!2
ic

m
uVnu@d i1d j 21d i2d j 1#,

~11!

with c}m2/kF a constant. In the absence of weak-
localization effects, one would havex t

(ref)(k)5x t2 c̃k2, with

c̃ another constant independent ofm. However, due to weak-
localization effects in disordered systems, and their analogs
in clean ones,x t

(ref) has a singularity atk5m50. For m
[0 this has been shown using perturbation theory8 as well
as more general renormalization-group~RG! arguments.7,12

It has also been shown that weak-localization effects~their
clean counterparts! can be related to corrections to scaling
near a disordered~clean! Fermi-liquid fixed point.7 Let us
generalize those considerations to include the effects of a
small magnetic field. The scale dimension ofx t is zero,7 so
in terms of a scaling functionF we have

x t
~ref!~k,l m

21 ,u!5F~bk,l m
21b,ub[u] !, ~12a!

with l m the magnetic length. The latter is determined pertur-
batively as follows. A nonzero magnetization leads to a mass
or frequency cutoff in the soft modes that is given by a
cyclotron frequencyVc with m playing the role of the mag-
netic field. In clean~disordered! systems, the wave number
scales likeV (V1/2). Scaling the wave number withl m thus
leads tol m;1/m in clean systems, andl m;1/Am in disor-
dered ones.u represents the leading irrelevant variable near
the fixed point. Its scale dimension,@u# is equal to@u#5
2(d22) in disordered systems, and@u#52(d21) in clean
ones.7,8 b is a RG length rescaling factor. In the paramagnetic
phase,l m

2150, and Eq.~12a!, with b;uku21, yields

x t
~ref!~k,0,u!;x t2cuku2[u] , ~12b!

with c;u. This is the nonanalyticity that leads to long-range
interactions between the spin flucuations near the FM phase
transition. Forl m

21Þ0, x t
(ref) is an analytic function ofk2

and Eqs.~12a! and ~12b! give

x t
~ref!~k,l m

21 ,u!;x t2c8~m!k2, ~12c!

with

c8~m!; l m
21[u];H m2~21[u] !/2 ~disordered!

m2~21[u] ! ~clean!.
~12d!

From this, with Eqs.~10! and ~11!, we immediately obtain
our main results, Eqs.~3! @except for the nature of the lead-
ing correction terms in Eq.~1!, which we will discuss be-
low#. Note that for disordered systems the dimensionless pa-
rameter characterizing ‘‘small’’ wave numbers isuku l !1,
with l the diffusive or transport mean free path. The prefac-
tors in Eqs.~3! are hard to estimate, since they depend on the
value G t

ref of G t in the fully renormalized reference
ensemble.12 For instance, for the clean case ind53 one
finds, using the result of Ref. 8,c̃35(32p/27)(NFG t

ref)2/m.
Finally, we note that, at the level of the above scaling argu-

ment, the analyticity ofx t
(ref) in powers ofk2 for l m

21Þ0 is
an assumption. We have checked this explicitly in perturba-
tion theory, verifying Eqs.~12c! and ~12d! using both aQ-
matrix field theory7 and standard many-body perturbation
theory, and will further discuss it from a RG point of view
next.

We now show that the corrections to Eqs.~10! that result
from taking into account thedr fluctuations, as well as terms
of higher than Gaussian order inp, cannot change the above
results. This is most easily done in the framework of the RG.
We assign scale dimensions21 and 2z to lengths and
times, respectively, withz the dynamical critical exponent,
and scale dimensions@p i(x)#5(d1z221h8)/2 and
@r(x)#5(d1z1h)/2 to the fields. Then Eq.~10a! tells us
that there is a Gaussian fixed point with exponents

h52, h850, z52 ~13!

that describes a FM state. To check for relevant operators
that would destroy this fixed point, we systematically expand
Eq. ~8b! in powers ofdr and p, and integrate outdr per-
turbatively to obtain an effective action in terms ofp. There
are several terms that dimensionally could lead to aukud21 in
the clean case and aukud22 in the disordered case in Eq.
~12c!, rather than ak2 with a coefficient that is nonanalytic
in m. In RG language, this would be a relevant operator with
respect to our Gaussian fixed point. However, it turns out
that there are Ward identities11 that ensure, order by order in
the expansion in fluctuations of the order parameter, that all
terms ofO(p2), whether or not they couple todr, are mul-
tiplied by at least a gradient squared.13 We have also checked
this by means of explicit perturbative calculations for se-
lected vertices. Similar arguments show that the second term
on the right-hand side of Eq.~11! is the leading frequency
dependence. As a result, the Gaussian fixed point identified
above is stable by power counting. The leading nonanalytic
correction to theV;k2 dispersion arises from renormaliza-
tions of the Gaussian action due to terms ofO(p4). The
resulting operators potentially have scale dimensions 22d
~disordered! andd21 ~clean!, respectively. This reflects the
largest possible corrections due to potentially soft modes;
explicit calculations would be necessary to ascertain whether
or not terms of this order actually exist.13 We conclude that
the Eqs.~12! are asymptotically exact. The exact magnon
dispersion relation is thus given by Eq.~1!, and the largest
possible corrections are ofO(uku21z), with z from Eq. ~2!.

At T.0, temperature effects will compete with the mag-
netization in protecting the weak-localization singularities,
and their clean counterparts, in the spin-triplet channel.14

Therefore, form,T!TF in appropriate units, them in the
brackets in Eqs.~3! will be replaced byT, leading to a
nonanalyticT dependence of the coefficient in the dispersion
relation. Other consequences of a nonzero temperature are
more subtle because of the occurrence of multiple tempera-
ture scales4 and will be investigated separately in the future.

We conclude by discussing ways to experimentally verify
our predictions. To our knowledge, no systematic studies of
the prefactor of thek2 term in the dispersion relation have
been performed. Such a study should be easier to do for
disordered systems than for clean ones, since~1! the pre-
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dicted effect is much larger in the disordered case, and~2! in
the disordered case it will be easier to find a material near the
FM quantum phase transition~e.g., by fine tuning the con-
centration of the magnetic ingredient in an alloy!.

The most convincing experimental evidence would be an
explicit measurement of them dependence of the dispersion
relation. This would require measuring different samples
with different values of the magnetizationm, and extracting
them dependence from the measured inverse magnon masses
D(m). In a three-dimensional disordered system,D(m) for
small m should scale likem1/2 ~instead ofm according to
RPA-like theories!. Another possibility is to measure a single
sample with a small magnetization, and to identify aquanti-

tative difference of the measured magnon mass from that
predicted by RPA-like theories. For instance, it has been
reported that in Fe and Ni the prefactor is larger than ex-
pected by a factor of 2 to 3.15 Since the magnetization in
these materials is not small, it is unlikely that this discrep-
ancy is related to the predicted effect. However, similar ex-
periments on materials with a small magnetization should
suffice to corroborate or refute the present theory.

This work was initiated at the Aspen Center for Physics,
and supported by the NSF under Grants No. DMR–95–
10185, No. DMR–96–32978, and No. DMR–97–07701 and
by the DFG under Grant No. Vo659/1–1.
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