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Nonanalytic magnetization dependence of the magnon effective mass
in itinerant quantum ferromagnets
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The spin-wave dispersion relation in both clean and disordered itinerant quantum ferromagnets is calculated.
It is found that effects akin to weak-localization physics cause the frequency of the spin waves to be a
nonanalyticfunction of the magnetizatiom. For low frequencie€}, small wave vector&, andm—0, the
dispersion relation is found to be of the forfh=constx m'~“k?, with a=(4—d)/2 (2<d<4) for disor-
dered systems, and=(3—d) (1<d<3) for clean ones. Ind=4 (disordered and d=3 (clean, Q
«min(1/myk2. Experiments to test these predictions are propdsa@il63-182008)06045-7

One of the best known examples of quantum long-rangeisual particle-hole excitations that lead to the well-known
order is the ferromagnetitFM) state in itinerant electron nonanalyticities in Fermi liquidsthat have recently been
systems at zero temperatuf€=0). An important manifes- shown to be the clean analogs of the weak-localization
tation of this order is the existence of spin wavds. con-  effects! These noncritical soft modes cause the critical spin
ventional Heisenberg ferromagnets the damping of the spifiuctuations to interact via dimensionality-dependent long-
wave is negligible, and the dispersion relation has the formrange effective forces. In the paramagnetic phase, the same

physics is known to lead to a nonanalyticity in the wave-
Q=D(m)k?+o(|k|?), (1) number-dependent spin susceptibility of the form

with o(€) denoting terms that are smaller thanThe coef-
ficient D depends on the dimensionless magnetization xs(k)~const-|Kk|¢, 2
=(n;—n;)/n, with n, andn, the densities of spin-up and
spin-down electrons, respectively, amd-n,+n,. In the
conventional theory for clean “weak ferromagnetsP(m
—0)=Dym. Do=~vg/kg, with kg the Fermi wave number
and vg=Kkg/u the Fermi velocity, is on the order of the
inverse of the electron mags, and Eq.(1) is valid for |K|
<kgm<kg. We will show below that these results dot
correctly describe the smath behavior of metallic ferro-

magnets. Im~m~t (clean or |,,~m Y2 (disorderedy which trans-

A. crUC|aI_ assumption in the der|vat|_on of Ed) is that forms the singular dependence on the wave number into one
th? |nteract|or_15 b_etween Spin fluptgat_lons are short ra_lr_lgegm the magnetization. The magnon dispersion is then given
This assumption is of doubtful validity in the context of itin-

) ; A by Eg. (1), but with a nonanalytiean dependence ob. For
erant ferromagnets, since in metalsTat 0 there exist soft disordered electronic systems, we find

modes that can couple to the spin fluctuations and lead to an

effective long-ranged interaction. Indeed, recent work on the

T=0 FM phase transition in both disordefednd cleaf D(m—0)=cym[m ¥ 921 0(1)] (2<d<4)
itinerant electron systems has shown that in spatial dimen- '
sionsd=2,3 the asymptotic critical behavior is largely de-

termined by the coupling of noncritical soft modes to the D(m—0)=c,m[In(Lm)+0(1)] (d=4), (33
critical spin fluctuations. In disordered systems, these soft

modes are the same “diffusons” that cause the so-called

weak-localization effect3.In clean systems, they are the andD(m—0)~m for d>4. For clean systems,

with /=d—-2 (disordered and ¢=d-1 (clean,
respectively?

In this paper we consider the FM phase, and show that the
long-ranged spin interactions that are mediated by the diffu-
sons, or their clean counterparts, render invalid the standard
results for the magnon dispersion. We find that a nonzero
magnetization cuts off the long-ranged interaction at a scale
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D(m—0)=cgm[m " P+0(1)] (1<d<3), p(X)=m+ p(x), (7b)

- with m=(p(x)) proportional to the magnetization. Accord-
D(m—0)=cam[In(1/m)+0(1)] (d=3), (Bb)  ing to Goldstone’s theorem, the transverse fluctuatinfe)
are soft, or of long rangeb (M) can then be expanded in the

and D(m—0)~m for d>3. In these equationg,y and ¢4 fluctuationssp and o as

are positive constants.
In the remainder of this paper we derive and f_urther dis- D (M)=D(Meh) + 5P (M), (8a)

cuss these results. For simplicity, we consider da ) ) ) S

dimensional continuum model of interacting clean or disor-With ¢ a unit vector in 3 direction, and

dered electron®and pay particular attention to the particle-

hole spin-triplet contribution to the electron-electron SP(M)= Ef dx[ p2(x) —m?]
interaction term in the action, whogeepulsive coupling 2
constant we denote Hy,. Writing only the latter interaction _|n<e—F1fdxM(x).ns(x)_mns’s(x)> . (8b)
term explicitly, and denoting the spin density oy, the o
action reads with
t Iy
S=S+ 5 =St ?J dxng(X) - ng(x), (4) S(,):SO_thf dx ns,S(X). (80

where S, contains all contributions to the action other than  The correlation functions in Eq8b) that one obtains by
S In particular, it contains the particle-hole spin-singletexpanding the exponential determine the coefficients in the
and particle-particle interactions, as well as the coupling ta. GW functional. They are correlation functions of a refer-
the disorder.fdxzfdxfé”dfr, and we use ad+1)-vector ence ensemble whose action is given by ERBE), which
notationx=(x,7), with x a vector in real space, andthe describes the reference ensem$jen an external magnetic
imaginary time. We perform a Hubbard-Stratonovich decoufield given by —I';m. Here we are interested in the trans-
pling of S|, by introducing a classical vector fieM(x) with ~ verse spin susceptibility, which can be obtained from the
componentdM; (i=1,2,3) that couples tag(x) and whose imaginary frequency correlation function,

average is proportional to the magnetization, and we inte-

grate out all fermionic degrees of freeddfrin this way we xe(K, Q) =(|m1(k,Qp)[?), 9
obtain the partition function in the form with Q,, a bosonic Matsubara frequency. Let us first consider
the terms in Eq(8b) that are bilinear inm, which we denote
ZzefFO’Tf D[M] exd — ®(M)]. (58 by 6® ... We further integrate oyt(x) in saddle-point ap-
proximation, i.e., we neglect the fluctuatiode. We will

jpstify this procedure later, and also discuss terms of higher

HereF, is the part of the free energy that does not depend o ) ) )
order inar. Taylor expanding Eq8b) gives

the magnetization, andb is a Landau-Ginzburg-Wilson

(LGW) functional, 2

I'im
r 8P =y | AXdy 2 mOOK;;(6Y)mi(Y),
¢ =
CD(M):?j dxXM(x)-M(x) (109
with
—In<exr{—1‘ J dxM(x)-ng(x) > , (5b
t ° S Kij(x,y)= _th<ns,i(x)ns,j(y)>s(’)_ 5(X_y)5ij<ns,3(x)>56-
where( . . .)So denotes an average taken with respect to the o (100
reference actiorS, . In this approximation,
Next, we expand in fluctuations about the ordered state. In Ky(k, Q)
order to ensure that th®(3) symmetry is still manifest in xi(k, Q)= M[Kil(k,ﬂn)_Kiz(k,Qn)]*l ,
the ordered state, we write I'im
(100
M(x)=p(X) (), (6a e, the kerneK;; determines the spin-wave spectrum. Note

the Goldstone mode structure of this result: Taking the Fou-

with p(x) the amplitude oM (x) and ¢(x) a unit vector, rier transform of Eq(10b), we have {=1,2)

¢2(X):1. (Gb) Kij(ka‘Q'n):_thXi(erf)(ka‘Q'n)_5ij<ns,3>86' (10d)
Further, we take the system to be ordered in the 3 direction (reh
and parametrizeb and p by Xij (K, Q) =(nsi(K, Q)N j(—k, —Qp))s, (108

§b:(w ) (78 is the transverse part of the spin susceptibility in the refer-
T ence ensemble with actio®,. A Ward identity that relates
with 7= (7, 7,), 0°=1—=% and the reference system’s magnetization to its static, homoge-
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neous transverse spin susceptibifitgnsures thak;;(0,0)  ment, the analyticity of{"®" in powers ofk? for |10 is

=0, i.e., transverse excitations are soft. _ an assumption. We have checked this explicitly in perturba-
Expanding in powers of the frequency, one finds tion theory, verifying Eqs(12¢ and (12d) using both aQ-
i matrix field theory and standard many-body perturbation
Xi(jref)(kﬂn): 5inEref)(k)_ E|9n|[5i15j2+ 8.2811], ;heextzry, and will further discuss it from a RG point of view
(11 We now show that the corrections to E¢$0) that result

with cxu?/ke a constant. In the absence of weak- from taking into accognt thép f[uctuations, as well as terms
localization effects. one would ha\‘éref)(k):)( _ZK2. with of higher thar_1 Gaussian 'orderm_cannot change the above

- ' t ' results. This is most easily done in the framework of the RG.
¢ another constant independentmfHowever, due to weak- \we assign scale dimensions1l and —z to lengths and
localization effects in disordered SyStemS, and their analogﬁmeS, respective|y, witlz the dynamica| critical exponent,

in clean onesx{" has a singularity ak=m=0. Form  and scale dimensions](x)]=(d+z—2+7')/2 and

=0 this has been shown using perturbation th%:auzy well  [p(x)]=(d+z+ 7)/2 to the fields. Then Eq(109 tells us

as more general renormalization-gro(RG) arguments:>  that there is a Gaussian fixed point with exponents

It has also been shown that weak-localization effétigir

clean counterpartscan be related to corrections to scaling

near a disorderedclean Fermi-liquid fixed point. Let us n=2, 7'=0, z=2 (13
generalize those considerations to include the effects of a

small magnetic field. The scale dimension)gfis zero! so  that describes a FM state. To check for relevant operators

in terms of a scaling functiofr we have that would destroy this fixed point, we systematically expand
L L Eqg. (8b) in powers ofSp and #, and integrate oubp per-
X0 (k.1 b u)=F(bk,I b, ubll), (129  turbatively to obtain an effective action in terms=f There

. . 71 .
with |,,, the magnetic length. The latter is determined pertur-are several terms that dimensionally could lead fio& " in

: o the clean case and |&|% 2 in the disordered case in Eq.
batively as follows. A_nonzero magnetization Igad; toa mas%lZc) rather than &?2 with a coefficient that is nonanalytic
or frequency Cutoff in t'he soft ”.‘Odes that is given by %in m. In RG language, this would be a relevant operator with
cyclotron frequency), with m playing the role of the mag-

netic field. In clean(disorderedl systems, the wave number respect to our Gaussian fixed point. However, it turns out
scales likeQ (QY3). Scaling the wave number witly, thus that there are Ward identiti€sthat ensure, order by order in

. Lo the expansion in fluctuations of the order parameter, that all
leads tol ,~1/m in clean systems, and,~1/\/m in disor- P P

terms ofO(#2), whether or not they couple tp, are mul-

derec_;l onesu represents thg 'ead'T‘g wrglevant variable neartiplied by at least a gradient squartd/Ve have also checked
the fixed point. Its scale dimensiofy] is equal to[u]=

S . . this by means of explicit perturbative calculations for se-
—(d—2) in disordered systems, apd]=—(d—1) inclean o4 ertices. Similar arguments show that the second term
ones.’ ?{S a RG length rescaling factor;lln the paramagneticy, e right-hand side of Eq11) is the leading frequency
phase/,"=0, and Eq/(12a), with b~ |k|~*, yields dependence. As a result, the Gaussian fixed point identified

X{reﬂ(k,o,U)NXt—C|k|_[u], (12b) above is stable by power counting. The leading nonanalytic

correction to the) ~k? dispersion arises from renormaliza-
with c~u. This is the nonanalyticity that leads to long-rangetions of the Gaussian action due to terms@f=*). The

interactions between the spin flucuations near the FM phagd@sulting operators potentially have scale dimensionsi2
transition. Forl -*#0, x{™® is an analytic function ok?  (disorderelandd—1 (clean), respectively. This reflects the

and Egs(129 and(12b) give Iarge_zs_t possibl(_e corrections due to potentially so_ft modes;
explicit calculations would be necessary to ascertain whether
X\, u)~ xe— ¢’ (M)K?, (129  or not terms of this order qctually existWe conclude that
. the Eqgs.(12) are asymptotically exact. The exact magnon
with dispersion relation is thus given by E@), and the largest
@+ ) possible corrections are @(|k|2*¢), with ¢ from Eq.(2).
o (M)~ 12+ 1o~ m (disordered 2d) At T>0, temperature effects will compete with the mag-
m m~ @) (clean. netization in protecting the weak-localization singularities,

) ] ) ) ~and their clean counterparts, in the spin-triplet chafhel.
From this, with Egs(10) and (11), we immediately obtain  Therefore, form<T<Tg in appropriate units, then in the
our main rgsults, Eqs{_3) [except fqr the nature _of the lead- prackets in Eqs(3) will be replaced byT, leading to a
ing correction terms in Eq(1), which we will discuss be- ponanalyticT dependence of the coefficient in the dispersion
low]. Note that for disordered systems the dimensionless pag|ation. Other consequences of a nonzero temperature are
rameter characterizing “small” wave numbers lis]l <1, more subtle because of the occurrence of multiple tempera-
with | the diffusive or transport mean free path. The prefacyyre scaleband will be investigated separately in the future.
tors in Egefs.(3) are hard to estimate, since they depend onthe \ye conclude by discussing ways to experimentally verify
value I'; , of I't in the fully renormalized reference qur predictions. To our knowledge, no systematic studies of
ensemblé? For instance, for the clean case @3 one  the prefactor of the? term in the dispersion relation have
finds, using the result of Ref. &G=(327r/27)(NFF{ef)2/M. been performed. Such a study should be easier to do for
Finally, we note that, at the level of the above scaling argudisordered systems than for clean ones, sifigethe pre-
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dicted effect is much larger in the disordered case,(@nth
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tative difference of the measured magnon mass from that

the disordered case it will be easier to find a material near thpredicted by RPA-like theories. For instance, it has been

FM quantum phase transitiao.g., by fine tuning the con-
centration of the magnetic ingredient in an ajloy

reported that in Fe and Ni the prefactor is larger than ex-
pected by a factor of 2 to ¥ Since the magnetization in

The most convincing experimental evidence would be anhese materials is not small, it is unlikely that this discrep-
explicit measurement of the dependence of the dispersion ancy is related to the predicted effect. However, similar ex-
relation. This would require measuring different samplesperiments on materials with a small magnetization should

with different values of the magnetization, and extracting

D(m). In a three-dimensional disordered systdnm) for
small m should scale likem'? (instead ofm according to

) suffice to corroborate or refute the present theory.
themdependence from the measured inverse magnon masses

This work was initiated at the Aspen Center for Physics,

and supported by the NSF under Grants No. DMR-95—

RPA-like theories Another possibility is to measure a single 10185, No. DMR-96-32978, and No. DMR-97-07701 and

sample with a small magnetization, and to identifguanti-

by the DFG under Grant No. Vo659/1-1.
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