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Binary nucleation kinetics. II. Numerical solution of the birth–death
equations

Barbara E. Wyslouzila) and Gerald Wilemskib)
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609-2280;
Lawrence Livermore National Laboratory, Livermore, California 94551-9900; and Physical Sciences
Inc., Andover, Massachusetts 01810-1077

~Received 23 November 1994; accepted 22 February 1995!

We numerically solve the complete set of coupled differential equations describing transient binary
nucleation kinetics for vapor-to-liquid phase transitions. We investigate binary systems displaying
both positive and negative deviations from ideality in the liquid phase and obtain numerical
solutions over a wide range of relative rates of monomer impingement. We emphasize systems and
conditions that either have been or can be investigated experimentally. In almost every case, we find
behavior consistent with Stauffer’s idea that the major particle flux passes through the saddle point
with an orientation angle that depends on the rates of monomer impingement. When this is true, the
exact numerical steady state nucleation rates are within 10%–20% of the predictions of Stauffer’s
analytical theory. The predictions of Reiss’ saddle point theory also agree with the numerical results
over a wide range of relative monomer impingement rates as long as the equilibrium vapor pressures
of the two pure components are similar, but Stauffer’s theory is more generally valid. For systems
with strong positive deviations from ideality, we find that the saddle point approximation can
occasionally fail for vapor compositions that put the system on the verge of partial liquid phase
miscibility. When this situation occurs for comparable monomer impingement rates, we show that
the saddle point approximation can be rescued by evaluating an appropriately modified nucleation
rate expression. When the two impingement rates differ significantly, however, the major particle
flux may bypass the saddle point and cross a low ridge on the free energy surface. Even in these rare
cases, the analytical saddle point result underpredicts the numerical result by less than a factor of 10.
Finally, we study the transition from binary to unary nucleation by progressively lowering the vapor
concentration of one component. Both Reiss’ and Stauffer’s rate expressions fail under these
conditions, but our modified rate prescription remains within 10%–20% of the exact numerical
rate. © 1995 American Institute of Physics.

I. INTRODUCTION

The direct numerical approach of solving the complete
set of cluster birth and death equations is a useful way to
study nucleation. The results let us evaluate the robustness of
available steady state nucleation rate expressions as well as
test the analytical approximations for time lags, or induction
times, and transient particle formation rates. If analytical ex-
pressions fail, numerical results can help us determine why
and to what degree. Numerical methods are essential for in-
cluding effects not amenable to analytical treatment such as
simultaneous cooling and nucleation in glasses1 or heat
transfer between clusters and the background gas during
nucleation.2 In binary nucleation the transition between bi-
nary and unary nucleation can be observed, and numerical
results may reveal effects overlooked or poorly described by
analytical treatments.

Recently, several investigators have studied binary
nucleation by numerically solving the kinetics equations de-
scribing time dependent cluster formation. Nishioka and
Fujita3 chose the H2SO4–H2O system, but they were not able
to follow the evolution of the equations to the steady state
because the time lags in this system are much greater than

the times attainable by their computations~'1 ms!. Kožı́šek
and Demo4 investigated both vapor–liquid and liquid–solid
phase transitions. However, for the vapor–liquid example
they only investigated the simple case of an extremely ide-
alized mixture proposed by Temkin and Shevelev5 with no
reference to an actual physical system. They found that their
numerical results did not agree with the analytical theories of
either Reiss6 or Stauffer,7 but for another set of calculations
they did find good agreement with the Kelvin model of
Temkin and Shevelev.5 Greeret al.8 found excellent agree-
ment with the Reiss theory when the mobilities of the two
species in the condensed phase were identical, but they ob-
served that the major particle flux bypassed the saddle when
the mobility of one of the species was decreased. In the latter
case, the Reiss theory did not agree with the numerical re-
sults. No other quantitative comparisons were made. Very
recently, McGraw9 applied matrix inversion techniques to
solve the steady state binary kinetics equations. McGraw
studied the H2SO4–H2O system and included the effects of
gas phase hydrates. He found quantitative agreement with
the rate expression of Shugard, Heist, and Reiss10 ~SHR!
except at the extremely high water-to-acid impingement rate
ratio'1014. Here the major flux bypassed the saddle, and the
nucleation rate was enhanced by three orders of magnitude
over the SHR value. Vehkama¨ki et al.11 have also recently
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reported using matrix methods to solve for the steady state
rate.

In this paper we investigate steady state binary nucle-
ation in the vapor phase by setting up and numerically solv-
ing the coupled differential equations governing the time
evolution of the cluster population. A discussion of our tran-
sient results is deferred to a later paper.12 One of our aims is
to stringently test several analytical binary rate expressions
by studying nucleation over a much larger range of condi-
tions and for many more different types of systems than have
previously been considered. Another goal is to develop a
deeper appreciation for the relative importance of the many
factors that affect the transient and steady state behavior of
the nucleation fluxes on the free energy surface. These fac-
tors include the impingement rates, equilibrium vapor pres-
sures, vapor phase activities, liquid molar volumes, and de-
gree of mixture nonideality. In Sec. II we first present the
kinetics equations and rate constants needed to solve these
equations. We then discuss briefly how using a modified bi-
nary equilibrium distribution function and properly symme-
trized impingement rate expressions ensures that the kinetics
equations are fully self-consistent. After a brief description
of our computational approach, we summarize the analytical
binary nucleation rate expressions that we will use for com-
parison with our numerical results. In Sec. III we present and
discuss our results. We first concentrate on detailed presen-
tations of steady state behavior for several ideal and nonideal
binary systems. Extensive comparisons with analytical re-
sults are made to establish the limits of validity of the fol-
lowing approximations and assumptions used in these theo-
ries: the saddle point flux assumption, the steepest descent
approximation of Reiss, and the direction of principal growth
approximation of Stauffer. In one of our cases, we present an
explicit example of ridge crossing behavior in which the ma-
jor nucleation current bypasses the saddle point. Next, we
consider the transition from binary to unary nucleation by
comparing numerical results with analytical predictions for a
series of cases with progressively diminishing amounts of
one vapor component. We rigorously test the capability of a
modified version of a rate prescription13 designed to handle
this transition. We conclude the paper with a summary and
brief discussion of the steady state results in Sec. IV. Appen-
dix A contains the derivation of the modified binary rate
prescription. Appendix B contains the physical properties of
the binary mixtures we considered.

II. BASIC EQUATIONS AND COMPUTATIONAL
PROCEDURES

A. Kinetics equations

If growth and decay of clusters proceeds only by the
addition or loss of monomers, the fluxes between adjacent
cluster sizes,JA and JB , are determined by the differences
between the forward and reverse rates for these processes,

JA~ i , j ,t !5GA~ i , j !NAf ~ i , j ,t !2EA~ i11,j ! f ~ i11,j ,t !,
~1!

JB~ i , j ,t !5GB~ i , j !NBf ~ i , j ,t !2EB~ i , j11! f ~ i , j11,t !.
~2!

In these equations,Gn~i , j ! is the rate coefficient for adding a
monomer of typen to a cluster containingi molecules of
speciesA and j molecules of speciesB, En( i , j ) is the rate
coefficient for removing a monomer of speciesn from a clus-
ter with composition~i , j !, andf ( i , j ,t) is the nonequilibrium
cluster concentration. The monomer concentrations are de-
fined asNA5f (1,0,t) andNB5f (0,1,t). The evaporation
rate coefficients depend on the composition of the cluster but
should be independent of the gas phase composition and
pressure. In this paper we do not account for surface enrich-
ment of the clusters,14–16 and we calculate the evaporation
rate coefficients based on the overall composition of the clus-
ter rather than the thermodynamically correctinterior com-
positionof the cluster. For systems such as ours, where the
surface tensions differ by, at most, 5%–15%, the overall and
interior compositions will be almost identical.

The change in the number density of clusters of compo-
sition ~i , j ! with time is given by

d f~ i , j ,t !

dt
5JA~ i21,j ,t !2JA~ i , j ,t !1JB~ i , j21,t !

2JB~ i , j ,t !, ~3!

except for the mixed dimer concentration. In this case, either
JA~0,1! or JB~1,0! must be omitted from the right-hand-side
to avoid doubling the mixed dimer flux because these two
flux expressions are redundant. With constant monomer con-
centrations, there are~imax3jmax23! coupled differential
equations, whereimax21 andjmax21 are the maximum num-
bers ofA andB molecules considered per cluster. Our solu-
tion procedure is described in Sec. II D.

B. The equilibrium distribution

The reverse rate coefficients required by the kinetics
scheme are derived by applying the principal of detailed bal-
ance to Eqs.~1! and ~2! together with prescriptions for the
forward rate coefficients and the equilibrium distribution.
There are difficulties associated with developing well-posed
equilibrium distributions even in the case of unary
nucleation.17 When the reversible workW(g) required to
form a cluster containingg molecules from the vapor is
given by the capillarity approximation, issues of mass action
and limiting consistency lead to a ‘‘self-consistent’’ form of
the equilibrium distribution.18

As discussed in our previous paper~WWI!,19 deriving a
simple, self-consistent cluster distribution is more difficult in
the case of binary nucleation, although the need for such a
distribution was recognized 20 years ago.13,20 In particular, a
well-posed binary cluster distribution should be dimension-
ally correct and of the same order of magnitude as other
self-consistent classical distributions. It should satisfy the
mass action law for chemical equilibrium, reduce to the self-
consistent classical expression for one component, and revert
to the equivalent single component value for the case of a
degenerate isomeric mixture~i.e., when the properties of
A5properties ofB!. Finally, evaporation rates derived from
this binary distribution by detailed balancing should not de-
pend on the monomer concentrations. The binary equilibrium
distribution developed by Reiss,
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N~ i , j !5~NA1NB!expS 2W~ i , j !

kT D , ~4!

does not meet several of these conditions, and, in fact, no
previously published binary distribution satisfies all of these
conditions. Even the solution recently suggested by Kulmala,
Laaksonen, and Gershick21 fails the mass action test. In
WWI we proposed19 the following self-consistent expression
for the equilibrium binary cluster concentrations

N~ i , j !5~NA
`!xA~NB

`!xB

3exp~xAQA1xBQB!expS 2W~ i , j !

kT D , ~5!

whereNn
` are the monomer number densities in equilibrium

with pure liquids of type n, xA512xB5i /( i1 j ),
Qn5snsn /~kT!, sn is the surface area of a monomer of type
n, sn is the surface tension of pure liquid of typen, k is the
Boltzmann constant, andT is the temperature. For an ideal
gas, the capillarity approximation forW( i , j ) gives

W~ i , j !52 ikT lnS NA

NA
`~ i , j ! D 2 jkT lnS NB

NB
`~ i , j ! D 1Vs~ i , j !,

~6!

whereNn
`( i , j ) is the equilibrium number density of mono-

mers of speciesn in a saturated vapor over a bulk solution of
composition xA and Vs( i , j )5ss( i , j ), where the surface
area of the clusters( i , j ) ands are also functions of compo-
sition. Although a binary cluster distribution based on either
density functional calculations22 or Monte Carlo
simulations23 would be more satisfying, fundamental results
of this type are not available for now. Our prescription en-
ables us to carry out an internally consistent and numerically
correct analysis whose results we can compare quantitatively
with those from both binary and unary analytical nucleation
rate expressions. We will refer to the distribution in Eq.~5!
as the self-consistent classical~SCC! binary distribution. As
in unary SCC theory, the effect of our binary SCC correction
terms is to increase the concentrations of the clusters, usually
by several orders of magnitude over the values given by Eq.
~4!.

C. Impingement and evaporation coefficients

Reiss’ kinetic scheme6 provides a broadly acceptable
conceptual basis for treating binary kinetics, but there are
some symmetry problems that must be corrected if one
wishes to find robustnumerical solutions for the transient
and steady state kinetics. This symmetry is important for
getting the correct collision frequencies for small clusters
and for avoiding spurious mass flows. The collision rate be-
tween anA and aB monomer obviously equals the collision
rate betweenB and A, but the standard expression for the
forward rate coefficient,

Gn5pd~ i , j !2A kT

2pmn
, ~7!

where d( i , j ) is the diameter of the cluster andmn is the
molecular mass of the impinging species, results in two dif-
ferent expressions for the forward rate of mixed dimer for-

mation. The solution is to use the simple expression for the
collision frequency between two particles of unequal mass
available from the kinetic theory of gases. This expression
has been used in nucleation theory before when treating sul-
furic acid hydrates.10,24 The corresponding forward rate co-
efficient then reads

Gn~ i , j !5p@dn1d~ i , j !#2AkT@mn1m~ i , j !#

2pmn m~ i , j !
, ~8!

wherem( i , j ) is the molecular mass of the cluster. We will
use this expression for all cluster sizes, although it reduces
to the conventional expression for large enough values ofi
and j .

As discussed in WWI, the combination of our binary
SCC equilibrium distribution and the symmetric impinge-
ment formula results in a unique value for every evaporation
coefficient. The evaporation rate coefficients we used in the
numerical calculations are obtained by combining Eq.~8!
with Eqs.~50! and ~51! of WWI.19

D. Computational methodology

The set of~imax3jmax23! kinetics equations given by
Eq. ~3! are solved subject to the following boundary condi-
tions. First, the monomer concentrations of the two species,
NA and NB , are held constant. Second, the values of
f ( imax, j ,t! and f ( i , jmax,t! are projected based on the values
at f ( imax21, j ,t21!, f ( imax22, j ,t21! and f ( i , jmax21,
t21!, f ( i , jmax22,t21!, respectively. The former boundary
condition is not too restrictive for the initial monomer con-
centrations, nucleation rates, and length of integration re-
quired before the steady state nucleation rate is reached. The
latter boundary condition is slightly different from the
Szilard25 condition, f ( imax, j ,t!5f ( i , jmax,t)50, but its only
effect is to help stabilize the numerical scheme by making
the transition at the outer boundary less abrupt, in effect
mimicking a larger grid. The initial concentrations of clusters
containing more than one molecule are zero, i.e.,f ( i , j ,0)50
for i1 j.1.

We use an integration subroutine based on the Bulirsch–
Stoer method to solve the kinetics equations.26 This algo-
rithm calculates the result at the end of a user-specified time
step,Dt, by breaking the interval into finer and finer sub-
intervals and extrapolating the integrated results to zero step-
size. The program keeps track of the local truncation error
and adjusts the internal step size to keep errors below the
desired accuracy,e. We use a double precision version of the
subroutine withe510216. The total integration time, which
ranges from 12100 ms, is divided logarithmically into 20
time steps. The nucleation rate, as defined below, is printed
out after each time step. Other intermediate quantities, such
as the cluster concentrations and the values ofJA andJB for
each cluster composition, are stored after every second time
step. We varied the number of time steps by factors of 2 to
demonstrate that this did not affect the final nucleation rates.

The grid size and shape are chosen to provide the best
balance between the number of equations that must be solved
to obtain an accurate steady state solution and the time re-
quired to obtain the solution. We use the location of the
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analytical saddle point as a guide to our initial choice of the
grid size. However, two-dimensional plots of the steady state
fluxes superimposed on the free energy surface, such as those
presented later, are a very sensitive way to spot any grid
related problems. If the grid is too small, unphysical flux
behavior, such as flow back into the grid from outside of the
computational domain, is apparent. We also spot-checked re-
sults by increasing the grid size and recalculating the solu-
tion. Although the Bulirsch–Stoer method is not the most
appropriate nor the most efficient for stiff ordinary differen-
tial equations, it proved to be quite robust because of our use
of double precision and the very small value ofe.

To avoid any ambiguity inherent in a commercial vector
plotting subroutine, we wrote our own program to generate
the plots of the fluxes on the free energy surfaces. Each
arrow in a flux plot represents the vector sum of the locally
averagedJA andJB . The local averages were calculated as

J̄A~ i , j !5
1

8 (
k5 i21

i

(
l5 j21

j11

~22u j2 l u!JA~k,l ! ~9a!

and

J̄B~ i , j !5
1

8 (
k5 i21

i11

(
l5 j21

j

~22u i2ku!JB~k,l !, ~9b!

for i51,3,5,... andj51,3,5,... . For thespecial casei5 j
51, these formulas need to be modified since there are then
only five independent fluxes to average over.

E. Numerical and analytical nucleation rates

In a binary system, the most comprehensive way to
evaluate the nucleation rate is by summing all of the fluxes,
JA andJB, that cross any arbitrary line joining theA axis to
theB axis. This procedure was first explicitly employed by
Temkin and Shevelev,5 although a similar idea was essential
in getting the correct transition from binary to unary nucle-
ation in the continuous treatment based on the saddle point
assumption.13 At steady state, this value for the rate must be
a constant, although the transient particle formation rate will
depend on the particular line chosen.27 For convenience we
have chosen to follow Temkin and Shevelev5 and use lines
containing equal numbers of molecules. For lines too close
to the ‘‘origin’’ there can be some numerical difficulties as-
sociated with taking the difference of very large forward and
backward rates in Eqs.~1! and~2! to derive the smaller val-
ues of the total fluxesJA and JB . This effect is, however,
strictly a numerical artifact associated with the finite number
of digits stored, even in double precision, and not a physical
one. It does not affect the fluxes farther out in the grid where
the forward and backward rates are much smaller.

The nucleation rate expressions we have chosen to com-
pare our results with are due to Reiss,6 Stauffer,7 and
Wilemski.13 Other expressions for the binary nucleation rate
have been developed using different analytical approaches
by Trinkaus,28 Shi and Seinfeld,29 Zitserman and
Berezhkovskii,30 and Wu.27 These either give equivalent re-
sults to the Stauffer expression or are not in forms that are
readily implemented for quantitative use. Strictly, we are
only using the formal rate expressions derived by Reiss and

Stauffer and not the original formulas involving the specific
binary distribution given by Eq.~4!. All of our quantitative
results are based on our new binary SCC distribution given
by Eq.~5!. This is important to note because, as illustrated in
WWI, there are substantial quantitative differences between
the rates calculated with these two distributions. Because we
have also modified the usual forms of the monomer impinge-
ment rates as well as the equilibrium number distribution,
some additional changes are required in the analytical rate
expressions before quantitative comparisons between the nu-
merical solutions and analytical expressions are valid.

Both the Reiss and Stauffer rate expressions assume that
the main nucleation current passes through the saddle point.
All of the quantities appearing in the subsequent formulas
should be understood to be evaluated at the saddle point
composition. For emphasis, some of these will also be de-
noted with a superscript* . We also denote the three second
derivatives ofW( i , j ) at the saddle point asWAA , WAB , and
WBB . The Reiss theory assumes that the major flux follows
the path of steepest descent across the free energy surface,
and the nucleation rate expression is given by

JR5D* ~p/q!1/2N~ i * , j * !, ~10a!

where

D*5
GA~ i * , j * !GB~ i * , j * !NANB

GA~ i * , j * !NA sin
2u1GB~ i * , j * !NB cos

2u
, ~10b!

2p5WAA cos
2u12WAB cosu sin u1WBB sin

2u, ~10c!

q5WAA sin
2u22WAB cosu sin u1WBB cos

2u, ~10d!

2 tanu5~WBB2WAA! /WAB

1@~WBB2WAA!2/WAB
2 14#1/2. ~10e!

The rate expression of Wilemski equals that of Reiss
multiplied by a prefactor that assures a smooth transition
between binary and unary nucleation. The result is

JWR5JRS n1~D l1!

2D l1
erf @D l1@q/~2kT!#1/2#

1
n2~D l2!

2D l2
erf @D l2@q/~2kT!#1/2# D , ~11!

whereDl1 , Dl2 , andn6 are defined in Eqs.~A7!–~A9! of
Appendix A withc 5u. This version of the prefactor is more
general than that presented previously.13 Away from either
axis, its value usually approaches unity. Appendix A contains
a derivation of this prefactor.

The expression due to Stauffer differs from that of Reiss
because it allows the direction of growth in the saddle region
to be modified by the impingement rates ofA andB mono-
mers. The nucleation rate is

JS5Rav ZN~ i * , j * !, ~12a!

where

Rav5
GA~ i * , j * !GB~ i * , j * !NANB

GA~ i * , j * !NA sin
2f1GB~ i * , j * !NB cos

2f
~12b!

and
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Z52~WAA cos
2f12WAB cosf sin f

1WBB sin
2f!/~WAB

2 2WAAWBB!1/2, ~12c!

where the anglef is calculated from

tanf5s1As211/x, ~12d!

with the ratio of impingement rates defined as

x5
GA~ i * , j * !NA

GB~ i * , j * !NB
~12e!

and

2s5~WBB /x2WAA!/WAB . ~12f!

Note thatx is the inverse of the parameterr defined by
Stauffer. Finally, the combination of Stauffer’s rate expres-
sion and Wilemski’s prefactor gives

JWS5JSS n1~D l1!

2D l1
erf @D l1@w/~2kT!#1/2#

1
n2~D l2!

2D l2
erf @D l2@w/~2kT!#1/2# D , ~13a!

where

w5~WAAWBB2WAB
2 !/~WAA cos

2f

12WAB cosf sin f1WBB sin
2f!, ~13b!

and where Eqs.~A7!–~A9! still apply but withc 5f.
To provide a direct comparison with our numerical re-

sults, the location of the saddle point must be evaluated using
the thermodynamically inconsistentKelvin equations31 that
include the surface tension derivatives. Any numerical
scheme, such as ours, that calculates the reversible work re-
quired for cluster formation based on the overall composition
of the cluster rather than the internal composition of the clus-
ter is, in effect, ignoring surface enrichment. We note in
passing that any numerical scheme that searches the free en-
ergy surface described by Eq.~6! for the saddle point also
ignores surface enrichment.

The effect of using our modified distribution function,
rather than the usual Eq.~4!, is to increase the nucleation rate
by a factor of

~NA
`!xA* ~NB

`!xB* exp~xA*QA1xB*QB!

~NA1NB!
, ~14!

which is equivalent to theS21 exp~Q! term in SCC theory18

for unary systems~often a factor of 102 to 104!. Our use of
Eq. ~8! rather than Eq.~7! to calculate the impingement rates
increases the kinetic prefactor of the Reiss and Stauffer for-
mulas by a factor of 2–3. The direction of growth changes
by less than 1% due to the difference in the impingement rate
expressions. In the limit of unary nucleation, the rate is cal-
culated using either Eq.~11! or ~13! or the self-consistent
expression given by

JSCC5vS 2s

pmD 1/2N1
`N1R* exp~Q@12 1

3~g* !2/3# !,

~15a!

where

R*5~111/g* 1/3!2~111/g* !1/2, ~15b!

v is the molecular volume,g* is the number of monomers in
the critical nucleus, andR* accounts for the change due to
our definition of the impingement rates. Equation~10! or
~12! cannot be used to calculate unary rates because they
vanish as eitherNA or NB approaches zero.

F. Binary systems considered

For our calculations we have considered two ideal sys-
tems, two systems that exhibit negative deviations from ide-
ality, and two systems that exhibit positive deviations. The
ideal systems were o-xylene–m-xylene and ethanol–
hexanol, while the negative deviators were
dichloromethane–tetrahydrofuran and chloroform–
tetrahydrofuran. More interesting negative deviators, such as
acid–water systems were not investigated because we did
not wish to address the difficulties associated with surface
enrichment in this paper. Choosing the positively deviating
systems was difficult because we wanted to work close to the
bulk miscibility limit, but not enter a regime where bulk
phase separation occurs. For real systems, low temperature
liquid phase data are sparse, and extrapolations from differ-
ent sets of high temperature activity and heat of mixing data
often give conflicting results. As a first step we therefore
chose to look at positively deviating pairs that had all the
properties of the highly ideal systems, o-xylene–m-xylene
and ethanol–hexanol, but had excess Gibbs free energies of
mixing given by the simple regular solution expression

gE5AxAxB . ~16!

We will refer to these systems as PD1 and PD2, respectively.
Although PD1 and PD2 are not real, their behavior is repre-
sentative of systems such as hydrocarbon–alcohol mixtures,
for example, ethanol–hexene. Working with these two model
systems has the additional advantage that direct comparisons
between the ideal and partially miscible states is straightfor-
ward, and a wide range of liquid phase nonideality can be
investigated by systematically varying the value ofA. By
setting the value ofA/~RT)52, each system is at its upper
critical solution temperature~UCST! and at the edge of the
bulk miscibility gap; any increase inA/(RT) would produce
two bulk solution phases.

The physical properties of the binary mixtures and the
conditions of the simulations are summarized in Appendix B.
Binary nucleation has been studied experimentally for
o-xylene–m-xylene and ethanol–hexanol. For these systems
the simulations were done at the experimental temperature.
For the other systems, temperatures were chosen which gave
pure liquid vapor pressures on the order of 10 Torr. Activity
behavior at higher temperatures was extrapolated to the
simulation temperature by using heat of mixing data at the
closest available temperature. When data were not available
for surface tension or molar volume as functions of compo-
sition, we assumed the value was the mole fraction weighted
average of the pure component values. The vapor composi-
tions used in the calculations are reported in terms of the gas
phase activitiesaA andaB defined as
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aA5NA /NA
` , ~17a!

aB5NB /NB
` . ~17b!

III. RESULTS AND DISCUSSION

A. Binary nucleation through a saddle

For unary nucleation we know that when the transient
birth and death equations are properly posed and solved, they
give the correct theoretical steady state results.32 Thus, in the
limit of nucleation of a single component, our numerical
scheme must produce steady state results that agree closely
with analytical theory. For binary nucleation the situation is
more complex because many paths can contribute to the
overall nucleation rate. When these paths are channeled
through a saddle region, we would anticipate that the nu-
merical steady state rate should agree reasonably well with
either the Stauffer or Reiss theories. Flow through a saddle,
however, is not the only possibility. Depending on the shape
of the free energy surface and the sizes of the impingement
rates, it is also possible that most of the current bypasses the
saddle point. Several papers5,7,8,27–30,33have discussed and
analyzed this situation, and under these conditions the saddle
point treatment is not adequate. For ideal gaseous and liquid
mixtures whose components have similar thermodynamic
and transport properties, however, there is little reason to
expect disagreement between the numerical rates and the
predictions of an appropriate version of binary nucleation
theory using the saddle point treatment. Indeed, in modeling
crystal nucleation in binary glasses, Greeret al.8 found ex-
cellent agreement with the Reiss theory when the molecular
mobilities, i.e., impingement rates of the crystallizing spe-
cies, were identical and poor agreement when they were not.
An important issue to address, then, is over what range of
impingement rates and to what extent of mixture nonideality
will the saddle point treatment continue to provide reliable
predictions of the nucleation rate for vapor–liquid systems.

Figures 1~a! through 1~f! compare the numerically de-
rived nucleation rates~filled squares! for the six systems in-
vestigated with the analytical results based onJWS ~solid
lines! andJWR ~dashed lines!. Far from the unary limit these
are generally equivalent toJS and JR, respectively, but an
important exception is discussed below. The agreement be-
tween the numerical results and either theory is excellent for
all systems in which the equilibrium vapor pressures of the
pure liquids are not too dissimilar. The results illustrated in
Figs. 1~a!, 1~c!, 1~d!, and 1~e! cover ideal and both types of
nonideal mixture behavior over a wide range of impingement
rate ratios, yet differences between the values ofJWS and
JWR do not exceed 50%. When they do differ, it is often hard
to distinguish between them on the scale of these figures, but
JWR lies belowJWS. The numerical rates and the theoretical
predictions usingJWS are usually within 20% of each other.
In the ethanol–hexanol calculations@Fig. 1~b!# the two theo-
ries agree at low ethanol activities, but at higher ethanol
activities we can begin to distinguish between the Reiss and
Stauffer formulations. The Reiss formulation can be low by
up to an order of magnitude for the range of conditions we
examined. It is worth noting that because of the great dispar-

ity in the equilibrium vapor pressures of ethanol and hex-
anol, all of the binary rate curves in this figure are calculated
for ethanol rich conditions. Even foraE50.5 andaH514, the
ethanol vapor concentration is about eight times that of hex-
anol ~NE/NH58!, and the ethanol impingement rate is about
twelve times that of hexanol~x512!. Figure 1~f! also shows
conditions for whichJWS differs significantly fromJWR for
the model nonideal system based on ethanol and hexanol.
The figure also contains a region where both approaches dif-
fer noticeably from the numerical results. This will be dis-
cussed extensively in Sec. III B.

It is important to note that the impingement rate ratiox
is not the principal determining factor for the differences
betweenJWR andJWS. In both of the ideal systems we con-
sidered,x varies over many orders of magnitude, yet the
o-xylene–m-xylene system never displays any significant
differences between the predictions of the Reiss and Stauffer
theories while the ethanol–hexanol system does. To be more
precise, for the o-xylene–m-xylene system the Reiss and
Stauffer angles never differ by more than 10° and the
Stauffer rate is never more than 10% larger than the Reiss
value. The differences in angle and rate in the ethanol–
hexanol system can be much larger as the ethanol activity
increases. To illustrate whyJWR and JWS can differ in the
ethanol–hexanol system, Figs. 2~a! through 2~c! show how
the steady state nucleation fluxes behave as conditions are
changed from low to high ethanol activities. In these figures,
the fluxes are superimposed on a contour plot of the free
energy surface calculated using Eq.~6!.34 The ethanol-to-
hexanol impingement rate ratios~x! for Figs. 2~a!, 2~b!, and
2~c! are 12, 56, and 141, respectively. In all cases the largest
fluxes pass through the saddle region. For low ethanol activi-
ties, as in Fig. 2~a!, there is a large free energy barrier for
growth in the ethanol direction. Thus, the major flux contin-
ues down the path of steepest descent, consistent with the
assumptions in the Reiss formulation despite the relatively
high value ofx. In Fig. 2~b!, with x556 and the saddle point
far removed from either axis, the difference between the di-
rection of steepest descent and the principal growth direction
is important, and the flux begins to deviate from the path of
steepest descent. Finally, in Fig. 2~c!, with x5141, the saddle
point remains sufficiently far from the ethanol axis so that
the difference between the growth and steepest descent di-
rections can still be large.

The differences between the two ideal systems are due to
the intrinsic properties of the free energy surface on which
nucleation is occurring. In particular, the location of the
saddle point plays an important role. In the o-xylene–m-
xylene system, the equilibrium vapor pressures of the pure
components are nearly equal, and either a very large or very
small value ofx forces the saddle point to lie very close to
one of the pure component axes. Near an axis no significant
difference between steepest descent and growth directions is
possible. In the ethanol–hexanol system, the great difference
in the equilibrium vapor pressures means that it is possible to
have large values of the ethanol-to-hexanol impingement rate
ratio while the component activities remain roughly compa-
rable. This places the saddle point at a reasonable distance
from either pure component axis and provides enough
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FIG. 1. Numerical nucleation rates~filled squares! are compared to the analytical predictions ofJWS ~solid lines! andJWR ~dashed lines!. Both analytical
predictions are always plotted but the results are often indistinguishable.~a! o-xylene–m-xylene;~b! ethanol–hexanol;~c! dichloromethane–tetrahydrofuran;
~d! chloroform–tetrahydrofuran;~e! the model positively deviating system based on o-xylene~A!–m-xylene~B!; ~f! the model positively deviating system
based on ethanol~A!–hexanol~B!. Ridge crossing is observed foraA52.25,aB.13. The analytical results foraA52.0 are included to indicate another region
~aB>9.6! where ridge crossing behavior is expected.
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‘‘room’’ in composition space for differences in the growth
and steepest descent direction to arise. Returning to Fig. 1~b!
and Fig. 2~c!, we see that increasing the ethanol-to-hexanol
impingement rate ratio by reducingaH at constantaE, leads
to a convergence of the two rate predictions because the
saddle point moves ever closer to the ethanol axis leaving
essentially only one direction through the saddle. The dispar-
ity in equilibrium vapor pressures also introduces an asym-
metry into this binary system in the following sense. In a
truly hexanol rich state~x,1! there would be no difference
between the Stauffer and Reiss rate predictions because the
saddle point would be too close to the hexanol axis to permit
it. We conclude that the size of thex factor is insufficient to
predict whether or not the path of steepest descent is suffi-
ciently different from the growth direction to distinguish be-
tween the Reiss and Stauffer theories. The location of the
saddle point on the free energy surface plays an important
role as well, and this is strongly affected by the relative sizes
of the equilibrium vapor pressures and molecular volumes of
the two pure components, as well as by the degree of non-
ideality of the mixture.

Another interesting result is shown in Fig. 1~e! for the
positively deviating binary system based on o-xylene–m-
xylene at its bulk UCST. The nucleation rate curve at con-
stantaA57 shows a distinct kink in the region where the
vapor phase concentrations are similar. This kink occurs
when a slight increase in the activity of componentB causes
the saddle point to abruptly move from the vicinity of the
componentA axis much closer to the componentB axis.
Despite this, the analytical nucleation rate predicted byJWS
is still in very good agreement with the numerical results.
Figures 3~a! and 3~b! show the steady state fluxes across the
free energy contour plot in the vicinity of this kink. Cer-
tainly, for the conditionsaA57 andaB56.3 the saddle region
is extremely broad, and a very large number fluxes contribute
to the overall steady state nucleation rate. A somewhat more
well-defined path is emerging in Fig. 3~b! as aB has in-
creased by about 10%. Note the large shift in saddle point
locations for these two figures.

The nucleation rate behavior in this unusual region is
shown in more detail in Fig. 4. AsaB is varied, the saddle
point composition passes very close to its value at the micro-

FIG. 2. Steady state nucleation fluxes superimposed on a contour plot of the
free energy surface for the ethanol–hexanol system at the indicated vapor
activities. The analytical saddle pointd is located at the junction of the
intersecting contours. The solid contour lines denote free energies above the
saddle point value, and the dashed contours denote free energies below the
saddle point. The heavy contour lines are spaced at 5kT intervals and the
light contours are spaced at 1kT intervals relative to the saddle point free
energy. The colored flux vectors are scaled by the largest flux. Relative
magnitudes are indicated by the descending powers of ten next to the color
bar.~a! W/(kT)544.7 at the analytical saddle point. The fluxes in the saddle
region follow the path of steepest descent.~b! W/(kT)542.4 at the analyti-
cal saddle point. The fluxes in the saddle region are beginning to deviate
from the path of steepest descent.~c! W/(kT)527.2 at the analytical saddle
point. The fluxes in the saddle region deviate significantly from the path of
steepest descent.
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scopic UCST. This causes the free energy surface to flatten
and broaden and considerably reduces both the true curva-
tureq of the free energy surface and the effective curvature
parameterw in Stauffer’s theory. Recall that the second and
third derivatives of the free energy of mixing are zero at the
bulk UCST composition. As a result, the predictions of both
the Stauffer and Reiss theories become unreasonably large in
this region as shown in Fig. 4 forJS. The figure also shows
that JWS remains fairly well-behaved and in reasonable
agreement with the numerical results, since it is designed to
handle this kind of singular behavior as explained in Appen-
dix A. Although a quadratic expansion of the free energy is
insufficient whenq andw equal zero, the parabolic saddle
point approximation is adequately rescued by the rate pre-

scription leading toJWS. Improved accuracy would probably
result from a quartic expansion of the free energy, but this
would further complicate the evaluation of the nucleation
rate.

Except for some isolated cases that are easy to under-
stand, our numerical results lie within 10%–20% of the pre-
dictions of Stauffer’s theory when the major nucleation flux
passes through the saddle. We also find very good agreement
with Reiss’ theory everywhere it would be expected. In this
respect we affirm the conclusion of Greeret al.,8 but we
conflict sharply with the results of Kozˇı́šek and Demo,4

which showed no agreement with either the Reiss or Stauffer
theories. On the basis of their results, Kozˇı́šek and Demo
argued that the saddle point approximation was inaccurate
and that a more comprehensive rate expression was required.
While we concur with their aspirations for an improved theo-
retical rate expression, we feel that their pessimistic conclu-
sion about the saddle point approximation is based on an
unfair comparison. In WWI we showed that uncritical use of
the detailed balance expressions and the Reiss distribution
for binary cluster compositions could lead to a kinetically
and thermodynamically inconsistent set of evaporation rate
coefficients. Numerical solution of the birth–death equations
with these coefficients leads to rates that differ substantially
from those predicted by Reiss’ or Stauffer’s analytical theo-
ries. We think this is the cause of the discrepancy found by
Kožı́šek and Demo. When properly constructed sets of
evaporation rate coefficients are used, numerical results can
be fully consistent with the appropriate analytical theory as
demonstrated by our results, those of Greeret al.,8 McGraw,9

and those of Kozˇı́šek and Demo4 for the Kelvin model of
Temkin and Shevelev.5

B. Binary nucleation via ridge crossing

Figure 1~f! shows the nucleation rate calculations for the
PD2 system, based on ethanol–hexanol, at its bulk UCST.

FIG. 3. Steady state nucleation fluxes superimposed on a contour plot of the
free energy surface for the positively deviating system PD1 based on
o-xylene~A!–m-xylene~B! at the indicated vapor activities. The saddle point
location,d, free energy contours, and flux scaling are handled as in Fig. 2.
To enhance color contrast, flux vectors near the component axes are not
plotted.~a! W/(kT)561.5 at the analytical saddle point. The saddle region is
very broad and flat, and the flux is evenly distributed across much of the free
energy surface.~b! W/(kT)557.5 at the analytical saddle point. The saddle
region is still broad, but a preferred path is emerging.

FIG. 4. Steady state nucleation rates for the positively deviating system PD1
based on o-xylene~A!–m-xylene~B! near a microscopic UCST. Numerical
results ~filled squares! are compared to the analytical predictions ofJWS

~solid line! andJS ~dashed line!.
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AlthoughJWS generally agrees well with the numerical rates,
there is a region where all of the saddle point theories under-
predict the numerical results. These theories fail because the
major flux no longer passes through the saddle, as in Fig.
5~a!, but instead bends in the direction of theA axis and
climbs over a rather low ridge, as in Fig. 5~b!. The higher
impingement rate of theA component~pseudo-ethanol! pro-
vides a kinetic boost, allowing the slightly higher free energy

barrier to be overcome. Despite this qualitative change in the
rate behavior, the difference between the analytical saddle
point rate and the exact numerical value is still less than a
factor of 10. Until recently,35 it would have been impossible
to measure nucleation rates to better than a factor of 10.
Formal expressions for ridge crossing rates have been
derived,28–30but no quantitative tests of their accuracy have
been performed yet. We will defer making these quantitative
comparisons until we have enough simulations of different
systems to make a comprehensive assessment.

In Refs. 28–30 the occurrence of ridge crossing is as-
cribed to coupling between the shape of the free energy sur-
face and a large disparity in the impingement rates~x@1 or
x!1!. None explicitly mention a factor that we have found
to be important, namely, the ‘‘dynamic’’ behavior of the free
energy surface in producing a situation favoring ridge cross-
ing over saddle point nucleation asx is varied. These papers
leave us with the picture of a free energy surface that is fairly
insensitive to changes inx while only the behavior of the
nucleation flux is influenced considerably by the size ofx.
This is certainly the case in the example presented by Greer
et al.,8 wherex is varied by changing the mobility of the
condensed phase species without changing the free energy
surface at all. Even on Trinkaus’ free energy surfaces, which
pertain to the nucleation of gas bubbles in a solid matrix
supersaturated with dissolved gas and lattice vacancies, the
saddle point location does not appear to vary greatly with the
relative concentrations of gas atoms and vacancies. By con-
trast, it does change considerably with the vapor composition
for gas–liquid systems.

We first observed ridge crossing when we increased the
activity of the lower vapor pressure speciesB ~pseudo-
hexanol! while working at a fixed activity of the high vapor
pressure componentA ~pseudo-ethanol!. For our conditions
x is about 54, but we induced ridge crossing by reducingx,
rather than by increasing it. In our example, with the im-
pingement rate of componentA fixed, an increase in the
smaller impingement rate of componentB causes the saddle
point to shift from a location near theA component axis@Fig.
5~a!# to one much closer to theB component axis@Fig. 5~b!#.
This moves it out of the path of the main nucleation current,
which now flows over a gentle ridge with no significant
change in direction and only a small change in location from
the immediately preceding case. Thus, it is the dramatic shift
in the location of the saddle point that produces ridge cross-
ing for us. Further decreases inx cause the saddle point to
move even closer to theB axis, and eventually the main
nucleation flux also shifts back to the saddle region. If we
start the system in the latter condition and reverse the se-
quence of events by increasingx, the first significant event is
a switch of the main nucleation flux away from the saddle
into a ridge crossing situation, as in Fig. 5~b!. Further in-
creases inx, however, eventually cause the saddle point to
shift abruptly to the vicinity of theA axis returning the sys-
tem to a state of saddle point nucleation. This state persists as
the saddle moves ever closer to theA axis until unary nucle-
ation of componentA is the dominant or only process occur-
ring. This behavior illustrates a key point: The influence of
changing impingement rates on the behavior of the nucle-

FIG. 5. Steady state nucleation fluxes superimposed on a contour plot of the
free energy surface for the positively deviating system PD2 based on
ethanol~A!–hexanol~B! at the indicated vapor activities. The saddle point
location,d, contour line meanings, and flux scaling are handled as in Fig. 2.
The light contours are spaced at 0.5kT intervals relative to the saddle point.
The heavy contours start at62.5kT relative to the saddle and are then
spaced at 5kT intervals. To enhance color contrast, flux vectors near the
origin are not plotted.~a! W/(kT)547.7 at the analytical saddle point. The
saddle region is broad and flat. The major flux flows through the saddle
region in a direction distinctly different from the path of steepest descent,
and the rate given byJWS agrees well with the numerical result.~b! W/(kT)
545.5 at the analytical saddle point. The saddle point has shifted consider-
ably from its location in~a!. The major flux now bypasses the saddle and
climbs over a low ridge that extends from the saddle point toward the lower
right corner. The numerical rate is 4.4 times the value given byJWS.
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ation fluxes cannot be decoupled from the accompanying
changes in the free energy surface, at least for vapor–liquid
systems. At a given temperature, impingement rates are de-
termined by the partial pressures of the two condensing spe-
cies, but the same partial pressures are strongly involved in
determining the shape and height of the free energy surface
and the saddle point location.

The ridge crossing behavior that we observed has some
interesting differences from that found by McGraw in the
H2SO4–H2O system. There the water-to-acid impingement
rate ratiox was on the order of 1014. We are able to observe
ridge crossing for values ofx of only 50–100 rather than
1014 because the behavior of the free energy surface of the
positively deviating PD2 system is very different from that
of the negatively deviating acid–water system. Remember
that our system is at a UCST, just at the verge of the bulk
miscibility gap. Thus, the abrupt shift of the saddle point for
a small change inaB foreshadows the existence of two dis-
tinct saddle points corresponding to different critical nucleus
compositions once the system is inside the miscibility gap.36

In the acid–water system, the two components are always
fully miscible. Thus, for the conditions studied by McGraw,
the saddle point is always located near the water axis, and the
primary nucleation flux eventually moves to the region be-
tween the saddle point and the water axis whenx becomes
large enough. It is possible that further increases inx will
result in a transition to the unary nucleation of water in the
manner implied by Shi and Seinfeld, rather than drive the
system back to a state of saddle point nucleation, as in our
example.

C. Transition to unary nucleation

Next we consider the transition from binary to unary
nucleation. For all of the cases treated here, this transition
proceeds by what we regard as the ‘‘normal’’ or common
mechanism in which binary nucleation always occurs
through the saddle. As the vapor becomes increasingly richer
in one component, the saddle point approaches ever closer to
the composition axis of the majority species while the binary
nucleation rate steadily decreases and ultimately becomes
negligible compared to the unary rate of the majority species.
Temkin and Shevelev5 and Shi and Seinfeld29 have identified
other, less common mechanisms by which binary nucleation
transforms into unary nucleation.

Not illustrated in Figs. 1~a!–1~f! is the fact that bothJR
and JS fail to predict the transition from binary to unary
nucleation correctly. Figure 6 illustrates this clearly for the
transition to pure ethanol nucleation by comparing the nu-
merical results withJR, JS, andJWS. For hexanol activities
less than 0.01 the analytical binary rates drop below the
unary rate for the expressions that do not include the pre-
scription developed by Wilemski.13 Mirabel and Clavelin37

suggested that the proper way to treat the transition from
binary to unary nucleation was to calculate the binary rate
until the number of molecules of the second component in
the critical cluster drops below 1 and then to switch to the
unary nucleation rate. This is not a satisfying theoretical ap-
proach. In Fig. 6 the switch would occur foraH,0.09 and
would amount to an unnecessary error of up to a factor of 6.

Less error would be incurred by simply taking the maximum
or the sum of the unary and binary rates. Furthermore, an
analytically derived critical nucleus composition that has
slightly less than one molecule of the second species is a
signal that binary nucleation is still contributing to the over-
all flux. Including the prefactor given by Eqs.~11! or ~13!
does not add much of a computational burden to the already
complex binary nucleation rate calculation. Doing so enables
the analytical theory to agree with the exact numerical cal-
culations extremely well and to accommodate the singular
behavior found near a microscopic UCST.

In the transition to unary nucleation discussed by
Temkin and Shevelev,5 speciesA and B undergo binary
nucleation at gas phase activities high enough to also allow
unary nucleation of speciesA. The equilibrium vapor pres-
sure of speciesB is then artificially reduced at fixed tempera-
ture while maintaining constant gas phase activities for both
species. When the vapor pressure of speciesB is low enough,
binary nucleation is precluded by slow kinetics although the
saddle still exists at some distance from theA axis. Only
unary nucleation of speciesA can then occur. Although this
is an interesting mathematical procedure for forcing a tran-
sition to unary nucleation, perhaps by means of ridge cross-
ing, we find it difficult to see how this limiting process
would ever be implemented experimentally. The transition to
unary nucleation analyzed by Shi and Seinfeld29 does pro-
ceed through ridge crossing, but it does not involve the lim-
iting process of Temkin and Shevelev. The ridge crossing
behavior found by McGraw9 in the water–sulfuric acid sys-
tem may be an example of this type of transition, although
this needs further investigation.

IV. SUMMARY AND CONCLUSIONS

We solved the complete set of coupled differential equa-
tions describing transient binary nucleation kinetics in vapor-

FIG. 6. Numerical steady state nucleation rates~filled squares! for the
ethanol–hexanol system are compared to the analytical results given byJWS

~solid line!, JS ~upper dashed line!, and JR ~lower dashed line! for the
transition from binary to pure ethanol nucleation. WhenaH,0.09, the num-
ber of hexanol molecules in the analytical critical nucleus drops below 1.
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to-liquid phase transitions. We investigated binary systems
displaying both positive and negative deviations from ideal-
ity in the liquid phase and obtained numerical solutions over
a wide range of relative rates of monomer impingement. We
emphasized systems and conditions that either have been in-
vestigated experimentally or can be. For almost all of the
cases we examined, we found that the major particle flux
passes through the saddle point with an orientation angle that
depends on the rates of monomer impingement qualitatively
in accord with Stauffer’s7 considerations. For these cases, the
exact numerical steady state nucleation rates are within
10%–20% of those predicted by Stauffer’s analytical theory
based on the assumption of a saddle crossing. The predic-
tions of Reiss’6 theory also agree with the numerical results
over a wide range of relative monomer impingement rates as
long as the equilibrium vapor pressures of the pure liquids
are similar, but Stauffer’s theory is more generally valid. Our
conclusion regarding the validity of the saddle point approxi-
mation contrasts starkly with that of Kozˇı́šek and Demo.4

Since they studied a much simpler system than any of ours,
they should have found good agreement with both Reiss’ and
Staufer’s theories over a fairly wide range of impingement
rate ratios. We speculated that their failure to do so is most
likely a consequence of using a set of evaporation coeffi-
cients that is inconsistent with the Reiss equilibrium distri-
bution as discussed in WWI.19

In WWI we compared the experimental results of Strey
and Viisanen38 for ethanol–hexanol with analytical results
calculated usingJWS, Eqs.~13!, and our SCC binary distri-
bution, Eq.~5!. Although we observed an improvement in
the overall fit to the data, some discrepancies remained. The
excellent agreement between the numerical and analytical
rate predictions for ethanol–hexanol found in the current
work clearly demonstrates that this discrepancy is not due to
any approximations inherent in the formulation ofJS or JWS,
which are equivalent nearly everywhere for this mixture.
Thus, our previous calculations were, in effect, a direct com-
parison between experimental data and the full solution of
the binary kinetics equations.

In systems that display positive deviations from ideality,
the predictions of both the Stauffer and Reiss theories can
become unreasonably large if either the true curvatureq or
effective curvature parameterw approaches zero. We ob-
served this behavior in the PD1 system. The parabolic saddle
point approximation can be adequately rescued, however, by
the rate prescription outlined in Appendix A without involv-
ing higher order expansions of the free energy function.

We also found a limited range of conditions for which
the major flux bypassed the saddle point and nucleation oc-
curred by ridge crossing. Even in these cases, the analytical
saddle point rate was within a factor of 10 of the numerical
result. Greeret al.8 observed similar behavior for binary
nucleation in the condensed phase by progressively lowering
the mobility of one species. Another example of ridge cross-
ing nucleation was reported recently by McGraw9 for water–
sulfuric acid, a mixture that shows extremely negative devia-
tions from ideality. In this example the ridge crossing rate
exceeded the saddle point rate by three orders of magnitude,
but ridge crossing was found only under conditions of ex-

tremely low sulfuric acid vapor activity that are just barely
attainable experimentally. Our ridge crossing example is for
a positively deviating system under conditions of relatively
modest vapor activities. Although our system is hypothetical,
it is similar to many real systems. This suggests that the
systematic experimental study of ridge crossing nucleation is
possible under readily accessible conditions.

We also studied the transition from binary to unary
nucleation by progressively lowering the vapor concentration
of one component. We demonstrated the previously
known13,37 failure of both Reiss’ and Stauffer’s rate expres-
sions under these conditions. The proposed remedy of Mira-
bel and Clavelin37 was also found to be inadequate. We
found that the exact numerical rates were described best by a
modified version of the prescription previously proposed by
Wilemski.13

Our results illustrate the importance of a factor that has
not been properly appreciated in earlier work: the response
of the free energy surface to changes in the vapor partial
pressures and, therefore, in the impingement rates. The ki-
netic influence of the impingement rates on the nucleation
path has received considerable prior attention,5,7,8,28–30,33,37,39

as has the shape or anisotropy of the free energy surface,28–30

but these factors are usually discussed as if they were inde-
pendent. While this may be appropriate for transitions in
condensed phase systems, for vapor-to-liquid transitions the
only practical way to make large changes in the impingement
rates is by varying the concentrations of the condensible spe-
cies. Since these concentrations, or partial pressures, directly
affect both the shape of the free energy surface and the
saddle point location, all three factors work together to de-
termine how nucleation occurs. A very large or small value
of x by itself is not sufficient to produce significant differ-
ences between the Staufer and Reiss rate expressions or to
induce ridge crossing. Since the location of the saddle point
can be very sensitive to changes inx, the thermodynamic
properties of the mixture must also allow the saddle point
composition to differ nontrivially from that of a pure critical
nucleus whenx!1 or x@1 before the main nucleation flux
can deviate markedly from either the saddle point or the path
of steepest descent. For many fluid systems, including non-
ideal ones, these conditions cannot be attained. Furthermore,
the abrupt shifting of the saddle point location for small
changes in the vapor composition can be instrumental in ini-
tiating or terminating ridge crossing nucleation in mixtures
with strong positive deviations from ideality. Finally, the
saddle point behavior also affects the transition from binary
to unary nucleation. While ridge crossing nucleation may
lead to unary nucleation,29 in most cases this transition oc-
curs as a result of the saddle point merging into a pure com-
ponent axis as eitherx→0 or x→`.
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APPENDIX A: MODIFIED BINARY RATE
PRESCRIPTION

In either Reiss’ or Stauffer’s theory, the nucleation rate is
ultimately defined as

J5E
2`

1`

I ~j!dj, ~A1!

where the fluxI through the saddle is approximately given
by

I ~j!5B*AP/~2pkT!N~ i * , j * !exp@2Qj2/~2kT!#.
~A2!

The rotated coordinatej measures distance from the saddle
point along an axis orthogonal to the principal flux direction.
The remaining quantities are defined as

B*5
GA~ i * , j * !GB~ i * , j * !NANB

GA~ i * , j * !NA sin
2c1GB~ i * , j * !NB cos

2c
, ~A3!

2P5WAA cos
2c12WAB cosc sin c1WBB sin

2c, ~A4!

where the anglec equals eitheru @Eq. ~10e!# or f @Eq.
~12d!#, andQ equals eitherq @Eq. ~10d!# or w @Eq. ~13b!#
depending on whether the Reiss or Stauffer rate expression is
being used. See the earlier definitions for explicit expres-
sions. TheWab are the second derivatives of the free energy
of cluster formation evaluated at the saddle point.

The original motivation13 for modifying this definition of
the nucleation rate in a binary system stemmed from the
recognition that the free energy surface behaved pathologi-
cally as the binary system underwent a ‘‘normal’’ transition
~cf. Sec. III C! to a unary system by elimination of one of the
condensible components from the vapor. In this case, the
thermodynamic ingredients of the free energy surface always
cause the curvature of the surface orthogonal to the principal
nucleation flux to diverge as one component disappears. Si-
multaneously, the saddle point approaches ever closer to the
size axis of the remaining component, and only a single
nucleation path remains viable, that of unary nucleation. In
mathematical termsQ→`, the Taylor series expansion of
the free energy is no longer justified, and the integral defin-
ing the rate vanishes becauseI (j) is nonzero only at a single
point. To overcome this deficiency, Wilemski redefined the
rate as

J5
n~D l !

2D l E2D l

D l

I ~j!dj, ~A5!

whereD l was the distance from the saddle point to the near-
est pure component axis andn was the number of fluxes
contributing to the total nucleation current in the interval
(2D l ,D l ). As the saddle point approaches a pure component
axis, we find thatD l→0, and the above expression acts as a
delta function to single out the unary rate. A more detailed
explanation is available in the original paper.

Our numerical results show that the original expression
gives reasonable agreement but is a bit too abrupt in chang-
ing from binary to unary nucleation, so we offer the follow-
ing obvious generalization to remedy this. This new prescrip-
tion allows for asymmetry in the range of integration to
either side of the saddle point. The modified rate definition
reads

J5
n2~D l2!

D l2
E

2D l2

0

I ~j!dj1
n1~D l1!

D l1
E
0

D l1
I ~j!dj,

~A6!

whereD l2 andD l1 , are the distances from the saddle point
to each pure component axis,

D l15
j *

cosc
, ~A7!

D l25
i *

sin c
, ~A8!

and n2 and n1 count the number of currents in each half-
range of integration,

n6~D l6!5max~1,D l6!. ~A9!

Equation~A6! can be rewritten as

J5J~c!S n1~D l1!

2D l1
erf @D l1@Q/~2kT!#1/2#

1
n2~D l2!

2D l2
erf @D l2@Q/~2kT!#1/2# D , ~A10!

where

J~c!5B*AP/QN~ i * , j * !. ~A11!

For rate computations, the error function is evaluated using a
simple rational approximation.40 Depending on howc andQ
are evaluated,J(c) is equal to either the usual Reiss6 or
Stauffer7 expression. Equation~A10! resembles a result pub-
lished recently by Wu,27 but his expression is lacking the
additional factors ofn (D l )/D l that are needed to obtain the
proper transition to unary nucleation. The additional factor
multiplying J(c) in Eq. ~A10! is almost always negligibly
different from unity in which case Eq.~A10! reduces to the
usual Reiss or Stauffer expressions. Only when one of the
error function arguments is small does the modification fac-
tor become important.

One possibility for this is whenQ→0, as mentioned by
Wu.27 In this case, providedi *.sinc and j *.cosc, the
limiting value of Eq.~A10! is

J5B*AP/~8pkT!N~ i * , j * !S i *

sin c
1

j *

cosc D . ~A12!

Physically, a very small value ofQ corresponds to a flatten-
ing of the free energy surface in the saddle region. The most
likely possibility for observing this type of behavior is for
conditions that put the binary system very close to a micro-
scopic UCST without actually giving rise to a second saddle
point.36 An example of this type was discussed in Sec. III A
for the positively deviating PD1 system based on o-xylene–
m-xylene. This type of behavior occurs only under very spe-
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cial circumstances. The much more common situation is
when one of theD l ’s is approaching zero as a component’s
vapor concentration is reduced. Under these conditions, a
transition to unary nucleation is expected.

To see how Eq.~A10! works for this case, we consider
the limit in which NB→0. In this limit we also find that
j *→0, c→0, D l1→0, D l2→`, Q→`, D l1Q

1/2→0,
n25D l2 , and n151. With these limiting values, we can
simplify Eq. ~A10! to read

J5B* S PQD 1/2N~ i * , j * !F S Q

2pkTD
1/2

1
1

2G . ~A13!

The two bracketed terms are the limits of the respective two
terms in Eq.~A10!. TheQ1/2 term, which was present in the
original version,13 gives rise to the exact unary nucleation
rate by cancelling the corresponding factor in the denomina-
tor of J~c!. The other term,12, is new, and it represents a
declining contribution of binary nucleation to the total rate,
making the transition to purely unary nucleation less abrupt.

APPENDIX B: PHYSICAL PROPERTY DATA

This appendix contains the physical property data for the
pure components and binary mixtures used in the exact nu-
merical calculations. For all cases, except ethanol–hexanol,
the surface tension,s ~dynes/cm!, and molecular volumes of
the mixtures were assumed to be linear functions of the mo-
lar concentration. The temperature used in the calculation is
denotedTs~K!, r is density~g/cm3!, P is pressure~Torr or Pa
as noted!, gE is the excess Gibb’s free energy of mixing
~J/mol!, andH(x) is the heat of mixing~J/mol!. The param-
eter xB is the mole fraction of the second species and
xA512xB.

1. Ideal systems

~i! o-xylene–m-xylene: The data are from Mirabel and
Katz41 and Katzet al.42 with a correction for a misprint in
the formula forro-xylene:

Ts5293.15 K,

Mo-xylene5Mm-xylene5106.16,

ro-xylene51.110120.6063~1023!T20.1389~1025!T2

10.393 76~1028!T310.434 23~10211!T4,

rm-xylene51.050620.102 51~1023!T

20.348 65~1025!T210.774 87~1028!T3

20.700 68~10211!T4,

log10~Po-xylene
` !56.998 9121474.679/~T259.464!,

P in Torr,

log10~Pm-xylene
` !57.009 0821462.27/~T258.055!,

P in Torr,

so-xylene532.5120.1101~T2273.15!,

sm-xylene531.2320.1104~T2273.15!.

~ii ! Ethanol–hexanol: The property data for this mixture
are all at 260 K and have been taken from Strey and
Viisanen:38

Ts5260 K,

Methanol546.07, Mhexanol5102.17,

rethanol50.8175,

rhexanol50.8454,

Pethanol
` 5598.36 Pa,

Phexanol
` 52.643 Pa,

s~xB!525.0217.310 88xB23.431 99xB
2 .

2. Nonideal systems

~i! Dichloromethane ~DCM!–tetrahydrofuran ~THF!:
The density fits are derived from data in theSolvent Safety
Handbook.43 The vapor pressure fits are fromLange’s Hand-
book of Chemistry.44 The surface tension fit for DCM is also
from Lange’s Handbook of Chemistry44 while the surface
tension behavior of THF is estimated, based on a reported
value of s526.5 at 298 K and an estimated slope of 0.1
dyne/~cm K!. The nonideality of the mixture was param-
etrized by Byeret al.45 The heat of mixing parametrization is
from theHandbook of Heats of Mixing:46

Ts5253.15 K,

MDCM584.93, MTHF572.10,

rDCM51.360821.8~1023!~T2273.15!,

rTHF50.910921.1~1023!~T2273.15!,

log10~PDCM
` !57.409221325.9/~T220.55!, P in Torr,

log10~PTHF
` !56.995 1521202.29/~T246.9!, P in Torr,

sDCM530.4120.1284~T2273.15!,

sTHF529.020.1~T2273.15!,

gE/~xAxB!5AxB1BxA2DxAxB ; A520.922 41,

B520.872 87, D50.222 32 atT5305.15 K,

H~xB!5xB~12xB!@25387.921040.6~12xB!

12240.2~12xB!2# at T5305.15 K.

~ii ! Chloroform~CHL!–tetrahydrofuran~THF!: The den-
sity fit is derived from data in theSolvent Safety Handbook.43

The vapor pressure and surface tension fits are fromLange’s
Handbook of Chemistry.44 The nonideality of the mixture
was parametrized by Byeret al.45 The heat of mixing param-
etrization is from theHandbook of Heats of Mixing:46

Ts5243.15 K,

MCHL5119.37,

1150 B. E. Wyslouzil and G. Wilemski: Binary nucleation kinetics. II

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



rCHL51.526 4321.8563~1023!~T2273.15!

20.5309~1026!~T2273.15!2

28.81~1029!~T2273.15!3,

log10~PCHL
` !56.49342929.44/~T277.12!, P in Torr,

sCHL529.9120.1295~T2273.15!,

gE/~xAxB!5AxB1BxA2DxAxB ; A521.393 52,

B521.580 92, D50.586 06 atT5305.15 K,

H~xB!5xB~12xB!@28019.2211 312.4~12xB!

19423.9~12xB!2# at T5294.05 K.

~iii ! o-xylene–m-xylene positive deviator~PD1!: The
physical properties of this system are identical to o-xylene–
m-xylene, but the free energy of mixing is adjusted to put the
mixture on the verge of partial miscibility:

Ts5293.15 K,

gE/~xAxB!5A52RTs .

~iv! Ethanol–hexanol positive deviator~PD2!: The
physical properties of this system are identical to ethanol–
hexanol, but the free energy of mixing is adjusted to put the
mixture on the verge of partial miscibility:

Ts5260 K,

gE/~xAxB!5A52RTs .
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