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Binary nucleation kinetics. Il. Numerical solution of the birth—death
equations
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Lawrence Livermore National Laboratory, Livermore, California 94551-9900; and Physical Sciences

Inc., Andover, Massachusetts 01810-1077

(Received 23 November 1994; accepted 22 February)1995

We numerically solve the complete set of coupled differential equations describing transient binary
nucleation kinetics for vapor-to-liquid phase transitions. We investigate binary systems displaying
both positive and negative deviations from ideality in the liquid phase and obtain numerical
solutions over a wide range of relative rates of monomer impingement. We emphasize systems and
conditions that either have been or can be investigated experimentally. In almost every case, we find
behavior consistent with Stauffer’s idea that the major particle flux passes through the saddle point
with an orientation angle that depends on the rates of monomer impingement. When this is true, the
exact numerical steady state nucleation rates are within 10%—-20% of the predictions of Stauffer’s
analytical theory. The predictions of Reiss’ saddle point theory also agree with the numerical results
over a wide range of relative monomer impingement rates as long as the equilibrium vapor pressures
of the two pure components are similar, but Stauffer’s theory is more generally valid. For systems
with strong positive deviations from ideality, we find that the saddle point approximation can
occasionally fail for vapor compositions that put the system on the verge of partial liquid phase
miscibility. When this situation occurs for comparable monomer impingement rates, we show that
the saddle point approximation can be rescued by evaluating an appropriately modified nucleation
rate expression. When the two impingement rates differ significantly, however, the major particle
flux may bypass the saddle point and cross a low ridge on the free energy surface. Even in these rare
cases, the analytical saddle point result underpredicts the numerical result by less than a factor of 10.
Finally, we study the transition from binary to unary nucleation by progressively lowering the vapor
concentration of one component. Both Reiss’ and Stauffer's rate expressions fail under these
conditions, but our modified rate prescription remains within 10%—-20% of the exact numerical
rate. © 1995 American Institute of Physics.

I. INTRODUCTION the times attainable by their computatiqrsl ms. Kozisek
and Demd investigated both vapor—liquid and liquid—solid
The direct numerical approach of solving the completephase transitions. However, for the vapor—liquid example
set of cluster birth and death equations is a useful way t¢hey only investigated the simple case of an extremely ide-
study nucleation. The results let us evaluate the robustness gfized mixture proposed by Temkin and Shev&lwith no
available steady state nucleation rate expressions as wWell asference to an actual physical system. They found that their

test the analytical approximations for time lags, or induction,; erjcal results did not agree with the analytical theories of

tlmesz and trgn5|ent partlcle formation rates. If analyt!cal EXgither Reis§ or Stauffer! but for another set of calculations
pressions fail, numerical results can help us determine wh

they did fi t with the Kelvi | of
and to what degree. Numerical methods are essential for in]: ey did find good agreement wi e Kelvin model o

. ; emkin and SheveleVGreeret al® found excellent agree-
cluding effects not amenable to analytical treatment such as . . o
. . O ment with the Reiss theory when the mobilities of the two
simultaneous cooling and nucleation in gladses heat

transfer between clusters and the background gas durin?Decles in the congjensed'phase were identical, but they ob-
nucleatior? In binary nucleation the transition between bi- erved that the major particle flux bypassed the saddle when
nary and unary nucleation can be observed, and numericg?e mobility of one of the species was decreased. In the latter

results may reveal effects overlooked or poorly described b{f@Se: the Reiss theory did not agree with the numerical re-
analytical treatments. sults. No other quantitative comparisons were made. Very

Recently, several investigators have studied binaryecently, McGraw applied matrix inversion techniques to
nucleation by numerically solving the kinetics equations de-solve the steady state binary kinetics equations. McGraw
scribing time dependent cluster formation. Nishioka ancdstudied the BSO,—H,O system and included the effects of
Fujita® chose the KS0,—H,O system, but they were not able gas phase hydrates. He found quantitative agreement with
to follow the evolution of the equations to the steady statéhe rate expression of Shugard, Heist, and Ri§SHR)
because the time lags in this system are much greater thaxcept at the extremely high water-to-acid impingement rate

ratio ~10'. Here the major flux bypassed the saddle, and the
Ipresent address: Worcester Polytechnic Institute. nucleation rate was enhanced by three orders of magnitude
Bpresent address: Lawrence Livermore National Laboratory. over the SHR value. Vehkarkiaet al!! have also recently
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1138 B. E. Wyslouzil and G. Wilemski: Binary nucleation kinetics. ||

reported using matrix methods to solve for the steady stattn these equationd;,(i,j) is the rate coefficient for adding a
rate. monomer of typev to a cluster containing molecules of

In this paper we investigate steady state binary nuclespeciesA andj molecules of specieB, E (i,j) is the rate
ation in the vapor phase by setting up and numerically solveoefficient for removing a monomer of speciefom a clus-
ing the coupled differential equations governing the timeter with compositior(i, ), andf(i,j,t) is the nonequilibrium
evolution of the cluster population. A discussion of our tran-cluster concentration. The monomer concentrations are de-
sient results is deferred to a later paffe®ne of our aims is  fined asN,=f(1,0t) and Ng=f(0,1t). The evaporation
to stringently test several analytical binary rate expressiongate coefficients depend on the composition of the cluster but
by studying nucleation over a much larger range of condishould be independent of the gas phase composition and
tions and for many more different types of systems than haveressure. In this paper we do not account for surface enrich-
previously been considered. Another goal is to develop anent of the cluster¥'~*® and we calculate the evaporation
deeper appreciation for the relative importance of the manyate coefficients based on the overall composition of the clus-
factors that affect the transient and steady state behavior oér rather than the thermodynamically corr@derior com-
the nucleation fluxes on the free energy surface. These fapositionof the cluster. For systems such as ours, where the
tors include the impingement rates, equilibrium vapor pressurface tensions differ by, at most, 5%—-15%, the overall and
sures, vapor phase activities, liquid molar volumes, and deinterior compositions will be almost identical.
gree of mixture nonideality. In Sec. Il we first present the = The change in the number density of clusters of compo-
kinetics equations and rate constants needed to solve thesiion (i,j) with time is given by
equations. We then discuss briefly how using a modified bi- df(ij.t)
nary equilibrium distribution function and properly symme- -
trized impingement rate expressions ensures that the kinetics dt
equations are fully self-consistent. After a brief description —Jg(ij 1), 3

of our computational approach, we summarize the analytical ) ) ) ) )
binary nucleation rate expressions that we will use for comEéxcept for the mixed dimer concentration. In this case, either

parison with our numerical results. In Sec. Il we present and’a(0,1) or Jg(1,0) must be omitted from the right-hand-side
discuss our results. We first concentrate on detailed preseff? @void doubling the mixed dimer flux because these two
tations of steady state behavior for several ideal and nonidefl'x €xpressions are redundant. With constant monomer con-
binary systems. Extensive comparisons with analytical recentrations, there aréina<jma—3) coupled differential
sults are made to establish the limits of validity of the fol- €uations, wherga,—1 andj yq,—1 are the maximum num-
lowing approximations and assumptions used in these the@ers of A andB _moleculgs can|dered per cluster. Our solu-
ries: the saddle point flux assumption, the steepest descelen Procedure is described in Sec. 11 D.

approximation of Reiss, and the direction of principal growth

approximation of Stauffer. In one of our cases, we present aB. The equilibrium distribution

gxplicit exa_mple of ridge crossing behavior in WhiCh the ma- The reverse rate coefficients required by the kinetics
lor npcleatlon currg_nt bypassgs the saddle point. Ngxt, W&cheme are derived by applying the principal of detailed bal-
con5|de_r the transition from b!nary to unary nu_clgatlon byan(:e to Egs(1) and (2) together with prescriptions for the
comparing numen(_:al results W'.th analiyt|.ce.1I predlctlons for aIF)rward rate coefficients and the equilibrium distribution.
series of cases with progrgsswely diminishing amqgnts %here are difficulties associated with developing well-posed
one vapor component. We rigorously test the capability of EN

dified : f ¢ iikrdesianed to hand quilibrium distributions even in the case of unary
moditied version of a rate prescriptiordesigned 10 handi€ ., ,¢jeation'” When the reversible workV(g) required to

this transition. We conclude the paper with a summary anqlOrm a cluster containingy molecules from the vapor is
brief discussion of the steady state results in Sec. IV. Appen-,

: i L o . given by the capillarity approximation, issues of mass action
dix A contains the Qenvauon of the mod|f|ed blnary.rate nd limiting consistency lead to a “self-consistent” form of
prescription. Appendix B contains the physical properties o

he b ) idered he equilibrium distributiort®
the binary mixtures we considered. As discussed in our previous pap&¥WI),'° deriving a

simple, self-consistent cluster distribution is more difficult in
the case of binary nucleation, although the need for such a

=Ja(i—1,j,t) = I, ), 1) +I(i,j—1,1)

II. BASIC EQUATIONS AND COMPUTATIONAL

PROCEDURES distribution was recognized 20 years add°In particular, a
o ) well-posed binary cluster distribution should be dimension-
A. Kinetics equations ally correct and of the same order of magnitude as other

If growth and decay of clusters proceeds 0n|y by theself-consistent classical distributions. It should satisfy the
addition or loss of monomers, the fluxes between adjacerfass action law for chemical equilibrium, reduce to the self-
cluster sizesJ, and Jg, are determined by the differences consistent classical expression for one component, and revert

between the forward and reverse rates for these processed0 the equivalent single component value for the case of a
degenerate isomeric mixturg.e., when the properties of

Ja(,J, =LAl ONAf (0], —EA>+ 1) +1,] ’t)’l A=properties ofB). Finally, evaporation rates derived from
(1) this binary distribution by detailed balancing should not de-
Jg(i,j,t)=Tg(i,j)Ngf(i,j,t)—Eg(i,j + 1) f(i,j +1,t). pend on the monomer concentrations. The binary equilibrium

(2 distribution developed by Reiss,
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o —W(i,j) mation. The solution is to use the simple expression for the
N(i,j)=(Na+ NB)GXF< T) (4)  collision frequency between two particles of unequal mass
available from the kinetic theory of gases. This expression

does not meet several of these conditions, and, in fact, NRas been used in nucleation theory before when treating sul-

previously published binary distribution satisfies all of thesefyric acid hydrate$®?* The corresponding forward rate co-
conditions. Even the solution recently suggested by Kulmalagfficient then reads

Laaksonen, and Gershickfails the mass action test. In

WWI we proposetf the following self-consistent expression I (00) = ald,+d(i )] [KTLm,+m(i,j)] ®
for the equilibrium binary cluster concentrations v v ' 2m7m, m(i,j) ’
N(i,j)=(N3)*A(Ng)*® wherem(i,j) is the molecular mass of the cluster. We will
Wi ) use this expression for all cluster sizes, although it reduces
—W(i, . : )
><exp(xA®A+xB®B)exr< = J ) (5) :ionér}e conventional expression for large enough valueis of

As discussed in WWI, the combination of our binary
SCC equilibrium distribution and the symmetric impinge-
ment formula results in a unique value for every evaporation
coefficient. The evaporation rate coefficients we used in the
| humerical calculations are obtained by combining E&).
with Egs.(50) and (51) of WwI.°

whereN; are the monomer number densities in equilibrium
with pure liquids of type v, Xa=1—Xxg=i/(i+]),

0 ,=s,0,/(kT), s, is the surface area of a monomer of type
v, o, is the surface tension of pure liquid of typek is the
Boltzmann constant, and is the temperature. For an idea
gas, the capillarity approximation fai(i,j) gives

W(i,j)=—1ikT In( +Q%i,j), D. Computational methodology

NA . Ng

Nf\(i,n) T '”( NZ(i))
(6) The set of (i X max—3) Kinetics equations given by

whereNZ(i,j) is the equilibrium number density of mono- Eqg. (3) are solved subject to the following boundary condi-
mers of species in a saturated vapor over a bulk solution of tions. First, the monomer concentrations of the two species,
compositionx, and Q%(i,j)=os(i,j), where the surface Na and Ng, are held constant. Second, the values of
area of the clustes(i,j) ando are also functions of compo- f(imax J.t) andf(i,jmaxt) are projected based on the values
sition. Although a binary cluster distribution based on either@t f(imax=1,j,t=1), f(ima—2,j,t=1) and f(i,jmax—1,
density functional calculatioh® or Monte Carlo t=1), f(i,jmax—21t—1), respectively. The former boundary
simulation&® would be more satisfying, fundamental results condition is not too restrictive for the initial monomer con-
of this type are not available for now. Our prescription en-centrations, nucleation rates, and length of integration re-
ables us to carry out an internally consistent and numericall uired before the steady state nucleation rate is reached. The
correct analysis whose results we can compare quantitative gtter boundary condition is slightly different from the
with those from both binary and unary analytical nucleationSzilard condition, f (i max, j,t)=f (i, max.t) =0, but its only
rate expressions. We will refer to the distribution in g5 effect is to help stabilize the numerical scheme by making
as the self-consistent classi¢8ICO binary distribution. As  the transition at the outer boundary less abrupt, in effect
in unary SCC theory, the effect of our binary SCC correctionmimicking a larger grid. The initial concentrations of clusters
terms is to increase the concentrations of the clusters, usua?Pntai”ing more than one molecule are zero, 1@.j,0)=0

by several orders of magnitude over the values given by Eqor i +i=1. _ _ _
(4). We use an integration subroutine based on the Bulirsch—

Stoer method to solve the kinetics equatiéhhis algo-
rithm calculates the result at the end of a user-specified time
step, At, by breaking the interval into finer and finer sub-

Reiss’ kinetic schenfeprovides a broadly acceptable intervals and extrapolating the integrated results to zero step-
conceptual basis for treating binary kinetics, but there argjze The program keeps track of the local truncation error
some symmetry problems that must be corrected if ongngd adjusts the internal step size to keep errors below the
wishes to find robushumerical solutions for the transient Jesired accuracy. We use a double precision version of the
and steady state kinetics. This symmetry is important folsyproutine withe=10"2°. The total integration time, which
getting the correct collision frequencies for small clustersranges from £100 us, is divided logarithmically into 20
and for avoiding spurious mass flows. The collision rate betime steps. The nucleation rate, as defined below, is printed
tween anA and aB monomer obviously equals the collision gyt after each time step. Other intermediate quantities, such
rate betweerB and A, but the standard expression for the a5 the cluster concentrations and the valued,adindJg for

C. Impingement and evaporation coefficients

forward rate coefficient, each cluster composition, are stored after every second time
KT step. We varied the number of time steps by factors of 2 to
I',=md(i,j)? \/m, (7) demonstrate that this did not affect the final nucleation rates.

™ 14

The grid size and shape are chosen to provide the best
where d(i,j) is the diameter of the cluster and, is the balance between the number of equations that must be solved
molecular mass of the impinging species, results in two difto obtain an accurate steady state solution and the time re-
ferent expressions for the forward rate of mixed dimer for-quired to obtain the solution. We use the location of the

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



1140 B. E. Wyslouzil and G. Wilemski: Binary nucleation kinetics. ||

analytical saddle point as a guide to our initial choice of theStauffer and not the original formulas involving the specific
grid size. However, two-dimensional plots of the steady statéinary distribution given by Eq4). All of our quantitative
fluxes superimposed on the free energy surface, such as thossults are based on our new binary SCC distribution given
presented later, are a very sensitive way to spot any gridy Eq.(5). This is important to note because, as illustrated in
related problems. If the grid is too small, unphysical flux WWI, there are substantial quantitative differences between
behavior, such as flow back into the grid from outside of thethe rates calculated with these two distributions. Because we
computational domain, is apparent. We also spot-checked rérave also modified the usual forms of the monomer impinge-
sults by increasing the grid size and recalculating the solument rates as well as the equilibrium number distribution,
tion. Although the Bulirsch—Stoer method is not the mostsome additional changes are required in the analytical rate
appropriate nor the most efficient for stiff ordinary differen- expressions before quantitative comparisons between the nu-
tial equations, it proved to be quite robust because of our usmerical solutions and analytical expressions are valid.
of double precision and the very small valueeof Both the Reiss and Stauffer rate expressions assume that
To avoid any ambiguity inherent in a commercial vectorthe main nucleation current passes through the saddle point.
plotting subroutine, we wrote our own program to generateAll of the quantities appearing in the subsequent formulas
the plots of the fluxes on the free energy surfaces. Eackhould be understood to be evaluated at the saddle point
arrow in a flux plot represents the vector sum of the locallycomposition. For emphasis, some of these will also be de-
averagedl, andJg. The local averages were calculated as noted with a superscrigt. We also denote the three second

1 i1 derivatives ofW(i,j) at the saddle point &&/,,, Wxg, and
== > 2 (2= i =1DJIa(k,1) (99) W;gg. The Reiss theory assumes that the major flux follows
8kIT1 151 the path of steepest descent across the free energy surface,
and and the nucleation rate expression is given by
B EE Jr=D*(p/q)Y?N(i*,j*), (10a
JB(i,j)=§k;_1|:jE_l(2—|i—k|)JB(k,|), 9D \here
fori=1,3,5,... ang=1,3,5,... . For thespecial casé= . CaG*,j*)g(i*,j*)NaNg (100

=1, these formulas need to be modified since there are then L a(i*,j*)Np sirf0+g(i*,j*)Ng cos 6’

only five independent fluxes to average over. ) )
—p=W,a COS 0+ 2W,g cOs 6 sin 6+ Wgg sirfd, (100

E. Numerical and analytical nucleation rates q=Wpn SinP0—2W,g €0S 6 sin 6+ Wpg COS 6, (100)

In a binary system, the most comprehensive way t _ _

evaluate the nucleation rate is by summing all of the fluxes, tan 6=(Waz=Wan) /Was
Ja andJg, that cross any arbitrary line joining theaxis to +[(Wgg— Wan) 2 Wag+ 412, (108
the B axis. This procedure was first explicitly employed by
Temkin and Shevelevalthough a similar idea was essential
in getting the correct transition from binary to unary nucle-
ation in the continuous treatment based on the saddle poi
assumptiort At steady state, this value for the rate must be v.(Al})
a constant, although the transient particle formation rate will ~ Jwr=Jr| —55 7 erf[Al [a/(2kT)]1?]
depend on the particular line chos&rior convenience we i
have chosen to follow Temkin and Sheveéland use lines v_(Al-)
containing equal numbers of molecules. For lines too close + 2A1
to the “origin” there can be some numerical difficulties as- ) )

Al_, andv. are defined in Eq9A7)—(A9) of

sociated with taking the difference of very large forward and/nereal ., Al n , , :
backward rates in Eq¢1) and(2) to derive the smaller val- Appendix A with ¢ = 6. This version of the prefactor is more

ues of the total fluxed, and Jg. This effect is, however, general than that presented previouSipway from either

strictly a numerical artifact associated with the finite number@XIS, its value usually approaches unity. Appendix A contains

of digits stored, even in double precision, and not a physicaft derivation of this prefactor.

one. It does not affect the fluxes farther out in the grid where 1 N€ €xpression due to Stauffer differs from that of Reiss
the forward and backward rates are much smaller. because it allows the direction of growth in the saddle region

The nucleation rate expressions we have chosen to conf® P& modified by the impingement ratesAandB mono-
pare our results with are due to RefsStauffer’ and Mers. The nucleation rate is
Wilemskil® Other expressions for the binary nucleation rate Js=Ry ZN(i*,j*), (1239
have been developed using different analytical approaches
by Trinkaus?® Shi and Seinfeld® Zitserman and Where
Berezhkovskif,’ and Wu?’ These either give equivalent re- T AG* i )Ta(i*,j* )NANg
sults to the Stauffer expression or are not in forms that are Ra\,zF (% 75 )N, S+ Ta(i* [*)Ng coZd
readily implemented for quantitative use. Strictly, we are A1) NA sl! ™ ]")Ne
only using the formal rate expressions derived by Reiss anend

The rate expression of Wilemski equals that of Reiss
multiplied by a prefactor that assures a smooth transition
&etween binary and unary nucleation. The result is

erf [Al_[qg/(2kT)]¥?] |, (12

(12b

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995
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Z=— (W COS P+ 2W,ag COS ¢ SiN ¢ R*=(1+1/g*3)2(1+ 1/g*)*2, (15b)

+Wpgg Sin2¢)/(W/§B—WAAWBB)l/2, (120 v is the molecular volumeg* is the number of monomers in

the critical nucleus, an®* accounts for the change due to

our definition of the impingement rates. Equati@td) or

tan p=s+ \s?+1/y, (12d) (12)' cannot' be used to calculate unary rates because they
vanish as eitheN, or Ng approaches zero.

where the anglep is calculated from

with the ratio of impingement rates defined as

LCai*,j*)NA
X= T % oyN- (128 . .
Ig(i*,j*)Ng F. Binary systems considered
and For our calculations we have considered two ideal sys-
tems, two systems that exhibit negative deviations from ide-
25=(Wagg/x —Wan)/ Wy (12f) y g

. _ _ ality, and two systems that exhibit positive deviations. The
Note thaty is the inverse of the parameterdefined by ideal systems were o-xylene—m-xylene and ethanol—
Stauffer. Finally, the combination of Stauffer’s rate expres-hexanol, = while the negative deviators  were

sion and Wilemski's prefactor gives dichloromethane—tetrahydrofuran and chloroform—
v (Al,) tet_rahydrofuran. More interesting neggtive deviators, such as
Iws=Js| a7 erf [Al . [w/(2kT)]Y?] acid—water systems were not investigated because we did

+ not wish to address the difficulties associated with surface

v_(Al) U enrichment in this paper. Choosing the positively deviating

+ 5 e [AL[w/(ZkT) 7] ), (138  systems was difficult because we wanted to work close to the

bulk miscibility limit, but not enter a regime where bulk

where phase separation occurs. For real systems, low temperature
WZ(WAAWBB_W,%\B)/(WAA code liquid phase _data are sparse, ar_1d_ extrapolations fro_m differ-
ent sets of high temperature activity and heat of mixing data

+2W, g COS ¢ sin ¢+ Wpg Sifg), (13b often give conflicting results. As a first step we therefore

chose to look at positively deviating pairs that had all the
properties of the highly ideal systems, o-xylene—m-xylene
and ethanol—hexanol, but had excess Gibbs free energies of
r%ixing given by the simple regular solution expression

and where Eqs(A7)—(A9) still apply but with ¢y = ¢.

To provide a direct comparison with our numerical re-
sults, the location of the saddle point must be evaluated usin
the thermodynamically inconsistetitelvin equationd® that
include the surface tension derivatives. Any numerical  gf=Axaxg. (16)
scher(;ufa, sulch as fours, Fhatbcalcglateshthe revTIrS|bIe wo_r!< "fe will refer to these systems as PD1 and PD2, respectively.
ter is, in effect, ignoring surface enrich?nent We note insentative of systems such as hydrocarbon—alcohol mixtures,
passir’wg that an)'/ numerical scheme that searches the free JH[ example, ethanol_—_hexene. Working with t_hese two quel

f d ibed by E¢6) for the saddle point also systems has fche additional _advan'_[ag_e that dlrec_t comparisons
€rgy surface descrit y B P between the ideal and partially miscible states is straightfor-
IgnO_Ir_(;Z Seuf;;agt:eo?:gr?miztr. modified distribution function ward, and a wide range of liquid phase nonideality can be
rather than the usual Eg(:|4) is to increase the nucleation raté mve_sngated by systematically varying the yalue_Anf By
by a factor of ' se.tfung the \(alue ofN(RT)=2, each system is at its upper

critical solution temperatur@JCST) and at the edge of the

(NZYR(NE)E exp(xiOa+XE0p) bulk miscibility gap; any increase ia/(RT) would produce

(NatNg) , (14 two bulk solupon phases_. _ _
ATTTB The physical properties of the binary mixtures and the
which is equivalent to th& ! exp(®) term in SCC theorl?  conditions of the simulations are summarized in Appendix B.
for unary systemsoften a factor of 1&to 10%). Our use of Binary nucleation has been studied experimentally for
Eq. (8) rather than Eq(7) to calculate the impingement rates o-xylene—m-xylene and ethanol—hexanol. For these systems
increases the kinetic prefactor of the Reiss and Stauffer forthe simulations were done at the experimental temperature.
mulas by a factor of 2—3. The direction of growth changesror the other systems, temperatures were chosen which gave
by less than 1% due to the difference in the impingement ratpure liquid vapor pressures on the order of 10 Torr. Activity
expressions. In the limit of unary nucleation, the rate is calbehavior at higher temperatures was extrapolated to the
culated using either Eq11) or (13) or the self-consistent simulation temperature by using heat of mixing data at the

expression given by closest available temperature. When data were not available
1/2 for surface tension or molar volume as functions of compo-
Jsoc= v(_> NiN;R* exp®[1—%(g*)??)), sition, we assumed the value was the mole fraction weighted
Tm

average of the pure component values. The vapor composi-
(153 tions used in the calculations are reported in terms of the gas
where phase activities, andag defined as

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



1142 B. E. Wyslouzil and G. Wilemski: Binary nucleation kinetics. ||

an=Na/Nx, (173 ity in the equilibrium vapor pressures of ethanol and hex-
anol, all of the binary rate curves in this figure are calculated
ag=Ng/Nj. (17b for ethanol rich conditions. Even f@z=0.5 anda,,=14, the

ethanol vapor concentration is about eight times that of hex-
anol (Ng/Ny=8), and the ethanol impingement rate is about
twelve times that of hexandy=12). Figure 1f) also shows

A. Binary nucleation through a saddle conditions for whichd,yg differs significantly fromJ,yg for

For unary nucleation we know that when the transienlIhe model nonideal system based on ethanol and hexanol.

birth and death equations are properly posed and solved, thér)Pe figure also contains a region where both approaches dif-

give the correct theoretical steady state resi®nus, in the fér noticeably _from _the numerical results. This will be dis-
limit of nucleation of a single component, our numerical CUSSed extensively in Sec. IllB. .
scheme must produce steady state results that agree closely !t IS important to note that the impingement rate rafio
with analytical theory. For binary nucleation the situation is'S N0t the principal determining factor for the differences
more complex because many paths can contribute to thBetweenwgr andJys. In both of the ideal systems we con-
overall nucleation rate. When these paths are channeledidered,x varies over many orders of magnitude, yet the
through a saddle region, we would anticipate that the nu®-Xylene—m-xylene system never displays any significant
merical steady state rate should agree reasonably well witifferences between the predictions of the Reiss and Stauffer
either the Stauffer or Reiss theories. Flow through a saddidheories while the ethanol-hexanol system does. To be more
however, is not the only possibility. Depending on the shap@recise, for the o-xylene—m-xylene system the Reiss and
of the free energy surface and the sizes of the impingemergtauffer angles never differ by more than 10° and the
rates, it is also possible that most of the current bypasses tifauffer rate is never more than 10% larger than the Reiss
saddle point. Several papef€27-3233have discussed and Value. The differences in angle and rate in the ethanol-
analyzed this situation, and under these conditions the saddftéxanol system can be much larger as the ethanol activity
point treatment is not adequate. For ideal gaseous and liquiicreases. To illustrate whir and Jys can differ in the
mixtures whose components have similar thermodynami€thanol-hexanol system, Figsgathrough Zc) show how
and transport properties, however, there is little reason t§1€ steady state nucleation fluxes behave as conditions are
expect disagreement between the numerical rates and t§@anged from low to high ethanol activities. In these figures,
predictions of an appropriate version of binary nucleationthe fluxes are superimposed on a contour plot of the free
theory using the saddle point treatment. Indeed, in modelingnergy surface calculated using E@).>* The ethanol-to-
crystal nucleation in binary glasses, Gregral® found ex- hexanol impingement rate ratigg) for Figs. 2a), 2(b), and
cellent agreement with the Reiss theory when the molecula#(C) are 12, 56, and 141, respectively. In all cases the largest
mobilities, i.e., impingement rates of the crystallizing spe-fluxes pass through the saddle region. For low ethanol activi-
cies, were identical and poor agreement when they were noties, as in Fig. &), there is a large free energy barrier for
An important issue to address, then, is over what range agrowth in the ethanol direction. Thus, the major flux contin-
impingement rates and to what extent of mixture nonidealityues down the path of steepest descent, consistent with the
will the saddle point treatment continue to provide reliableassumptions in the Reiss formulation despite the relatively
predictions of the nucleation rate for vapor—liquid systems. high value ofy. In Fig. 2b), with y=56 and the saddle point
Figures 1a) through 1f) compare the numerically de- far removed from either axis, the difference between the di-
rived nucleation rateffilled squaresfor the six systems in- rection of steepest descent and the principal growth direction
vestigated with the analytical results based Jyps (solid is important, and the flux begins to deviate from the path of
lines) andJyyk (dashed lines Far from the unary limit these steepest descent. Finally, in Fidcp, with y=141, the saddle
are generally equivalent tds and Jr, respectively, but an point remains sufficiently far from the ethanol axis so that
important exception is discussed below. The agreement béhe difference between the growth and steepest descent di-
tween the numerical results and either theory is excellent forections can still be large.
all systems in which the equilibrium vapor pressures of the  The differences between the two ideal systems are due to
pure liquids are not too dissimilar. The results illustrated inthe intrinsic properties of the free energy surface on which
Figs. 1a), 1(c), 1(d), and 1e) cover ideal and both types of nucleation is occurring. In particular, the location of the
nonideal mixture behavior over a wide range of impingemensaddle point plays an important role. In the o-xylene—m-
rate ratios, yet differences between the valuesl\pé and  xylene system, the equilibrium vapor pressures of the pure
Jwr do not exceed 50%. When they do differ, it is often hardcomponents are nearly equal, and either a very large or very
to distinguish between them on the scale of these figures, bgmall value ofy forces the saddle point to lie very close to
Jwr lies belowd,,s. The numerical rates and the theoretical one of the pure component axes. Near an axis no significant
predictions usingly,s are usually within 20% of each other. difference between steepest descent and growth directions is
In the ethanol-hexanol calculatioffsig. 1(b)] the two theo- possible. In the ethanol-hexanol system, the great difference
ries agree at low ethanol activities, but at higher ethanoln the equilibrium vapor pressures means that it is possible to
activities we can begin to distinguish between the Reiss antlave large values of the ethanol-to-hexanol impingement rate
Stauffer formulations. The Reiss formulation can be low byratio while the component activities remain roughly compa-
up to an order of magnitude for the range of conditions werable. This places the saddle point at a reasonable distance
examined. It is worth noting that because of the great dispafrom either pure component axis and provides enough

IIl. RESULTS AND DISCUSSION
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FIG. 1. Numerical nucleation ratdfilled squaresare compared to the analytical predictionsJgfs (solid lineg and J,k (dashed lines Both analytical
predictions are always plotted but the results are often indistinguisHable-xylene—m-xylene(b) ethanol—-hexanolc) dichloromethane—tetrahydrofuran;
(d) chloroform—tetrahydrofuran(e) the model positively deviating system based on o-xyl&pem-xylenéB); (f) the model positively deviating system
based on ethan@)—hexanalB). Ridge crossing is observed fag=2.25,a5>13. The analytical results fa,=2.0 are included to indicate another region
(ag=9.6) where ridge crossing behavior is expected.
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““““ _—-------4- : energy. The colored flux vectors are scaled by the largest flux. Relative
_ magnitudes are indicated by the descending powers of ten next to the color
-6 bar.(a) W/(kT)=44.7 at the analytical saddle point. The fluxes in the saddle
7 region follow the path of steepest descehj. W/(kT)=42.4 at the analyti-

cal saddle point. The fluxes in the saddle region are beginning to deviate
from the path of steepest descem). W/(kT)=27.2 at the analytical saddle
point. The fluxes in the saddle region deviate significantly from the path of
steepest descent.

hexanol molecules per cluster

ethanol molecules per cluster

“room” in composition space for differences in the growth Another interesting result is shown in Fig(el for the
and steepest descent direction to arise. Returning to Hiy. 1 positively deviating binary system based on o-xylene—m-
and Fig. Zc), we see that increasing the ethanol-to-hexanokylene at its bulk UCST. The nucleation rate curve at con-
impingement rate ratio by reduciray, at constantg, leads stanta,=7 shows a distinct kink in the region where the
to a convergence of the two rate predictions because theapor phase concentrations are similar. This kink occurs
saddle point moves ever closer to the ethanol axis leavingvhen a slight increase in the activity of componBmtauses
essentially only one direction through the saddle. The disparthe saddle point to abruptly move from the vicinity of the
ity in equilibrium vapor pressures also introduces an asymeomponentA axis much closer to the componeBt axis.
metry into this binary system in the following sense. In aDespite this, the analytical nucleation rate predictedfyy
truly hexanol rich statéxy<<1) there would be no difference is still in very good agreement with the numerical results.
between the Stauffer and Reiss rate predictions because tRégures 3a) and 3b) show the steady state fluxes across the
saddle point would be too close to the hexanol axis to permifree energy contour plot in the vicinity of this kink. Cer-
it. We conclude that the size of thefactor is insufficient to  tainly, for the conditions,=7 andag=6.3 the saddle region
predict whether or not the path of steepest descent is suffis extremely broad, and a very large number fluxes contribute
ciently different from the growth direction to distinguish be- to the overall steady state nucleation rate. A somewhat more
tween the Reiss and Stauffer theories. The location of thevell-defined path is emerging in Fig.(t8 as ag has in-
saddle point on the free energy surface plays an importardreased by about 10%. Note the large shift in saddle point
role as well, and this is strongly affected by the relative sizedocations for these two figures.

of the equilibrium vapor pressures and molecular volumes of The nucleation rate behavior in this unusual region is
the two pure components, as well as by the degree of norshown in more detail in Fig. 4. Aag is varied, the saddle
ideality of the mixture. point composition passes very close to its value at the micro-
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FIG. 4. Steady state nucleation rates for the positively deviating system PD1
based on o-xylern®)—m-xylendB) near a microscopic UCST. Numerical
results (filled squarey are compared to the analytical predictions Jfs
(solid line) and Jg (dashed ling

scription leading tdys. Improved accuracy would probably
result from a quartic expansion of the free energy, but this
would further complicate the evaluation of the nucleation
rate.

Except for some isolated cases that are easy to under-
stand, our numerical results lie within 10%—-20% of the pre-
dictions of Stauffer’s theory when the major nucleation flux
passes through the saddle. We also find very good agreement
with Reiss’ theory everywhere it would be expected. In this
respect we affirm the conclusion of Greeral.® but we
conflict sharply with the results of Kk and Demd,
which showed no agreement with either the Reiss or Stauffer

component A molecules per cluster theories. On the basis of their results, Kak and Demo
FIG. 3. Steady state nucleation fluxes superimposed on a contour plot of th@rgued that the saddle point approximation was inaccurate
free energy surface for the positively deviating system PD1 based o@nd that a more comprehensive rate expression was required.
o-xylendA)-m-xylenéB) at the indicated vapor activities. The saddle point \\/hile we concur with their aspirations for an improved theo-

location, @, free energy contours, and flux scaling are handled as in Fig. Zr?tical rate expression, we feel that their pessimistic conclu-
To enhance color contrast, flux vectors near the component axes are no

plotted.(a) W/(kT) =61.5 at the analytical saddle point. The saddle region isS'On_abOUt th? saddle point approximation is pgsed on an
very broad and flat, and the flux is evenly distributed across much of the freteinfair comparison. In WWI we showed that uncritical use of

energy surfacelb) W/(kT)=57.5 at the analytical saddle point. The saddle the detailed balance expressions and the Reiss distribution
region is still broad, but a preferred path is emerging. for binary cluster compositions could lead to a kinetically
and thermodynamically inconsistent set of evaporation rate

scopic UCST. This causes the free energy surface to flattegpefficients. Numerical solution of the birth—death equations
and broaden and considerably reduces both the true curvMdth these coefficients leads to rates that differ substantially
ture q of the free energy surface and the effective curvaturdrom those predicted by Reiss’ or Stauffer’s analytical theo-
parametew in Stauffer’s theory. Recall that the second and'ies. We think this is the cause of the discrepancy found by
third derivatives of the free energy of mixing are zero at theKozisek and Demo. When properly constructed sets of
bulk UCST composition. As a result, the predictions of both€vaporation rate coefficients are used, numerical results can

the Stauffer and Reiss theories become unreasonably large ¢ fully consistent with the appropriate anal;gtical theogy as
this region as shown in Fig. 4 faks. The figure also shows demonstrated by our results, those of Greteal,” McGraw,

that Jy,s remains fairly well-behaved and in reasonable@nd those of KoEek and Dembd for the Kelvin model of
agreement with the numerical results, since it is designed tdemkin and Shevelev.

handle this kind of singular behavior as explained in Appen-B Bi leati i rid .
dix A. Although a quadratic expansion of the free energy is— inary nucieation via ridge crossing

insufficient whenq andw equal zero, the parabolic saddle Figure Xf) shows the nucleation rate calculations for the
point approximation is adequately rescued by the rate prePD2 system, based on ethanol-hexanol, at its bulk UCST.

component B molecules per cluster
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positive deviator 2, a, =2.25 ag =13 barrier to be overcome. Despite this qualitative change in the
LN T T TR T T rate behavior, the difference between the analytical saddle
point rate and the exact numerical value is still less than a
factor of 10. Until recently? it would have been impossible

to measure nucleation rates to better than a factor of 10.
Formal expressions for ridge crossing rates have been
derived?®~*°but no quantitative tests of their accuracy have

been performed yet. We will defer making these quantitative
comparisons until we have enough simulations of different
systems to make a comprehensive assessment.

In Refs. 28—30 the occurrence of ridge crossing is as-
cribed to coupling between the shape of the free energy sur-
face and a large disparity in the impingement rdpes1 or
x<1). None explicitly mention a factor that we have found
to be important, namely, the “dynamic” behavior of the free
energy surface in producing a situation favoring ridge cross-

BO

component B molecules per cluster

0 2 s a0 s e w0 & ing over saddle point nucleation gds varied. These papers
component A molecules per cluster leave us with the picture of a free energy surface that is fairly
o positive deviator 2, a, =225 a5 =14 insensitive to changes ig while only the behavior of the
)vaﬁﬁﬁfﬁmm nucleation flux is influenced considerably by the sizeyof
i i;;ﬁ%ﬁﬁ%ﬁﬂm This is certainly the case in the example presented by Greer
= fp ﬁﬁfvﬁﬁﬁﬁm %’)0 et al.® where  is varied by changing the mobility of the
e }gﬁjﬁm 1 condensed phase species without changing the free energy
" ;é,ﬁm*"‘:"w”m“” ) N, surface at all. Even on Trinkaus’ free energy surfaces, which

Aotz pertain to the nucleation of gas bubbles in a solid matrix

supersaturated with dissolved gas and lattice vacancies, the
saddle point location does not appear to vary greatly with the
relative concentrations of gas atoms and vacancies. By con-
trast, it does change considerably with the vapor composition
for gas—liquid systems.

We first observed ridge crossing when we increased the
activity of the lower vapor pressure speciBs (pseudo-
hexana) while working at a fixed activity of the high vapor
, ; : pressure componer® (pseudo-ethanl For our conditions
0 o= @ 40 50 6 7 80 x is about 54, but we induced ridge crossing by reduging

component A molecules per cluster rather than by increasing it. In our example, with the im-

FIG. 5. Steady stat eation fi _ g our blot fthpingement rate of componert fixed, an increase in the
.. eady state nucleation Tfluxes superimposed on a contour plot o . .
free energy surface for the positively deviating system PD2 based or§maller Impingement rate of componehtauses the saddle

ethanolA)—hexandlB) at the indicated vapor activities. The saddle point POINt to shift from a location near thcomponent axigFig.
location,®, contour line meanings, and flux scaling are handled as in Fig. 25(a) ] to one much closer to th® component axigFig. 5(b)].

The light contours are spaced atKT5intervals relative to the saddle point. This moves it out of the path of the main nucleation current
The heavy contours start at2.5kT relative to the saddle and are then ’

spaced at BT intervals. To enhance color contrast, flux vectors near theWhICh n_OW _ﬂOW_S over a gemle ”dge with _no S|g_n|f|cant
origin are not plotted(a) W/(kT)=47.7 at the analytical saddle point. The change in direction and only a small change in location from

saddle region is broad and flat. The major flux flows through the saddleghe immediately preceding case. Thus, it is the dramatic shift

region in a direction distinctly different from the path of steepest descent; : : : _
and the rate given b,y agrees well with the numerical resuth) W/(kT) in the location of the saddle point that produces ridge cross

=455 at the analytical saddle point. The saddle point has shifted considefd for us. Further decreases incause the saddle point to
ably from its location in(a). The major flux now bypasses the saddle and move even closer to th8 axis, and eventually the main

qlimbs over a low ridge t'hat exter_wds from the saddle poirjt toward the lowecleation flux also shifts back to the saddle region. If we
right corner. The numerical rate is 4.4 times the value gived\py. start the system in the latter condition and reverse the se-

qguence of events by increasiggthe first significant event is

a switch of the main nucleation flux away from the saddle
AlthoughJ,,s generally agrees well with the numerical rates,into a ridge crossing situation, as in Figbh Further in-
there is a region where all of the saddle point theories underreases iny, however, eventually cause the saddle point to
predict the numerical results. These theories fail because thahift abruptly to the vicinity of theéA axis returning the sys-
major flux no longer passes through the saddle, as in Figem to a state of saddle point nucleation. This state persists as
5(a), but instead bends in the direction of theaxis and the saddle moves ever closer to thaxis until unary nucle-
climbs over a rather low ridge, as in Fig(b®. The higher ation of componenA is the dominant or only process occur-
impingement rate of thé componeni{pseudo-ethanplpro-  ring. This behavior illustrates a key point: The influence of
vides a kinetic boost, allowing the slightly higher free energychanging impingement rates on the behavior of the nucle-

component B molecules per cluster
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ation fluxes cannot be decoupled from the accompanying ethanol/hexanol

changes in the free energy surface, at least for vapor-liquid 10° T T T 3
systems. At a given temperature, impingement rates are de- B
termined by the partial pressures of the two condensing spe- & =25 /
cies, but the same partial pressures are strongly involved in 10*
determining the shape and height of the free energy surface
and the saddle point location.

The ridge crossing behavior that we observed has some
interesting differences from that found by McGraw in the
H,SO,—H,O system. There the water-to-acid impingement
rate ratioy was on the order of 0. We are able to observe
ridge crossing for values of of only 50—100 rather than
10" because the behavior of the free energy surface of the
positively deviating PD2 system is very different from that
of the negatively deviating acid—water system. Remember 10
that our system is at a UCST, just at the verge of the bulk ' . . '
miscibility gap. Thus, the abrupt shift of the saddle point for 107 107 107 107 10°
a small change img foreshadows the existence of two dis- hexanol activity, ay
tinct saddle points corresponding to different critical nucleus ) ] ]
compositions once the system is inside the miscibility Fap. etII?é ngi_ﬁé’gﬁglcz'y Sstt;idgr esf;t; pgligf?g(tﬁer:ﬁzﬁgc;qriiﬁsfg“m;:by
In the acid—water system, the two components are alwaygolid line), Js (upper dashed line and Jx (lower dashed lingfor the
fully miscible. Thus, for the conditions studied by McGraw, transition from binary to pure ethanol nucleation. Wiagp<0.09, the num-
the saddle point is always located near the water axis, and tHer of hexanol molecules in the analytical critical nucleus drops below 1.
primary nucleation flux eventually moves to the region be-
tween the saddle point and the water axis whebecomes Less error would be incurred by simply taking the maximum
large enough. It is possible that further increaseg will  or the sum of the unary and binary rates. Furthermore, an
result in a transition to the unary nucleation of water in theanalytically derived critical nucleus composition that has
manner implied by Shi and Seinfeld, rather than drive theslightly less than one molecule of the second species is a
system back to a state of saddle point nucleation, as in oWignal that binary nucleation is still contributing to the over-

10%

108

Nucleation rate, cm ™3 g™!

example. all flux. Including the prefactor given by Eq§ll) or (13
N . does not add much of a computational burden to the already
C. Transition to unary nucleation complex binary nucleation rate calculation. Doing so enables

Next we consider the transition from binary to unary the gnalytical theory to agree with the exact numerigal cal-
nucleation. For all of the cases treated here, this transitioftlations extremely well and to accommodate the singular
proceeds by what we regard as the “normal” or commonPehavior found near a microscopic UCST.
mechanism in which binary nucleation always occurs_ [N the transition to unary nucleation discussed by
through the saddle. As the vapor becomes increasingly richefemkin and Shevele¥,speciesA and B undergo binary
in one component, the saddle point approaches ever closer fcleation at gas phase activities high enough to also allow
the composition axis of the majority species while the binary!Nary nucleation of species. The equilibrium vapor pres-
nucleation rate steadily decreases and ultimately becomé$!re of specieB is then artificially reduced at fixed tempera-
negligible compared to the unary rate of the majority speciestUre \_/vhlle maintaining constant gas phase: activities for both
Temkin and Sheveléand Shi and Seinfefd have identified ~ SPecies. When the vapor pressure of speBisslow enough,

other, less common mechanisms by which binary nucleatioRinary nucleation is precluded by slow kinetics although the
transforms into unary nucleation. saddle still exists at some distance from theaxis. Only

Not illustrated in Figs. (a)—1(f) is the fact that botidg _unary_nucleat_ion of specie@ can then occur. Altho_ugh this
and J fail to predict the transition from binary to unary 'S @n interesting math_ematlcal procedure for forc!ng a tran-
nucleation correctly. Figure 6 illustrates this clearly for theSition to unary nucleation, perhaps by means of ridge cross-
transition to pure ethanol nucleation by comparing the nuing, we find it difficult to see how this limiting process
merical results withlg, Js, andJyys. For hexanol activities would ever be_lmplemented exper_lmentally._ The transition to
less than 0.01 the analytical binary rates drop below thénary nucleation analyzed by Shi and Sem?.%ldoes pro-
unary rate for the expressions that do not include the prec€ed through ridge crossing, but it does not involve the lim-
scription developed by Wilemsk?. Mirabel and Claveli#  iting process of Temkin and Shevelev. The ridge crossing
suggested that the proper way to treat the transition fronp€havior found by McGrathin the water—sulfuric acid sys-
binary to unary nucleation was to calculate the binary ratd®m may be an example of this type of transition, although
until the number of molecules of the second component irfhis needs further investigation.
the critical cluster drops below 1 and then to switch to the
unary nucleation rate. This is not a satisfying theoretical aplv' SUMMARY AND CONCLUSIONS
proach. In Fig. 6 the switch would occur fas,<0.09 and We solved the complete set of coupled differential equa-
would amount to an unnecessary error of up to a factor of 6tions describing transient binary nucleation kinetics in vapor-
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to-liquid phase transitions. We investigated binary systemsremely low sulfuric acid vapor activity that are just barely
displaying both positive and negative deviations from ideal-attainable experimentally. Our ridge crossing example is for
ity in the liquid phase and obtained numerical solutions ovem positively deviating system under conditions of relatively
a wide range of relative rates of monomer impingement. Wanodest vapor activities. Although our system is hypothetical,
emphasized systems and conditions that either have been iit-is similar to many real systems. This suggests that the
vestigated experimentally or can be. For almost all of thesystematic experimental study of ridge crossing nucleation is
cases we examined, we found that the major particle flupossible under readily accessible conditions.
passes through the saddle point with an orientation angle that We also studied the transition from binary to unary
depends on the rates of monomer impingement qualitativelyucleation by progressively lowering the vapor concentration
in accord with Stauffer’sconsiderations. For these cases, theof one component. We demonstrated the previously
exact numerical steady state nucleation rates are withiknown'®*failure of both Reiss’ and Stauffer’s rate expres-
10%—20% of those predicted by Stauffer’s analytical theorysions under these conditions. The proposed remedy of Mira-
based on the assumption of a saddle crossing. The predibel and Clavelil’ was also found to be inadequate. We
tions of Reiss theory also agree with the numerical resultsfound that the exact numerical rates were described best by a
over a wide range of relative monomer impingement rates agodified version of the prescription previously proposed by
long as the equilibrium vapor pressures of the pure liquiddVilemski.*®
are similar, but Stauffer’s theory is more generally valid. Our ~ Our results illustrate the importance of a factor that has
conclusion regarding the validity of the saddle point approxi-not been properly appreciated in earlier work: the response
mation contrasts starkly with that of Keek and Demd. of the free energy surface to changes in the vapor partial
Since they studied a much simpler system than any of ourgressures and, therefore, in the impingement rates. The ki-
they should have found good agreement with both Reiss’ anfietic influence of the impingement rates on the nucleation
Staufer's theories over a fairly wide range of impingementPath has received considerable prior attentif?®—>%3337.39
rate ratios. We speculated that their failure to do so is mosgs has the shape or anisotropy of the free energy siitate,
likely a consequence of using a set of evaporation coeffibut these factors are usually discussed as if they were inde-
cients that is inconsistent with the Reiss equilibrium distri-Pendent. While this may be appropriate for transitions in
bution as discussed in WWA. condensed phase systems, for vapor-to-liquid transitions the
In WWI we compared the experimental results of Streyonly practical way to make large changes in the impingement
and Viisane®® for ethanol—hexanol with analytical results rates is by varying the concentrations of the condensible spe-
calculated usingys, Egs.(13), and our SCC binary distri- cies. Since these concentrations, or partial pressures, directly
bution, Eq.(5). Although we observed an improvement in affect both the shape of the free energy surface and the
the overall fit to the data, some discrepancies remained. ThHeaddle point location, all three factors work together to de-
excellent agreement between the numerical and analyticd#rmine how nucleation occurs. A very large or small value
rate predictions for ethanol—hexanol found in the currenf x by itself is not sufficient to produce significant differ-
work clearly demonstrates that this discrepancy is not due t§Nces between the Staufer and Reiss rate expressions or to
any approximations inherent in the formulationJafor Jys, induce ridge crossing. Since the qua‘uon of the saddle point
which are equivalent nearly everywhere for this mixture.C&n be very sensitive to changes yn the thermodynamic
Thus, our previous calculations were, in effect, a direct comProperties of the mixture must also allow the saddle point

parison between experimental data and the full solution ofomposition to differ nontrivially from that of a pure critical
the binary kinetics equations. nucleus wherny<1 or y>1 before the main nucleation flux

In systems that display positive deviations from ideality, &N deviate markedly from either the saddle point or the path

the predictions of both the Stauffer and Reiss theories cafi’ Steepest descent. For many fluid systems, including non-
become unreasonably large if either the true curvatuoe ideal ones, these conditions cannot be attained. Furthermore,
effective curvature parametar approaches zero. We ob- the abrupt shifting of the sa_d_dle point Ipcat|on for s_mgll_
served this behavior in the PD1 system. The parabolic saddfg'@nges in the vapor composition can be instrumental in ini-

point approximation can be adequately rescued, however, btyatlng or terminating ridge crossing nucleation in mixtures

the rate prescription outlined in Appendix A without involv- With stron_g positivg deviations from idealij[y. Finally, 'the
ing higher order expansions of the free energy function. saddle point behavior also affects the transition from binary

We also found a limited range of conditions for which to unary nucleation. While ridge crossing nucleation may

the major flux bypassed the saddle point and nucleation oJ?ad to unary nucleaticff, in mos_t cases .th's. transition oc-
curred by ridge crossing. Even in these cases, the analyticﬁflrS asa _result O.f the saddle point merging into a pure com-
saddle point rate \évas within a factor of 10 of the numericalPO"€Nt axis as eitheg—0 or y—ee.

result. Greeret al® observed similar behavior for binary

nucleation in the condensed phase by progressively Iowerin@‘CM\IOV\/LEDG'vIENTS
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under Grant No. DE-FG02-92ER14257. Part of this work  Our numerical results show that the original expression
was also performed under the auspices of the U. S. Departjives reasonable agreement but is a bit too abrupt in chang-
ment of Energy by the Lawrence Livermore National Labo-ing from binary to unary nucleation, so we offer the follow-
ratory under Contract No. W-7405-ENG-48. ing obvious generalization to remedy this. This new prescrip-
tion allows for asymmetry in the range of integration to

either side of the saddle point. The modified rate definition
APPENDIX A: MODIFIED BINARY RATE reads
PRESCRIPTION

v_(Al_) v (Aly) (Al
In either Reiss’ or Stauffer’s theory, the nucleation rate is J:TJ_M |(§)d§+TL 1(£)d¢,

ultimately defined as (A6)
J= f”l (£)dé, (A1) whereAl_ andAl ., are the distances from the saddle point
—o to each pure component axis,
where the fluxl through the saddle is approximately given i*
b Aly=——, (AT)
y Ccos ¢
1(&)=B*P/(2mkT)N(i*,j*)exd — Q&%/(2kT)]. i*
(A2) Al,zsin 5 (A8)

The rotated coordinaté measures distance from the saddle .
point along an axis orthogonal to the principal flux direction.@nd v— and »,. count the number of currents in each half-

The remaining quantities are defined as range of integration,
. Ta(i*,j*)Tg(i*,j* )NANg ve(Al)=max1,Al.). (A9)
B*= TA(i*,j*)Np sify+Tg(i*,j* )Ng cosy’ (A3) Equation(A6) can be rewritten as
—P=Wya COS i+ 2W,g COS i Sin ¢+ Wpgg Sirfy,  (Ad) 1=3(0) v+(AAII +) erf [AL [O/(2kT)]7]
where the angle) equals eitherd [Eq. (108] or ¢ [Eq. 2414
(12d], and Q equals eitheq [Eq. (10d)] or w [Eq. (13b)] v (Al)
depending on whether the Reiss or Stauffer rate expression is + DAl erf [Al_[Q/(2kT)]*?] ], (A10)

being used. See the earlier definitions for explicit expres-
sions. Thew,, are the second derivatives of the free energywhere
of cluster formation evaluated at the saddle point. i
The original motivatiofr’ for modifying this definition of J(y)=B*VPIQN(* j*). (ALD)
the nucleation rate in a binary system stemmed from thé or rate computations, the error function is evaluated using a
recognition that the free energy surface behaved pathologsimple rational approximatio??. Depending on hows andQ
cally as the binary system underwent a “normal” transition are evaluatedJ(¢) is equal to either the usual Reissr
(cf. Sec. Il O to a unary system by elimination of one of the Stauffef expression. EquatiofA10) resembles a result pub-
condensible components from the vapor. In this case, thiished recently by W@’ but his expression is lacking the
thermodynamic ingredients of the free energy surface alwayadditional factors ofy (Al)/Al that are needed to obtain the
cause the curvature of the surface orthogonal to the principadroper transition to unary nucleation. The additional factor
nucleation flux to diverge as one component disappears. Simultiplying J(¢) in Eq. (A10) is almost always negligibly
multaneously, the saddle point approaches ever closer to thiifferent from unity in which case EqA10) reduces to the
size axis of the remaining component, and only a singlaisual Reiss or Stauffer expressions. Only when one of the
nucleation path remains viable, that of unary nucleation. Irerror function arguments is small does the modification fac-
mathematical term§— oo, the Taylor series expansion of tor become important.
the free energy is no longer justified, and the integral defin-  One possibility for this is whe®—0, as mentioned by
ing the rate vanishes becaug) is nonzero only at a single Wu.?’ In this case, provided* >siny and j*>cosy, the
point. To overcome this deficiency, Wilemski redefined thelimiting value of Eq.(A10) is
rate as

v(Al) [al J=B* \/P/(SWkT)N(i*,j*)(

=2 7AI|(§)d§, (AS5)

i* j*
— +
sinyg cosy

) . (A12)

Physically, a very small value @& corresponds to a flatten-
whereAl was the distance from the saddle point to the nearing of the free energy surface in the saddle region. The most
est pure component axis andwas the number of fluxes likely possibility for observing this type of behavior is for
contributing to the total nucleation current in the interval conditions that put the binary system very close to a micro-
(—Al,Al). As the saddle point approaches a pure componergcopic UCST without actually giving rise to a second saddle
axis, we find that\| -0, and the above expression acts as goint>® An example of this type was discussed in Sec. Ill A
delta function to single out the unary rate. A more detailedfor the positively deviating PD1 system based on o-xylene—
explanation is available in the original paper. m-xylene. This type of behavior occurs only under very spe-
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cial circumstances. The much more common situation is (i) Ethanol-hexanol: The property data for this mixture
when one of thell’s is approaching zero as a component'sare all at 260 K and have been taken from Strey and
vapor concentration is reduced. Under these conditions, Siisanen®

transition to unary nucleation is expected.

To see how Eq(A10) works for this case, we consider
the limit in which Ng—0. In this limit we also find that
j*—0, ¢—0, Al,—0, Al_—o», Q—oo, A|+Q1/2—>0,
vl,zA.I,, and v, =1. With these limiting values, we can ,_ . —0.8175,
simplify Eg. (A10) to read

T=260 K,

Methano=46.07, Mpeyano=102.17,

1/2 Q 2 q Phexanor= 0-8454,
J=B*| =| N@(i*,j%)||ls—=| +3| A13 .
(Q) (=) 27rkT) 2} (AL3) Pathano— 598.36 Pa,

The two bracketed terms are the limits of the respective tqu
terms in Eq(A10). The Q2 term, which was present in the
original vers|or.11,3 gives rise to thg exact unary nucleatlc_m o(Xg)=25.02+7.310 8&g—3.431 99@'
rate by cancelling the corresponding factor in the denomina-
tor of J(¢). The other termj, is new, and it represents a
declining contribution of binary nucleation to the total rate,
making the transition to purely unary nucleation less abrupt. (i) Dichloromethane (DCM)—tetrahydrofuran (THF):
The density fits are derived from data in tBelvent Safety
Handbook*3 The vapor pressure fits are franange's Hand-
APPENDIX B: PHYSICAL PROPERTY DATA book of Chemistr§* The surface ter?sion fit.for DCM is also
from Lange’s Handbook of Chemisffywhile the surface
This appendix contains the physical property data for théension behavior of THF is estimated, based on a reported
pure components and binary mixtures used in the exact nw/alue of 0=26.5 at 298 K and an estimated slope of 0.1
merical calculations. For all cases, except ethanol-hexanotlyne{icm K). The nonideality of the mixture was param-
the surface tensiony (dynes/cny, and molecular volumes of etrized by Byeret al?® The heat of mixing parametrization is
the mixtures were assumed to be linear functions of the mofrom the Handbook of Heats of Mixingf
lar concentration. The temperature used in the calculation i?_ _25315 K
denotede(KE), p is density(g/cnt), P is pressurdTorr or Pa s : '
as notegl g~ is the excess G|bb_’s_ free energy of mixing Mpcy=84.93, Myye=72.10,
(J/ma), andH(x) is the heat of mixingJ/mo). The param-
eter xg is the mole fraction of the second species andp,.,,= 1.3608-1.8(10"3)(T—273.15),
Xpa=1—Xg.

hexano= 2-643 Pa,

2. Nonideal systems

1. Ideal systems prie=0.9109-1.1(10"3)(T-273.15,
(i) o-xylene—m-xylene: The data are from Mirabel and!0910(Ppcy) =7.4092-1325.9(T—20.55), P in Torr,
Katz*! and Katzet al*? with a correction for a misprint in

the formula forpe.yiene: log;o( PTr) =6.995 15-1202.29(T—-46.9), P in Torr,

T,=293.15 K, opcm=30.41-0.1284T-273.15H,
Mo-xylene:Mm-xylene:106-161 oyr=29.0-0.1(T—273.19,

— _ -3\ T_ =5\T12
Po-xylene=1.1101-0.606310 )T—0.138910>)T gE/(XAXB):AXB+ Bxa—Dxaxg; A=—0.922 41,

+0.393 7610 8)T3+0.434 2310 HT4,
Pmxylene=1.0506-0.102 5110 3)T

—0.348 6310°°)T2+0.774 8710 &T3

—0.700 6810 1HT4,

B=-0.87287,D=0.222 32 atT=305.15 K,
H(xg)=Xg(1—Xg)[ —5387.9-1040.61—Xxg)
+2240.21—xg)?] at T=305.15 K.

(i) Chloroform(CHL)—tetrahydrofuraffTHF): The den-
1091 0(Pgxylend =6-998 91-1474.67HT —59.464), sity fit is derived from data in th8olvent Safety Handbodk
The vapor pressure and surface tension fits are trange’s
Handbook of Chemist§# The nonideality of the mixture
1091 0(Pr-xylend = 7-009 08-1462.27(T—58.055, was parametrized by Byet al*° The heat of mixing param-
etrization is from theHandbook of Heats of Mixin®f

P in Torr,

P in Torr,
Toxylens=32.51-0.1104T—273.15, Ts=243.15 K,

Tmaylene=31.23-0.1104T—273.15. Mg =119.37,
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pc=1.526 43-1.856310 3)(T—273.15
—0.530910 %)(T—273.152
—8.81(10 %)(T—273.153,
logo(Pgy ) =6.4934-929.44(T—77.12), P in Torr,
ooy =29.91-0.1295T-273.15,
9%/ (Xaxg) =Axg+BXa—DxaXg; A=—1.393 52,
B=-1.580 92,D=0.586 06 atT=305.15 K,
H(xg)=Xg(1—xg)[—8019.2-11 312.41—xg)
+9423.91—xg)?] at T=294.05 K.

(iii) o-xylene—m-xylene positive deviatdiPD1): The
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