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The spatial evolution of particles diffusing in the presence of randomly 
placed traps 

D. H. Dunlap,a) Randall A. LaViolette, and P. E. Parrisb) 
Idaho National Engineering Laboratory, EG&G Idaho Inc., P.O. Box 1625, Idaho Falls, Idaho 83415-2208 

(Received 19 January 1994; accepted 16 February 1994) 

The evolution of a particle undergoing a continuous-time random walk in the presence of randomly 
placed imperfectly absorbing traps is studied. At long times, the spatial probability distribution 
becomes strongly localized in a sequence of trap-free regions. The subsequent intermittent transfer 
of the survival probability from small trap-free regions to larger trap-free regions is described as a 
time-directed variable range hopping among localized eigenstates in the Lifshitz tail. An asymptotic 
expression for the configurational average of the spatial distribution of surviving particles is 
obtained based on this description. The distribution is an exponential function of distance which 
expands superdiffusively, with the mean-square displacement increasing with time as 
t2I1n(2D+4)/D(t) in D dimensions. . 

I. INTRODUCTION 

The effect of transport on the reactions of diffusing spe
cies has occupied a prominent position in the theory of 
chemical transport for most of this century. I-IS Here we are 
concerned with the effect of randomly placed stationary traps 
upon a system of particles which undergo diffusion on a 
regular lattice. For nearly 20 years it has been known that the 
transport is anomalous in this circumstance,2 and that the 
usual "reaction-diffusion" equation, 

a 
at (p(r,t»=§V2(p(r,t»-k(p(r,t», (1.1) 

attributed to Smoluchowski3 is inadequate to describe the 
configuration average of the distribution p(r,t) at long 
times.4 For example, it is now known that the configuration 
average of the survival probability, P(t)=(J dV p(r,t», 
decays anomalously, not exponentially as in the reaction
diffusion equation, but via the much slower "stretched expo
nential" decay given by exp( - tD1(D+2», where D is the 
dimensionality of the system.5

-
8 While this result has sug

gested to some that the spatial evolution of the distribution of 
the survival probability might also be anomalous, there has 
generally been less attention paid to such transport-related 
quantities. The situation has been exacerbated by the fact that 
the order in which the configuration averages are taken 
makes a considerable difference insofar as the spatial distri
bution is concerned. In one oft-cited paper,6 for example, the 
configuration average of the mean-square displacement of 
surviving particles is given as r2(t) ~ t2/(D+2>, which sug
gests that transport is subdiffusive. However, the quantity 
actually calculated in Ref. 6, 

(J dV p(r,t)r2) / (J dV p(r,t) ), 

is the ratio of two configuration averages, a statistic, but not 
an observable. In contrast, we show in this paper that the 
observable, 

r2(t) = (J dV p(r,t)r2 / J dV p(r,t») ~t2/1n(2D+4)/D(t), 
(1.2) 

actually describes superdiffusive transport. 
That the transport of the survival probability in the pres

ence of randomly placed traps should be nearly ballistic is 
not obvious at first glance. After all, for the case of periodi
cally placed traps it is generally understood that transport is 
simply diffusive: Asymptotically, the mean-square displace
ment of the surviving particles grows linearly in time. It is 
somewhat surprising, then, that simply introducing spatial 
disorder in the trap locations causes the mean-square dis
placement to instead grow superlinearly (in fact, almost qua
dratically) with time. Indeed, one might wonder how the 
ordered and the disordered systems are so markedly different 
as to have entirely different asymptotic time dependencies. 
One major difference between the two systems shows up 
clearly in the nature of the eigenfunctions: Those of the dis
ordered system can be spatially localized rather than ex
tended. In 1984, Ebeling, Engel, Esser, and FeistelI9 revealed 
how this difference plays a key role in understanding the 
anomalous transport which is observed in the general prob
lem of diffusion in the presence of spatially random multi
plicative noise. It was pointed out in Ref. 19 that the eigen
states of a diffusion equation describing transport in the 
presence of spatially random noise are the same as the local
ized states studied by Anderson2o in the context of the Schro
dinger equation describing a particle moving on a lattice with 
site-diagonal disorder. Because the diffusion equation is an 
imaginary-time Schrodinger equation, however, the time
dependent coefficients in any eigenfunction expansion are 
real exponentials, rather than oscillatory phase factors. As a 

- -result, the Iocallzedeigenfunctions at the low-frequency 
a)Permanent address: Department of Physics and Astronomy, University of 

New Mexico, Albuquerque, NM 87131. edge of the spectrum dominate any description of the evolu-
b)Permanent address: Department of Physics and the Electronic Materials tion of the distributionp(r,t) at long times, since the partici-

Institute, University of Missouri-Rolla, Rolla, MO 65401. pation of high-frequency eigenstates decays away exponen-
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tially. It was shown in Ref. 19 that the normalized spatial 
distribution of surviving particles, 

Pn(r,t)=p(r,t) If dV p(r,t), (1.3) 

tends to become localized for long periods of time in be
tween occasional but relatively abrupt transitions during 
which the population appears to hop to a new location asso
ciated with a localized state having a smaller eigenvalue. 
This interesting intermittent hopping behavior was further 
described by Zel'dovich et aZY Subsequent analyses of the 
problem with Gaussian d~stributed growth and decay rates 
have shown22,23 that the population pet) increases asymp
totically as exp(t3). What is remarkable in terms of transport, 
however, is the anomalously fast rate at which the width of 
the normalized spatial distribution grows as a result of this 
hopping from localized state to localized state. Extending the 
variable range hopping arguments developed by Mott,24 it 
can be shown for the case of Gaussian noise that the charac
teristic width of the spatial distribution increases superdiffu
sively, scaling as tlln1l2 (t) in one dimension.25,26 

In the present paper we develop a description of hopping 
transport in the presence of randomly distributed partially 
absorbing traps in the spirit of that introduced in Ref. 19 for 
the problem of multiplicative noise. In such a case, the lo
calized states of interest are those with long wavelengths 
centered about asymptotically large but rare trap-free do
mains with eigenvalues making up the so-called Lifshitz tail 
of the spectrum.27 We describe the transport as time-directed 
variable range hopping among localized states inthe Lifshitz 
tail. Furthermore, adapting a formulation of variable range 
hopping which was developed by Apsley and Hughes28 we 
derive an analytic expression for the configuration average of 
the normalized spatial distribution function, 

P r(r,t) = (Pn(r,t». (1.4) 

For periodically placed traps P rCr,t) is a Gaussian, and the 
underlying process is purely diffusive. We show here, in con
trast, that for the disordered case the asymptotic distribution 
is an exponential function 

1 
Pr(r,t) "vDV

D 
exp(-rI7), (1.5) 

of the radial distance from the origin, where in Eq. (1.5), 

2-rrD12 
VD =Dr(DI2)- -(1.6) 

is the volume of the unit sphere in D dimensions, r is the 
Gamma function, and 

7~ tlln(D+2)ID(t) (1.7) 

is a logarithmically scaled time variable. It follows from Eqs. 
(1.7) and (1.5) that the transport of the survival probability is 
superdiffusive, with the nth moment 

proportional to the nth power of the rescaled time. 
The rest of the paper is as follows. The next section lays 

down the theoretical foundations of our investigation by 

casting the problem in terms of an appropriate master equa
tion. This approach, when coupled with an eigenfunction ex
pansion, exposes the importance of localization for transport 
in the presence of random traps. Section III presents a calcu
lation of the survival probability which exploits the variable
range hopping theory of Apsely and Hughes.28 From this 
calculation emerges the spatial distribution function as ex
pressed by Eqs. (1.5) and (1.7), and its moments as ex
pressed by Eq. (1.8). Section IV presents a discussion of 
these results, and the relevant results of others. Section V 
concludes this work with a summary, and some speculations 
about possible applications. 

II. THE MODEL 

A chemical species diffusing among randomly placed 
traps may be described by a master equation 14 

d 
dt Pm(t)=L F[Pm+sCt)-Pm(t)]-1'mPm· (2.1) 

s 

InEq. (2.1), the popUlation at site m at time tis P m(t), and 
F is the rate for hopping between nearest-neighbor sites m 
and m + s which are separated by a lattice constant a. The 
rates I'm are taken from a bivalued distribution: if m labels a 
trap site, then the trapping rate I'm = 1'; otherwise 1'm=O. 

It is instructive to express P met) in Eq. (2.1) as an eigen
function expansion. We write P met) as the projection of the 
site state 1 m) onto the state of the system, I!/I( t) ) 

The state vector can be expressed as a sum 

1 !/I(t» = L (4)jIO)e- Ell4>) 
j 

(2.2) 

(2.3) 

over the eigenstates 14» of the operator governing the dis
ordered master equation, 

iI=L 1'mlm)(ml-F(lm)(m+sl-lm)(ml). (2.4) 
m,s 

In Eq. (2.3) we have taken the localized initial condition 
P m(O) = om,Q' The eigenstates 14» and eigenvalues Ej obey 
the equation 

iIl¢>j)=Ejl4», (2.5) 

Equations (2.2) and (2.3) may be combined to obtain 

Pm(t)= L (ml4>j)(4>jIO)e- El. (2.6) 
j 

All of the eigenvalues (or "frequencies") of the operator if 
are positive and lie in the range 4DF+ 'Y~Ej>O. Since the 
contribution to Eq. (2.6) from states with larger eigenvalues 
decays exponentially in time, it follows that eventually only 
the states in the neighborhood of E = 0 are important. 

It is understood that the states in the neighborhood of 
E = 0 are exponentially localized in space. Indeed, the opera
tor if is the same operator studied in the context of Anderson 
localization. With a binary distribution describing the diago
nal elements of iI, that part of the spectrum near E = 0 is 
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often referred to as the Lifshitz tail. In what follows, we will 
describe these eigenfunctions approximately by ascribing to 
each the same localization length t. We refer to the average 
position of a localized state I <Pj) as rj, and we refer to the 
average position of a state in the site basis as rm' The pro
jection of a site state 1m) onto a localized state I <Pj) is there-
fore given by . 

(ml <p)= fm,je -a1rm-r), (2.7) 

where ex = Ill, and fm,j is a phase factor which is algebraic 
in rj and rill' Substitution of Eq. (2.7) into Eq. (2.6) leads to 

(2.8) 

As we have already remarked, at long times only a dimin
ishing fraction of low-frequency states in the Lifshitz tail are 
important for the description of Pm(t). Such states are spa
tially few and far between. Because the participation of each 
localized state in the sum in Eq. (2.8) depends exponentially 
on both position and time, the terms in Eq. (2.8) are rather 
disparate. At long times it becomes increasingly likely that 
the contribution of a single state, I <Pi), say, will exponentially 
dominate the others. In such a case, 

where the exponent ~i is 

~i=exlril+Eit=minJexlrjl+E/J. 

(2.9) 

(2.10) 

Here the index i labels that state whose contribution to the 
series in Eq. (2.8) dominates all others at time t. Summing 
Eq. (2.9) over all sites, we assume that the total probability 
remaining in the system at time t is well expressed by the 
contribution from this single dominating term, i.e., 

P(t)~qie-ff\ (2.11) 

where the algebraic factor 

q .= '" f· of .e-alrm-ril 
l ""'-' It nt,l (2.12) 

III 

is essentially the product of the area under the ith eigenfunc
tion and the value of the ith eigenfunction at the origin. 
Equation (2.11) indicates how much has yet to decay from 
the system. But it also tells us where that which has not 
decayed may be found: Because the eigenstates are localized, 
we can associate the remaining probability in Eq. (2.11) with 
the location ri of the eigenstate I <Pi) which is dominating at 
time t, i.e., the state which has the smallest exponent ~ at 
this time. Alternatively, the dominating state can be viewed 
as that state which is "closest" to the initial site in a space 
which consists of the normal spatial variables "augmented" 
by the "temporal distance" Et. Thus, what remains in the 
system is overwhelmingly concentrated in the state which is, 
in the sense described above, a "nearest-neighbor" to the 
origin at time t. As time incre~ses, the temporal distance of 
each state increases at a rate proportional to its eigenvalue so 
that an exchange occurs in which the nearest-neighbor status 
is somewhat abruptly handed off to a state with a smaller 

20,000 

m2 10,000 

O+-~~-----'r----------.----------~ 

o 500 1000 1500 
Ft 

FIG. 1. For one dimension, the mean-square displacement, m 2 

= CLmm2Pm(t))/(LmPm(t)) of the distribution of surviving particles is 
shown as a function of reduced time Ft for a single configuration. The treads 
on the stair-step pattern arise because the distribution of that which remains 
tends to stay localized in large trap-free segments. The risers are indicative 
of hops, where the distribution of that which remains shifts abruptly to a 
larger trap-free segment. Hops occur twice for this configuration of traps: 
Once when Ft-160, and again when Ft-880. The concentration of traps 
was taken to be C=O.5, and the trapping rate y=O.5F. 

eigenvalue. Such an exchange occurs when two terms in Eq. 
(2.8) are of the same order of magnitude, i.e., when 

(2.13) 

Equation (2.13) describes the state of affairs when the ith 
state, which has been dominating the sum, is about to be 
overshadowed by the jth state, which has a smaller eigen
value. When the exchange occurs, the distribution of remain
ing probability appears to "hop" to a new, and more distant, 
spatial location. Between exchanges, however, the probabil
ity distribution pauses at the location of the dominant eigen
state for some time. Substituting Eq. (2.9) in Eq. (2.12), we 
can solve for the transition time 

(2.14) 

where the location and eigenvalue of the state which will 
dominate next are Irjl and Ej respectively. In order to deter
mine which state will be the subsequent nearest-neighbor, we 
substitute for Iril and Ei in Eq. (2.14) the location Irl and 
eigenvalue E, respectively, of every state in the system with 
E<Ej , and then compute the corresponding transition time: 
the subsequent nearest-neighbor is the state for which ti,j is 
smallest. 19 Occasionally it happens that the eigenvalue of a 
nearby state which is not the closest to the origin in real 
space is, nevertheless, small enough that it becomes the 
subsequent-nearest-neighbor in the augmented space. In such 
a case, the remaining probability appears to "leap-frog" over 
other states in real space. The aficionado will recognize this 
as characteristic of what is often referred to as "variable 
range hopping." In Fig. 1 we show the results of a numerical 
integration of Eq. (2.1) for a single configuration. The mean
square displacement, shown as a function of time, resembles 
a stair case; the treads indicate times during which the prob
ability is stationary, and the risers occur when the distribu-
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8296 Dunlap, LaViolette, and Parris: Spatial evolution of particles 

tion abruptly "hops" to a state with a smaller eigenvalue. In 
Fig. 2 we show several snapshots of the normalized distribu
tion of remaining probability and its correlation with the un
derlying distribution of traps. It is apparent that this hopping 
is associated with abrupt movement between large trap-free 
segments. That this is essentially equivalent to the descrip
tion discussed above of hopping from state to state is clear, 
for the localized eigenfunctions near the band edge are in 
fact centered about such large trap-free segments. 

III. SPATIAL DISTRIBUTION OF SURVIVING 
PARTICLES 

In order to find the configurational average of the spatial 
distribution of surviving particles, it is necessary to calculate 
the distribution of nearest-neighbor distances 9t in the aug
mented space referred to above, in which the states I cp) are 
associated with points (rj,Ejt). Following the procedure of 
Apsely and Hughes28 for variable-range hopping, we require 
the probability P 9'{ that the region in the augmented space 
which is bounded by the the r axis, the E axis, and the line 
9t=ar+ Et is devoid of localized eigenstates. Ignoring 
excluded-volume effects due to the sparsity of the states of 
interest, this can be writte~ as an exponential function28 

[ 
VD'TJD (WI ] 

P9'{=exp - (aa)D Jo dE PD(E)(9t-Et)D , (3.1) 

in which 'TJ D is that fraction of the total number of states 
described by the D-dimensional Lifshitz density P D(E), and 
a is the lattice spacing. The probability that the closest state 
is located at the distance 9t in the hypershell of area 
D V DrD-1 dr dE at time t is therefore given by 

P(r,E;t)DVDrD- 1 dr dE 

DVDrD- 1 dr [ VD'TJDt 
= aD 'TJDPD(E)dEexp - (aa)D 

(arll+E ] XJo dE' PD(E')(arlt+E-E,)D . (3.2) 

Thus the probability PE(E,t)dE that a randomly chosen 
member of the ensemble is dominated at time t by an eigen
state of frequency E is the integral 

i
oo DVDrD-I dr 

PE(E,t)dE= 'TJDPD(E)dE D 
o a 

[ 

VD'TJDt (arll+E 
Xexp - (aa)D Jo dE' PD(E') 

X(arlt+E-E')D], (3.3) 

of Eq. (3.2) over spatial variables. Similarly, the probability 
P rCr,t)DV DrD- 1 dr that r is the spatial separation between 
the origin and the dominating state at time t is the integral 

Pn 

Pn 

Pn 

Pn 

Pn 

0.08 

0.04 

Ft=80 

0.12

i o .-----.--------r---L--~------Ii 
Ft=160 

0.0 1\ A 
:::~ 

o ______ -. ______ ~---L--~-L~~ 

0.08 Ft=400 

0.04 i 
I 

0.12 J 

O+-------r-----~------,_~~~ 

0.12 J 
0.08 

0.04 

o ....... 

0.12 J ::: A 
-160 

o 

I 
-105 

Ft=880 

Ftm1200 

I 
-50 

Site Label (m) 

I 
5 

A. 
I 

33 

I 
60 

FIG. 2. For the same configuration of traps which was used in producing 
Fig. 1, we show 'here a time sequence of the normalized distribution Pn of 
surviving particles as a function of location. For Ft = 80, the distribution is 
localized about two 4-site trap-free segments with an average position m= 
-9: One segment is 5 sites to the left of the origin and the other segment is 
12 sites to the left of the origin. For Ft= 160, the distribution is in the 
process of hopping to a trap-free region located nearly 33 sites to the right of 
the origin. This region is dominated by a 15 site region containing only 3 
traps. For Ft = 400 the distribution is appears exponentially localized within 
this relatively trap-free domain. For Ft= 8 80 the distribution has just begun 
the process of hopping to a 9-site trap-free segment located 141 sites to the 
left of the origin, and for Ft= 1200 the distribution is again exponentially 
localized in a single region. This behavior is consistent with Fig. 1. Beneath 
these plots is a superimposed histogram showing the underlying trap con
figuration, with vertical lines indicating the presence of traps. 
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Pr(r,t)DVDrD- 1 dr 

DVDrD- 1 dr (CO [ VD1Jt 
aD Jo 1JPD(E)dE exp - (aa)D 

xfoarlt+EdEI PD(E1)(arlt+E-E1)D]. (3.4) 

of Eq. (3.2) over all E. By our previous arguments, Eq. (3.4) 
describes the configurational average of the spatial distribu
tion of remaining particles. For further simplification, it is 
helpful to introduce the repeated integrals of the spectral 
density, 

pg')(E) = foE dElfoEldE2" LEn-ldEn PD(En). (3.5) 

After integrating Eqs. (3.2) and (3.4) by parts and substitut
ing the function p¥;)(E) defined in Eq. (3.5), we obtain the 
results 

[ 
D! VD7JDt

D 
(D+l) ] 

Xexp (aa)D PD (arlt+E). (3.6) 

and 

[ 
D! VD1JDt

D 
] 

Xexp - (aa)D p}j>+I>Carlt+E). 

(3.7) 

Until now we have made no assumptions about the na
ture of the spectral density near the band edge. For the par
ticular disordered system under consideration, composed of a 
random distribution of trapping centers of identical strength, 
it has been established that the states of interest are those 
associated with asymptotically large trap-free voids.29 The 
lowest eigenstates of asymptotically large spherical voids of 
radius R and volume V= V DRD can be associated with the 
long-wavelength solutions to the Helmholtz equation for a 
spherical cavity. Asymptotically, 

E-EO(VDIV)21D, (3.8) 

where Eo=Fx6 and Xo is the first root of the radial Helm
holtz equation in D dimensions. In one dimension, Xo= 7T/2, 
in two dimensions, xo=2.405, the first root of the ordinary 
Bessel function Jo(X) , and in three dimensions Xo= 7T. When 
Eq. (3.8) is combined with the Poissonian distribution 

Pv=Ae- AV, (3.9) 

of trap-free voids of volume V, the spectral density 

PD(E)_(ADVD) (EO)(D+2)12 exp[-AV (E IE)DI2] 
2Eo E D 0 

(3.10) 

140 

120 

100 

80 

60 

40 

20 

o +-----r-~~-----r----.---~~---. 
0.005 0.Q1 0.015 0.02 0.025 0.03 

ElF 

FIG. 3. The distribution of the probability that a member of the ensemble is 
dominated by an eigenstate of frequency E in one dimension, for Ft= 108, 

y=0.5F, and C=0.5. We observe that function cuts off quickly at 
EIF-0.023. The curve was generated by performing the indicated integra
tion in expression (3.7). The localization length was taken to be l 
- 1/,fYC = 2.0, and 7]=8.3. The localization length of 2.0 was also con
firmed numerically, using a transfer matrix algorithm. The parameter 7J was 
determined by comparing the mean-square displacement of the spatial dis
tribution as found from numerical simulations with the predictions of ex
pression (3.18), cf. Fig. 5 below. 

associated with the trap-free voids is obtained, where 
A = Iln(1 - C) 1 and C is the fraction of sites occupied by 
traps. It is these exponential tails in the spectral density that 
are often referred to as Lifshitz tails. If we substitute Eq. 
(3.10) in Eq. (3.5), we obtain, to leading order in EI EO, 

(
ADV)I-n(E)(D+2)(n-l)12 p};)(E) _ __ D -

2Eo EO 

X exp[ - A V D( EOI E)DI2]. (3.11) 

A. The distribution of dominating frequencies 

In order to examine the distribution of the probability 
that a member of the ensemble is dominated at the time t by 
an eigenstate of frequency E, we have numerically integrated 
Eq. (3.7). The results of this integration for one dimension 
are shown in Fig. 3. Note that the distribution cuts off 
sharply on the high frequency side. The probability to find 
trap-free regions which dominate the series in Eq. (2.8), but 
which are also smaller than a certain critical volume, be
comes exceedingly small at long times. We shall refer to the 
value of E at which this cutoff occurs as Ee. That the distri
bution cuts off abruptly above a certain eigenvalue is not 
surprising. Owing to their scarcity, the spatial separation be
tween successively dominating trap-free regions, being in
versely proportional to their density, is a rapidly increasing 
function of their size. As a result, the pausing time between 
hops increases exponentially with the size of the trap-free 
regions being considered for next-nearest-neighbors. It is 
therefore likely that hopping among the smaller trap-free re
gions will be completed long before any hop occurs to larger 
trap-free regions. If the variable z is substituted for arlt in 
Eq. (3.7), the distribution of (dominant) eigenvalues can be 
written 

J. Chern. Phys., Vol. 100, No. 11, 1 June 1994 . 
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x (z+ E,t), (3.12) 

where 

[ 
D!VD1JDtD (D+1) ] 

ilD(E,t)=exp (aa)D PD (E). (3.13) 

In the limit in which t-+ oo , the function ilD(E,t) is a step 
function, 1-0(E- Ee)' It is precisely this behavior which 
accounts for the abrupt cutoff seen in Fig. 3. To find an 
analytic expression for the cutoff, we choose Ee to be that 
frequency at which fiD(E,t) is equal to 1/2. If we set the 
logarithm of Eq. (3.13) equal to In(1l2), and then substitute 
Eq. (3.11) for pW+ 1)(E), an equation for Ee may be ob
tained by iteration 

cut AVDI(D+2) 
(
E )DI2 

EO 

InCA) + In( In(A) + In( 1~ln(A) + ... ») , 
(3.14) 

where 

A= AVD (D!VD1JD)1I(D+2)( 2Eot )DI(D+2) 

D+2 In(2) AaaDVD . 
(3.15) 

At long times this has the leading behavior 

[ 
AVD ]21D 

Ee- D In( 2EotIAaaDVD) 
(3.16) 

Thus in the ensemble, the eigenvalue associated with the 
smallest of the dominating trap-free regions approaches zero 
as Illn(t)21D. Returning to Eq. (3.12), we argue that the in
tegration over z needs to be completed only up to Ee. As
ymptotically this yields the result 

PE(E,t)-{ 1JDVD[(Ee:aE)trPD(E), O<E~Ee' 
0, Ee>E. 

B. The spatial distribution of the dominant 
eigenstates 

(3.17) 

That the width of the spatial distribution of the survival 
probability increases with time is not surprising. As we have 
discussed above, the hopping process resembles a slow 
march to larger and larger trap-free regions. This is charac
terized by the rate at which Ee steadily decreases towards the 
band edge. Since the average distance between trap-free re
gions is inversely proportional to the density of states in the 
Lifshitz tail, these hops occur over ever-increasing distances. 
This compensates somewhat for the fact that the pausing 
time between hops is also increasing, and leads to the result 
that the spatial distribution of the survival probability grows 
superdiffusively. To demonstrate this, we examine the mo
ments of the spatial distribution function expressed by Eq. 
(3.6). The nth moment can be written 

f

'" D1JDVDrD+n-1 drf'" 
= D PD(E)dE 

o a 0 

[ 
D!VD1JDtD (D+1) - ] 

Xexp - (aa)D PD (arlt+E). (3.18) 

One of the two integrations in Eq. (3.18) can be performed if 
the coordinate system is rotated. Changing integration vari
ables from r and E to ~=ar+Et and ~=ar-Et (3.18) 
becomes 

[ 
D!VD1JDtD (D+1) ] 

u Xexp (aa)D PD (~t). (3.19) 

Integrating over ~ and reintroducing the integration variable 
E=~t, we find 

n_(D-l+n)!1JDDVDtD+nf'" (D+n) 
r- ()Dn. dEpD (E) 

aa a-' 0 

[ 
D!VD1JptD (D+1) ] 

Xexp - (aa)D PD (E). (3.20) 

If we now perform the integration over E by parts, we obtain 
the general result, 

- (D-l +n)! ('" d [pW+n)(E)] 
rn=tnX (D-l)!an Jo dE ilD(E,t) dE pW)(E) 

(3.21) 

for n>O. The integrand in Eq. (3.21) is the product of an 
algebraic function of E and the function ilD(E,t), which is 
asymptotically a step function. The asymptotic expression 
for the nth moment is therefore 

- (D-l+n)! (Ee d (pW+n)(E») 
rn-tnX (D-l)!an Jo dE dE pW)(E) 

(D -1 + n)! pW+n)(Ee) 
-tn --~----
- (D-l) Ian pW)(Ee) 

(3.22) 

If we now substitute Eq. (~.11) in Eq. (3.22), we obtain 

- (D-l+n)! ( 2Eo )n(Ee)(D+2)nl2 
rn_tn -- --

(D-l)!an ADVD EO 
(3.23) 

Finally, substituting Eq. (3.16) for E e , we obtain the asymp
totic form 

- (D-l+n)! 
rn (D-I)! T' (3.24) 

for the moments of P r(r,t), where 

(
A V D ) 21D Eotl a 

r=2 DD+1 In(D+2)ID(Eotlaa) . (3.25) 
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That transport is superdiffusive follows from Eqs. (3.24) and 
(3.25). We note, in fact, that the variable r is nearly propor
tional to time: were it not for the logarithmic factor in Eq. 
(3.25), the transport here might be described as ballistic. 

From the moments, it is straight forward to obtain the 
asymptotic spatial distribution function. To this end, it is con
venient to introduce the Fourier transform 

P rCk,t)=f: eikrp rCr,t)dr rD-1DVD • (3.26) 

Expanding the right-hand side of Eq. (3.26) in powers of k, 
we obtain a power series for P /k,t) in terms of the moments 
expressed by Eq. (3.24), 

_ co (ikr)" (D+n- 1)! dD - 1 ( ~-1 ) 

PrCk,t)=~o -;J (D-l)! =~ l-ikr' 

(3.27) 

The Fourier inversion of Eq. (3.27), 

d
D

-
1 (~-lJco dk e-

ikr 
1 ) 

P,(r,t)=~ 2'lT _coDVDrD l1-ikr (3.28) 

requires a straightforward integration, with the result that in 
any dimension P r(r,t) is simply an exponential function 

e- rlT 

Pr(r,t)= ~DVD (3.29) 

of the radius r. 

IV. DISCUSSION 

For periodically placed traps it is useful to consider a 
description of the system on a length scale much larger than 
the separation between traps. On this scale the system is 
homogeneous with an effective uniform trapping rate which 
is given by the smallest eigenvalue in the system. Therefore, 
except for an overall exponential decay, the spatial distribu
tion is described by a Gaussian, the mean-square displace
ment of which increases linearly in time. In view of this, the 
main results of this paper, expressed in Eqs. (3.24) and (3.29) 
are remarkable for at least two reasons, apart from any future 
applications. First, it is amazing that such dramatically dif
ferent transport behavior should arise from the apparently 
subtle change in the arrangement of the traps produced by 
disorder. Second, even if it were anticipated that disorder 
might radically alter the transport, it is still not obvious that 
it should cause superdiffusion. Of course, we (and others) 
have made much of the fact that the eigenstates of the disor
dered system are localized, whereas the eigenstates of the 
ordered system are extended, but these considerations do not 
by themselves constitute a physical picture. Such a picture 
may be had by discussing the underlying diffusion in terms 
of particles undergoing a continuous-time random walk. If 
the traps are placed randomly, then some trap-free voids will 
be larger than others, and furthermore there will be remote 
voids which are larger than any of those found near the ori
gin. At long times, the. surviving particles will be predomi
nantly those which have arrived in those larger and more 
distant voids, and their paths must necessarily be those 
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FIG. 4. The average spatial distribution of surviving particles as a function 
of the distance from the origin in one dimension, for Ft= 1000, y=0.5F, 
C=0.5, 1=2.0 and 17=8.3. The solid curve was generated by performing 
the integration in expression (3.6) numerically. The dotted line shows the 
Gaussian distribution which is obtained if the same traps are placed periodi
cally, rather than at random. The width of the distribution grows more 
quickly with time in the disordered case, as is shown in Fig. 5. 

which tend to avoid early capture. Thus the randomly formed 
voids act as a filter, preferentially preserving those rare par
ticles which travel to the large voids quickly, or in nearly a 
straight line. Particles which take more tortuous paths take 
longer to reach the larger voids, and are more likely to be 
trapped. The process of diffusion is described by considering 
all paths. This includes typical paths, which are quite tortu
ous, in addition to those rare paths which are nearly ballistic. 
On the other hand, superdiffusion, as described by Eq. 
(3.24), comes about when the nearly ballistic paths are pref
erentially singled out by considering only that which has not 
yet been trapped. 

In order to illustrate the preceding discussion, we have 
displayed in Fig. 4 the spatial distribution of surviving par
ticles for Ft= 1000, in one dimension, as expressed by Eq. 
(3.6). In this calculation the trapping rate l' was chosen to be 
0.5F, and the trap concentration C was taken to be 0.5: This 
gives rise to an inverse localization length a of 0.5. On the 
same graph we have shown the distribution of surviving par
ticles which would obtain at F t = 1000 if traps of the same 
strength and concentration were instead placed on the lattice 
periodically. We see here that what remains untrapped is dis
tributed over a much larger region for the disordered case. 
For the same concentration and trapping rate used in Fig. 4, 
we have numerically integrated Eq. (2.1) in one dimension 
for 1000 random trapping configurations. The configura
tional average of the resulting mean-square displacement is 
shown in Fig. 5. The smooth curve which has been superim
posed is Eq. (3.21). Again for comparison, in the same figure 
we have also shown the mean~squate displacement of the 
survival probability for the case in which the traps have been 
placed on the lattice periodically, rather than at random. It is 
apparent that the disorder begins to have a noticeable affect 
on the mean-square displacement at rather short times, when 
Ft-IOO. 

The effects discussed here have wide application. Let us 
suppose that Eq. (2.1) describes a diffusing chemical species 

J. Chern. Phys., Vol. 100, No. 11, 1 June 1994 



8300 Dunlap, LaViolette, and Parris: Spatial evolution of particles 

510' 

410' 

310' 

? 
210' 

1 10' 

0 

1000 2000 3000 

Ft 

.' 
.' 

4000 5000 

FIG. 5. The configuration average of the mean-square displacement ;:z (in 
units of a2) of the spatial distribution of surviving particles as a function of 
reduced time Ft, in one dimension. The trapping rate y=0.5F and the 
concentration of traps C = 0.5. The dotted line is the average of results 
obtained by numerically integrating Eq. (2.1) for 1000 randomly chosen trap 
configurations. The solid line which has been superimposed was calculated 
by integrating Eq. (3.18) for 1=2.0. A reasonable agreement with the nu
merical simulations is had by setting the parameter 7,1=8.3. The fact that 
these lines are superlinear indicates that motion is superdiffusive. For the 
case in which the traps are placed periodically with the same concentration 
(every other site is a trap), the mean-square displacement is linear with time 
asymptotically, such that;:Z - 8a2Ftl..j16+(yIF)2 = 1.985 a2 Ft. This 
line has been shown on the graph for comparison. We note that at Ft-l 00 
the onset of superdiffusive behavior begins to clearly distinguish the disor
dered case from the ordered case. 

which may react with fixed centers. In such a case, our 
analysis shows that the unreacted species will necessarily be 
spread over a much wider volume than would be expected 
from normal diffusion. The reaction could be, for example, 
the trapping of charge carriers in disordered molecularly 
doped polymers. In such a case, the distribution of untrapped 
carriers will affect observables such as the width of the sig
nal in a time-of-flight measurement of the mobility. Biore
mediation of contaminated soils presents another application, 
in which activated bacteria act as randomly placed traps for 
the contaminant molecules. The equations describing the in
filtration of the plume reduce to diffusionlike equations for 
low concentrations. From the results above, we see that the 
part of the plume which remains unremediated is likely to be 
located further from the contaminant source than what would 
be predicted if the bacteria were assumed to be homoge
neous. 

v. CONCLUSION 

In this paper we have presented an analysis of diffusion 
in the presence of randomly placed traps, as described by Eq. 
(2.1). We have described the evolution of Eq. (2.1) through 
an eigenfunction expansion, and have focused on interesting 
new effects which arise because of the localization of the 
eigenstates at the band edge. We have shown that the distri
bution of'surviving particles evolves as though it were hop-

ping from one trap-free region to the next. Thus we have 
applied the method of Apsely and Hughes, originally devel
oped to describe variable range hopping, to calculate the spa
tial distribution of the surviving particles. We have found 
that the distribution is an exponential function, with a width 
which increases almost linearly with time. To our knowledge 
this is the first time an asymptotic expression for the spatial 
distribution function of surviving particles has been obtained 
either for the random trapping problem, or for any other 
variation of Eq. (2.1). Whether the distribution remains a 

~-sil;npleexponentlal function for other functional forms of the 
-,-trapPing raieif'remain's· an open-question. 
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