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waves through a polariton gap
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PACS. 73.40Gk – Tunneling.
PACS. 71.36+c – Polaritons (including photon-phonon and photon-magnon interactions).
PACS. 42.25Bs – Wave propagation, transmission and absorption.

Abstract. – We consider tunneling of electromagnetic waves through a polariton band gap of
a 1-D chain of atoms. We analytically demonstrate that a defect embedded in the structure
gives rise to the resonance transmission at the frequency of a local polariton state associated
with the defect.

The optical properties of materials with band gaps in their electromagnetic spectrum have
recently attracted a great deal of attention. It was suggested that fundamental electromagnetic
processes such as spontaneous emission [1,2], photon-atom interaction [2,3], and optical energy
transfer [4] are strongly modified at band gap frequencies. Photonic crystals, which are periodic
structures with a macroscopic period [5], present one of the primary examples of systems with
electromagnetic band gaps. The periodicity in photonic crystals gives rise to allowed and
forbidden bands for electromagnetic waves in basically the same manner as periodicity in the
arrangement of atoms causes the band structure for electrons in solids.

An important property of photonic crystals is an occurrence of local photon states with
frequencies inside band gaps, when the periodic structure is locally distorted. The fact that
an isolated defect in an otherwise perfect periodic crystal can give rise to local modes with
frequencies in forbidden gaps of a host structure is well known in solid-state physics. Local
photons are similar in many aspects to other types of local states: Their frequencies always
belong to forbidden gaps; in 3-D systems they split off the continuous spectrum only if the
“strength” of a defect exceeds a certain threshold [6-8]; and by changing the type of the
distortion one can control the position of the states inside the gap. It is essential, however,
that while all other local states appear due to microscopic (of atomic dimensions) defects,
local photons require both a macroscopic host structure and its macroscopic distortion. This
fact is obviously due to the large wavelengths of electromagnetic waves in frequency regions of
interest.
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Recently it was suggested that polariton gaps in regular dielectrics with strong polar
properties could generate effects similar to those attributed to photonic crystals [9-12]. For
example, bounded photon-atom states originally considered in ref. [3] for photonic crystals
were proposed in ref. [9] for frequencies within a polariton gap. These states are formed by an
optically active impurity atom, which possesses its own dipole moment different from that of
the host atoms.

There exists a different type of local photon states, that is not associated with the inner
optical activity of the impurities [10]. Such local states are analogous to defect modes in
photonic crystals, and similarly to them can be used to modify the spectrum of radiation of
the optically active impurities. At first glance it seems impossible, since the electromagnetic
waves would not interact with microscopic objects without inner optical activity. However, it
was shown in ref. [10] that a regular microscopic defect embedded in a crystal lattice gives
rise to local states with frequencies within the polariton gap, which are a mixture of the
electromagnetic component with excitations of a crystal responsible for the polariton gap. The
most remarkable property of the local polaritons is the absence of a threshold for localization
in isotropic 3-D systems, which is due to a strong van Hove singularity in the polariton density
of states at the gap edge, see details in ref. [10, 11].

In this paper we show that the local states considered in ref. [10] give rise to an interesting
possibility of resonance tunneling of electromagnetic waves through a polariton band gap.
We would like to emphasize that this tunneling proccess is remarkably different from both
quantum-mechanical electron tunneling [13] and photon tunneling through photonic crys-
tals [7]. The later proccesses can be characterized as the result of the interaction between
excitations and defects of comparable scales (electrons and impurities, electromagnetic waves
and macroscopical distortion of photonic crystals). The tunneling studied in our paper occurs
due to the interaction between electromagnetic waves with macroscopically long wavelength
and microscopical impurities. This process becomes possible owing to participation of the
phonon component of polaritons, which mediate the electromagnetic-wave propagation. A
similar role is played by excitons in resonance scattering of exciton-polaritons due to impurities
with a short-range potential considered by Hopfield in ref. [14].

We present an exact analytical solution for the transmission coefficient of a scalar wave
propagating through a 1-D chain of non-interacting atoms containing a defect. These atoms
are coupled to the wave due to a dipole moment caused by their mechanical vibrations. The
spectrum of the coupled excitations of the chain and the field, polaritons, have a spectral
gap where the excitations can exist only in an evanescent form. We show, however, that a
defect, embedded in such a structure, results in the resonance tunneling of waves with the
transmission coefficient independent of the chain’s length and being of the order of magnitude
of one. One-dimensional models usually describe tunneling processes fairly well because, by
virtue of tunneling, the propagating wave is effectively confined in the transverse directions.
In our particular situation it is also important that the local polariton states (transmitting
centers) occur without a threshold in 3-D systems as well as in 1-D systems [10,11]. A similar
model has been studied numerically in ref. [12], where a direct interaction between atoms of
the chain (leading to the spatial dispersion of the chain’s excitations) has been taken into
account. The results of that paper suggest that though the spatial dispersion brings about
some new features, it does not affect the existence of the resonance, justifying our neglect of
the inter-atomic interaction.

The atoms in our system are represented by their vibrational polarizability βn, where the
subindex n represents the position of the atom in the chain. The polarizability is given by

βn =
α

ω2 − Ω2
n

, (1)
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where α is a coupling parameter between the dipoles and the field, and Ω2
n represents an atom’s

vibrational frequency. The defect in our model differs from the host atoms in this parameter
only, so Ω2

n = Ω2
0 for all sites except one occupied by the defect, where Ω2

n = Ω2
1. Polaritons

arise as collective excitations of dipoles (polarization waves) coupled to the electromagnetic
wave E(xn) by means of a coupling parameter α. The electromagnetic subsystem is described
by the following equation of motion:

ω2

c2
E(x) +

d2E

dx2
= −4π

ω2

c2

∑
n

Pnδ(na− x) , (2)

where the right-hand side is a polarization density caused by atomic-dipole moments, and c is
the speed of the wave in vacuum. The coordinate x in eq. (2) goes along the chain with the
interatomic distance a.

We first derive an equation for the frequency of the local polariton state in the 1-D situation.
The one-dimensional nature of the model allows us to approach the problem microscopically
and to take into account short-wave components of the field, including those beyond the first
Brillouin band, exactly. Passing to the long-wave limit at the last stage of the calculations
we avoid non-physical divergencies and renormalization procedures of the kind used in ref. [9].
The equation for an eigenfrequency of the local mode is

1 = ∆Ω2 a

2π

∫ π/a

−π/a

cos(ak)− cos
(aω
c

)
[ω2 − Ω2

0 − 2Φ cos (ka)]
[
cos(ka)− cos

(aω
c

)]
−

2παω

c
sin
(aω
c

)dk , (3)

where ∆Ω2 = Ω2
1 − Ω2

0. It has a real-valued solution only if the frequency falls into the gap
between the upper and the lower polariton branches. The integral in eq. (3) can be calculated
exactly to yield

ω2 = Ω2
1 − d

2ωa

2c

∆Ω2√
(ω2 − Ω2

0) (Ω2
0 + d2 − ω2)

, (4)

where we passed to the long-wave limit ωa/c� 1, and introduced the parameter d 2 = 4πα/a,
which determines the width of the polariton gap between Ω2

0 and Ω2
0 + d2. The second term

in eq. (4) is small for realistic values of the parameters, therefore, the frequency of the local
mode is only slightly different from the defect frequency Ω2

1. As we shall see below, this fact
has a deep impact upon the transmission frequency profile of the chain.

The field in the eigenmode corresponding to the frequency determined by eq. (4) exponen-
tially decreases away from the defect site:

E = Edef exp [−κa(n− n0)] , (5)

where κ is an inverse localization length of the state, which in the long-wavelength approxi-
mation is given by

κ =
ω

c

√
Ω2

0 + d2 − ω2

ω2 − Ω2
0

. (6)

In order to consider transport properties of the model, one has to subject eq. (2) to the
standard boundary conditions. We assume that incident and transmitted electromagnetic
waves propagate in vacuum so that the transmission, t, and the reflection, r, coefficients are
defined in the usual way:

E(0) = Ein(1+r);
dE

dx
= ikωEin(1−r); E(L) = tEin exp [ikωL];

dE

dx
= ikωtEin exp [ikωL], (7)
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where kω = ω/c is the wave number of the electromagnetic wave in vacuum, and L is the
length of the chain. Our first goal in treating the problem of resonance tunneling is to convert
the differential equation (2) into the discrete form. We can do so considering separately free
propagation of electromagnetic waves between sites and scattering due to the interaction with
a dipole moment at the site. Let En and E′n be the magnitude of the electromagnetic field and
its derivative just after scattering at the n-th site. The electric field E remains continuous at a
scattering site, while its derivative undergoes a jump, which is equal to −4πk2

ωPn. Finally, one
can derive the system of difference equations that can be written with the use of the transfer
matrix, T, in the form

vn+1 = Tnvn , (8)

where we introduce the column vector, vn, with components En, Dn (Dn = E′n/kω). The
transfer matrix, Tn, describes the propagation of the vector between adjacent sites:

Tn =

 cos kωa sinkωa

− sinkωa+ 4πkωβn cos kωa cos kωa+ 4πkωβn sin kωa

 . (9)

The dynamical state of the system at the right end of the chain, which is represented by the
vector vN , can be found from the initial state at the left end, v0, by means of the repetitive use
of the transfer matrix: vN =

∏N
1 Tnv0. In the case of a single impurity, the matrix product is

conveniently calculated in the basis, where the matrix T for a host site is diagonal. With the
use of the boundary conditions given by eq. (7), one finally arrives at the following expression
for the transmission coefficient, t, in the limit κL > 1:

t =
t0

(1 + ε) + i exp [−ikωL] Γt0 cosh [κa(N − 2n0 + 1]
, (10)

where t0 is the transmission coefficient in the pure system, Γ = 4πkωεβ/(sin(kωa)
√
D),

D = (4πkωβ)2 + 16πkωβ cot(akω) − 4, and ε = 4πkω (βdef − β) /
√
D. The last parameter

reflects the difference between host atoms and the impurity, and is equal to

ε =
4πα

c
√
D
ω

(
Ω2

1 − Ω2
0

)
(ω2 − Ω2

0) (ω2 − Ω2
1)
. (11)

The transmission coefficient t0 of the pure system is given by

t0 =
2eikωL exp [−κL]

1− i√
D

(2− 4πkωβ cot kωa)
(12)

and exhibits a regular exponential decay.
Equation (10) describes the resonance tunneling of the electromagnetic waves through the

chain with the defect. The resonance occurs when

1 + ε = 0 , (13)

with the transmission becoming independent of the system size. Substituting the definition of
the parameter ε from eq. (11) in eq. (13) one arrives at the equation identical to eq. (4) for
the frequency of the local polariton state. Typically, for resonant tunneling, the transmission
takes a maximum value when the defect is located in the middle of the chain, N −2n0 +1 = 0,
and in this case

|tmax|
2 =

1

Γ2
≤ 1 . (14)
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The width of the resonance is proportional to Γt0 and exponentially decreases with an increase
of the system’s size. In the long-wave limit akω � 1, eq. (14) can be rewritten in the following
form:

|tmax|
2 = 1−

(
1− 2

ω2
r − Ω2

0

d2

)2

, (15)

where ωr is the resonance frequency satisfying eq. (13). It is interesting to note that the
transmission becomes exactly equal to one if the resonance frequency corresponds exactly to
the center of the polariton gap. This fact has a simple physical explanation. For ω2

r = Ω2
0+d2/2

the inverse localization length κ becomes exactly equal to the wave number ωr/c of the incoming
radiation. Owing to this fact the field and its derivative inside the chain exactly match the
field and the derivative of the incoming field as though the optical properties of the chain are
identical to those in vacuum. Consequently, the field propagates through the chain without
reflection.

Equations (10) and (14) demonstrate that the frequency profile of the resonance is con-
siderably different from a corresponding Lorentztian profile for electronic and other known
instances of tunneling. This occurs because the parameter ε diverges at ω = Ω1 causing the
transmission to vanish. At the same time the resonance frequency ωr is very close to Ω1,
as follows from eq. (4). This results in a frequency dependence of the transmission strongly
skewed toward lower frequencies.

Having solved the transmission problem, we can find the magnitude of the field inside the
chain in terms of the incident amplitude, Ein, at the resonance frequency. Matching the field
in the local polariton state given by eq. (5) with the outcoming field we have for the field
amplitude at the defect atom

Ed = Eint exp[−ikL] exp [(N − n0)κa] . (16)

For |t| being of the order of one in the resonance, this expression describes the drastic
exponential enhancement of the incident amplitude at the defect side due to the effect of
the resonance tunneling. This effect is an electromagnetic analogue of charge accumulation in
the case of electron tunneling [15].

Resonance tunneling is very sensitive to the presence of relaxation, which phenomeno-
logically can be accounted for by adding 2iγω to the denominator of the polarizability β.
This will make the parameter ε complex valued, and the resonance condition Re(ε) = −1
may only be fulfilled if the relaxation is as small as γ < (ad2)/(4c). This inequality has a
simple physical meaning: it ensures that the distance between the resonance frequency and
Ω1, where the transmission goes to zero, is greater than the relaxation parameter γ. This is a
strict condition that can only be satisfied for high-frequency oscillations with large oscillator
strength in molecular crystals with large molecules in an elementary cell, and, respectively,
large values of the interatomic spacing a. Another interesting opportunity can arise in the
so-called atomic optical lattices, where atoms, trapped by a laser beam, form a lattice with
spacing practically equal to the wavelength of the trapping field [16]. However, taking into
account the spatial dispersion can lead to a more favorable situation for the tunneling resonance
in our model. Numerical results of ref. [12] show that the spatial dispersion does not change
the transmission properties significantly. Therefore, one can rely upon eq. (10) to estimate
the effect of the dissipation in the presence of the spatial dispersion, assuming that it only
modifies the parameter ε. The eigenfrequency of the local mode in the presence of the direct
inter-atomic interaction is calculated exactly. The interaction moves the resonance frequency
farther away from Ω1 undermining the influence of the damping. Adjusting ε correspondingly
one can arrive at the following new condition for the resonance to survive the relaxation:



l. i. deych et al.: defect-induced resonant tunneling etc. 529

(γΩ1)/Φ < 1, where Φ is the parameter of the inter-atomic interaction; it can be estimated
as a bandwidth of the polarization waves (in terms of squared frequencies). This condition
can be fulfilled, even for phonons with a relatively small negative spatial dispersion, and
becomes even less restrictive in the case of Frenkel excitons in molecular crystals. The
imaginary part of ε will prevent the exponential factor t0 in eq. (10) from canceling out
at the resonance. This restricts the length of the system in which the resonance can oc-
cur. The requirement that Im(ε) be much smaller than t0 leads to the following condition:
L� 1/(κ | ln[Im(ε)] |), with Im(ε) being again of the order of min[(4γc)/(ad2), (γΩ1)/Φ].

Concluding, we showed that a regular defect atom without internal degrees of freedom and
an optical activity results in resonance tunneling of electromagnetic waves through a polariton
gap. Though we considered the one-dimensional model, one can expect that the existence
of the effect does not depend upon dimensionality because tunneling transport is virtually
one-dimensional, and the polariton local states are present in the system of any dimension.

***
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