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Binary nucleation. II. Time lags * 
Gerald Wilemski t 

Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520 
(Received 27 December 1974) 

The role of the time lag needed to attain steady state nucleation in binary vapors is discussed. 
Under appropriate conditions it is possible to obtain both a large predicted rate of binary nucleation 
and a large time lag. In this circumstance, homogeneous nucleation of the more concentrated 
component may be the predominant process. It is of obvious importance to the experimentalist to 
differentiate between these possibilities. Approximate formulas for the time lags are developed, and 
representative calculations for the ethanol-water system are reported. 

I. INTRODUCTION 

In binary nucleation, as in homogeneous nucleation of 
a single species, the use of steady state theory to cal­
culate rates 1-5 may be invalidated if the time needed to 
establish the steady state (the time lag) is comparable 
to the experimental time scale. Moreover, in binary 
nucleation the time lag might be too large if only one of 
the two components were present in too small a concen­
tration in the vapor. Then only homogeneous nucleation 
of the more abundant species would take place, assum­
ing it is supersaturated. Since we envisage experiments 
in supersonic nozzles and shock tubes with small 
amounts of condensables present, it is important that 
reliable estimates of these time lags be made in order 
to correctly interpret results in terms of either homo­
geneous nucleation or binary nucleation. 

In this paper, approximate formulas for two different 
time lags needed to establish steady states in binary 
systems are presented. The present work follows 
closely that of several predecessors;s-Io hence, a sy­
nopsis of earlier work concerned with homogeneous nu­
cleation will first be presented. The formal results 
will then be cast into a computationally useful form. 
The qualitative limiting behavior of the expressions will 
be discussed, and numerical estimates to time lags in 
the enthanol-water system will also be presented. 

II. TIME LAG IN HOMOGENEOUS NUCLEATION 

One may define a time lag for any time dependent pro­
cess of interest in the following way. Let a(t) be a time 
dependent quantity whose steady state value is ass' Next 
let 

All)= {a(t')dt' , (2.1) 

and 

(2.2) 

The time lag 'T is the length of time following the initia­
tion of the process It = O} at which one could fictitiously 
turn on the steady state value for the process in order 
thatA(t) and Ass(t) agree in the limitt- oo • For exam­
ple, if a(t) were the rate of formation of critically sized 
nuclei, then A(t) would be the total number of these nu­
clei formed at time t after nucleation had begun. The 
time lag in this case provides a criterion for justifying 
the use of the steady state rate to calculate the number 
of critical nuclei formed, as is commonly done. Pro-
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vided the time lag is small compared with the experi­
mental time scale, little error is incurred via this pro­
cedure. See AndresS for more precise remarks about 
the smallness of the time lag. 

Courtney7 was the first to obtain a formally exact re­
sult for the time lag 'TI' associated with the rate of for­
mation of clusters of some size r larger than the criti­
cal size. Andres and Boudart8 obtained a very general 
expreSSion for 'TI' (among other results) for any linear 
multistate time dependent process. For the nucleation 
process they were able to express 'TI' solely in terms of 
steady state and equilibrium quantities. Their result 
can be expressed as 

I'-l 

'TI'=L.(fr-fr)Fi' 
1c2 

where we have the definition 

and 
i-I 

FI = L (CJDJt l 
, 

Jal 

fr=Cj(l-Fj/F I' ) , 

C1 =Coexp(- Ll.cf>(i}/kT) , 

D J ={3fJJ • 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

In these equations Iris the rate of formation of clusters 
of size r; Iss is the steady state value of the rate;fr is 
the steady state value of A' (t), the concentrationofi-mers at 
t;11 is the initial value offj' The equilibrium concen­
tration of clusters is denoted by C;, and Ll.cf>(i} is the 
free energy of formation of ani-mer. The quantities 
fJ, and f3 are, respectively, the surface area of an i­
mer and the impingement frequency jarea of condensible 
monomer on the cluster surface. Implicit in the deriva­
tion of Eq. (2.3) are the following conventions and initial 
and boundary conditions: The cluster sizes are labeled 
as i = 1 (monomer), i = 2 (dimer), etc.; the creation of 
clusters of size r is deemed irreversible; and the mono­
mer concentration is held constant: 

fN)=ffs=ft • (2.9) 

In another article AndresS reports some results of 
Hile9 regarding other time lags of interest in nucleation. 
Of particular interest is the time lag 'Tn for the rate of 
formation of clusters of size n, the critical size. This 
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time lag may be defined as 11 

Tn=L"'[I-In(t)/Iss}It, 
o 

(2.10) 

where In(t) is the net rate of formation of clusters of 
size n from size n - 1. Using the results of Andres and 
Boudart,8 Tn is given as 

r-l 

Tn = Tr -Fr L IJr -If) (2.11) 
Ian 

More recently, Frisch and Carlier lO have given an in­
dependent derivation of Tr. Their result differs consid­
erably in appearance from Eq. (2. 3), but it is easy to 
show that the two expressions are equivalent. The au­
thors have also considered the problem in which the 
cluster size is treated as a continuous variable, and 
they have derived from the differential equation for itt) 
a corresponding expression for Tr. Of course, this re­
sult could be obtained by converting sums to integrals 
in Eq. (2.3) directly, but in so far as their method is 
based solely on a partial differential equation for itt), 
the same techniques can be used advantageously in this 
paper. This is fortunate because in the theory of binary 
nucleation recourse is made at the outset to the continu­
ous approximation in order to yield a tractable mathe­
matical problem. 

Rearrangement of either Eq. (2.3) or the Frisch­
Carlier result for Tr produces 

r-2 r-l 

Tr=L(CIDlt l L.(fj-i1) , 
lal JaI+l 

(2. 12) 

which can be further manipulated to yield 
r-l n-l n 

Tr=Fr L. lfr-i1)+L(CI D l t l L. lfr-I}) 
Jan+ I I~ I Jal+ 1 

r-l I 

- L. (CID,t
l 

L vr-I}) . (2.13) 
lan+ 1 Jan+l 

With Eq. (2.13), Eq. (2.11) yields 
n-2 n-l 

Tn= L. (C I D l t l L. lfr-/l) 
1-1 J.hl 

r-l j 

- L. (C j Dd-1 L (fj -I}) . (2. 14) 
j =n J=n 

In the continuous approximation, Eq. (2.12) yields 

Tr = fr du[C (u)D(uW 1 fur dg(jss(g) - .f(g)]. (2.15) 

This result can, of course, also be obtained directly 
from the Frisch-Carlier integral expression for Tr 

without resorting to the use of discrete sums. Equation 
(2. 15) can next be written as 

(2.16) 

where 

T r = (( du[C (U)D(u)]-I)!.r dg(j88(g) - .f(g)] (2. 17) 

,and 

(2. 18) 

Equation (2. 18) can be seen as the continuous approxi­
mation of Eq. (2.14). 

If the order of integration in Eq. (2.17) is reversed, 
the dependence of T r on r can be readily investigated. 
With the employment of homogeneous initial conditions, 
Eq. (2.17) then becomes 

Tr = r dX[Ctx)Dtx)]-lf duC(u) • (2.19) 
n n 

Let the classical choice for ~cp in Eq. (2.7) be made 

~cp (x )/kT = - tx - ~ II 3x 21 3) InS , (2. 20) 

where S is the supersaturation. Then the integrand of 
Eq. (2. 19) may be seen to behave as [D(x) InS]-1 for 
large x. Thus, 

3n rlr) 11 3 :1 
T r - D(n) InS L\n - 1J + .... (2.21) 

This expression is clearly of the same order of magni­
tude as that obtained by Frisch and Carlier lO for Tr and 
also presumably possesses the correct asymptotic de­
pendence on r. As previously noted by Andres, 8 

Tn is 
independent of r for large r. Thus, the partitioning 
manifested in Eq. (2. 16) is appropriate since Tr is sep­
arated into a weakly divergent term, T r , and a finite, 
constant term Tn' when viewed as a function of r. 

In the Appendix, the following approximate expression 
for Eq. (2.18) is derived: 

(2.22) 

Values of Tn are listed in Table I and are compared with 
values calculated using Eq. (2. 14). Note the improving 
agreement as n increases. This is mathematically con­
sistent with the approximate nature of Eq. (2. 18). Also 
note, as seen in the Appendix, that the integral L (a) is 
such a slowly varying function of W* (the free energy of 
critical nucleus formation scaled by kT) that it may as 
well be taken as constant when estimating Tn, particular­
ly when binary systems are involved. 

III. TIME LAG IN BINARY NUCLEATION 
A. Approximate kinetic equation 

Since the partial differential equation for ill) now de­
pends on t and on two composition variables, even in the 
continuous approximation, the problem of finding a 
mathematical solution is not such an easy one. How­
ever, much progress can be made if we use the same 
kind of approximation that was used in the steady state 
analysis. 5 There the steady current streamlines were 

TABLE I. Values of the time lag Tn calculated 
with the exact formula, Eq. (2.14), and the ap­
proximate expression, Eq. (2.22). The data of 
Courtney7 were used in evaluating these expres­
sions. 

Tn (j.lsec) Tn(j.lSeC) 
T(OK) S n (Eq. 2.14) (Eq. 2.21) 

263.2 5 69 0.41 0.57 
233.2 10 43 1.46 2.37 
213.2 20 30 3.63 6.98 
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3774 Gerald Wilemski: Binary nucleation. II 

used to define a curvilinear coordinate system. After 
transforming coordinates, it was hoped that components 
of the current vector would be small in the direction 
perpendicular to the path and could be neglected. This 
implies that the streamlines are rather smooth paths 
which change direction only very gradually. The same 
kind of coordinate transformation could be made for the 
time dependent problem. However, the introduction of 
curvilinear coordinates would be purely formal since 
only in the vicinity of the saddle point is there any know­
ledge of their form. We will therefore make a simpler 
coordinate change which, although mathematically exact, 
is somewhat physically incorrect. 

Begin with Reiss' 1 equation for I(t): 

al_aI1_~ 
at -anI an2 ' 

(3.1) 

where 

a 
I j = -c(nb n2)~(n1' n2)i3 I -lf /c) 

ani 
(3.2) 

Here, nl is the number of molecules of Species i in the 
cluster, I and c are the nonequilibrium and equilibrium 
concentrations, ~ is the surface area of a cluster, and 
i31 is the impingement frequency/area of Species i on the 
cluster surface. The II are the components of the cur­
rent vector in the coordinate system defined by n 1 and n2 
as the abscissa and ordinate, respectively. Except 
where otherwise noted, quantities evaluated at the saddle 
point will be denoted with a superscript *. Then, with 
o defined by 

tanO=nr!n! , 

the coordinate rotation 

n1 = Sl cosO - S2 sinO , 

n2 = Sl sinO + S2 cosO , 

(3.3) 

(3.4a) 

(3.4b) 

produces a coordinate system in which the s 1 axis passes 
through the saddle point, though in general not along the 
pass axis which is oriented at a different angle ¢ to the 
n1 axis. After transforming coordinates, if the current 
component in the S2 direction is assumed to be negligi­
ble, Eq. (3.1) may be cast in the form 

:{= a:
1 

0(Sl,S2)c(Sl,S2)a:
1
lf/ C ») , (3.5) 

where 

Equation (3.5) has the formal appearance of the one 
dimensional (in composition) equation used in homogene­
ous nucleation theory and which served as the basis for 
the work of Frisch and Carlier. 10 Their techniques can 
then be used with little further qualification. The equa­
tion does depend parametrically on s2' but only the path 
S2 = 0 is being considered. Though this path is not phys­
ically the most appropriate, it should be satisfactory be­
cause (1) the angles 0 and ¢ usually differ by no more 
than a few degrees, and (2) all other quantities are still 
evaluated at the critical composition and size. 

B. Approximate expressions for time lags 

USing the Frisch-Carlier techniques, Eq. (3.5) can 
serve as the starting point for the derivation of expres­
sions for the time lags of interest. These expressions 
are formally identical to those in Eqs. (2.17)-(2.19), 
and there is no need to repeat them. The various quan­
tities appearing in these equations do have some dif­
ferences, so these are defined below: 

r 
!,8(S 1) = c(s 1) f dy lc lY)D lY )]-1 

8 1 

X (i r 
dU[C(U)D(U)]-l) -1 , 

D(Sl)= (sisf)2/3D * , 

C(sl)=c Oexp[-w(Sl)/kT] , 

W"s l)/kT = - s llnS(O) + (si s!)2/341T(r*)2~* /kT , 

lnS(O) = cosO InS l(X* )+ sinO lnS2 (x*) , 

SI(x) =PI/pt(x) , 

s! = n! cosO + nt sinO 

= (321T/3Hv! cosB+vt sinB)2{a*[kT lnS(B)]"lP 

(3.7) 

(3.8) 

(3,9) 

(3. 10) 

(3.11) 

(3. 12) 

(3. 13a) 

(3. 13b) 

In these equations, r* is the cluster radius, vT is the 
partial molecular volume of Species i in a solution of 
composition x, where x is the mole fraction of Species 2 
in the cluster at the saddle point, 

x =nr!(nf +nt) . (3.14) 

Also, Pj is the pressure of Species i in the vapor, pt(x) 
is the equilibrium vapor pressure of Species i over bulk 
solution of composition x, and a* is the surface tension. 
Note that for s 1 = sf, Eq. (3. 10) redu~es correctly to the 
form given by Flood 12 and by Mirabel and Katz. 4 

Equations (3.3), (3.6), (3.8), (3.11), and (3.13) along 
with the results in the Appendix give for Tn 

Tn= 3(n!+nt)(!D* lnS*)"lL(a) , 

where 

and 

C. Limiting behavior of the time lags 

(3.15) 

(3.16) 

(3. 17) 

Equation (3.15) may easily be used to estimate Tn 

for different values of the physical parameters involved. 
Typical values are presented in Table n for the ethanol­
water system. Additional inSight into the nucleation pro­
cess in a two-component system may be gained by con­
sidering the qualitative behavior of Tn under different 
limiting conditions. 

Consider Tn as a function of the pressures of the dif­
ferent components. Two principal limiting cases occur. 

(1) One species is present in low concentration in the 
vapor. If, for example, P2«P1 while a significant per­
centage of Species 2 was still predicted by thermody­
namics to be present in the critical nucleus, then the fol­
lowing limiting form would pertain: 

J. Chern. Phys., Vol. 62, No.9, 1 May 1975 
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TABLE II. Estimates of the time lag 'Tn in the ethanol-water system at T = 273 oK. The estimates 
1'B for binary nucleation were made with Eq. (3.15), and the estimates 'Tt and 1'2 for the homoge­
neous nucleation of water and ethanol, respectively, were made with Eq. (2.22). For these esti­
mates, L(a) was set at 1. 8 for all cases. Listed are the activities of the vapors, at and a2, the 
mole fraction of ethanol in the critical nucleus x, the time lags, the rate of binary nucleation JB , 

and the rates of homogeneous nucleation of water J 1 and of ethanol J 2• 

'TB 1'1 1'2 JB 

at a2 x (j.lsec) (j.lsec) (j.lsec) (cc-sec)_1 

0.1 3.0 0.97 0.17 0.17 1.2x1012 

1.0 2.33 0.68 0.29 0() 0.37 1. Ox 10t2 
1.5 2.0 0.42 0.51 12.8 0.66 4. 8x 10t2 
1.8 1. 26 0.25 0.79 5.1 9.7 1. Ox 1012 

3.5 0.009 0.08 1.2 0.57 1. ox 10t2 
5.0 0.0001 0.05 20.6 0.24 1. 8x 10t2 

5.8 0.00001 0.04 123.0 0.18 1. 4x 1012 

(3. 18) 

It is apparent that if {32 is too small the time lag neces­
sary for the attainment of the steady state rate of. criti­
cal nuclei formation could become large. This obser­
vation has an important consequence: Homogeneous nu­
cleation of the more abundant component could be the 
preferentially observed process under these conditions. 
Even though the steady state rate of mixed cluster for­
mation might be much higher than that of pure cluster 
formation, the time lag for attainment of that process 
would be so large as to preclude its realization. The 
actual nucleation rate of mixed clusters would then 
probably be much smaller than the steady state value. 
The time lag for homogeneous nucleation of Species 1 
(in this example) would still be relatively small, and 
the steady state rate for this process would be attained 
much sooner, thus providing the principal route for nu­
cleation under these conditions. Both processes are 
taking place simultaneously, but it is their respective 
rates of relaxation to the steady state which determine 
their net effectiveness. This situation is different from 
the limiting case discussed immediately below. 

(2) One species is present in vanishing low concentra­
tion in the vapor. A consistent theory of nucleation in a 
binary system should reduce correctly to homogeneous 
nucleation of one component when the other component is 
made to vanish. s Thus, as P2- 0, it follows that x* - O. 
The concentration of Species 2 in the critical nucleus 
vanishes. For small x*, 

sinO "='x* , 

cosO,,=, 1 . 

Then, in the limit, because (x*)2 goes to zero faster 
than P2, Eqs. (3.7)-(3.17) all reduce properly to the 
form required for homogeneous nucleation of Species 1, 
the remaining species. Thus, if P2 is made too small, 
Eq. (3. 18) becomes inappropriate, since the nature of 
the binary system is changing rather dramatically at this 
point. To wit, it is essentially no longer a two-compo­
nent system. 

Similar considerations will prevail if, for example, 
P~(x)-oo (xo#O). In this case, the free energy of mixing 
of the two components will be very unfavorable and near­
ly all pure clusters of Species 1 will form preferentially, 

J1 J2 
(cc-sec)-t (cc-sec)_1 

0.0 2. Ox 1011 
0.0 1. 5x 101 

"" 0.0 9. 5x 10-12 

"" O. 0 "" O. 0 
2.1x 10-8 0.0 
3.5x105 0.0 
7.6x108 0.0 

provided Species 1 is in a supersaturated state. 

IV. CONCLUDING REMARKS 

The importance of having reasonable estimates of the 
time lags of interest should be reemphasized. Even 
though nucleation theory might predict a high rate of mixed 
cluster formation in the steady state, this steady state 
might be kinetically unattainable. In this case, if homo­
geneous nucleation of one of the components were pos­
Sible, the associated time lag would undoubtedly be 
smaller than that for mixed cluster formation. Hence, 
steady state homogeneous nucleation of one component 
would predominate before the formation of mixed clus­
ters could be ruled out on the basis of steady state theo­
ry. This remark has obvious Significance in the inter­
pretation of experimental data on binary systems. 
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APPENDIX: ASYMPTOTIC BEHAVIOR OF Tn 

Equation (2.10} defines Tn for both homogeneous and 
binary nucleation, and Eq. (2. 18) gives the explicit 
form 

(r In f.r 
Tn =1 )1 dU[C(U)D(U)]-1 u dxC(x) " dy[qv)D(yWI 

, (AI) 

where 
r 

r l = { du[C(u)D(u)r l (A2) 

Of course, for binary nucleation n = sf. Employing Eqs. 
(2.20) and (3.10), Eqs. (2.7) and (3.9) may be written 
as 

C(u)=Coexp{2W*[(u/n)-(3/2)(u/n)2/3]} , (A3) 

where 

W* = (l/2)n InS (A4) 

for homogeneous nucleation, and 

J. Chern. Phys., Vol. 62, No.9, 1 May 1975 



3776 Gerald Wilemski: Binary nucleation. II 

W* " (1/2)s! InS(O) (A5) 

for binary nucleation. For either case, 

D(u)=(u/n)2!3D* , (A6) 

and D* may be readily determined from either Eq. (2. S) 
or (3.6). 

Now make the successive variable changes: 

v=(u/n)I!3, w=(x/n), ~=(y/n)I!3 

Next make the further substitutions 

- 2W*[v3 - (3/2)v2] = W* - -y2 , 

2W*[w - (3/2)W2!3] = - W* +S2 , 

- 2W*[1:3 _ (3/2)1:2]= W* _ t2 . 

(A7) 

(ASa) 

(ASb) 

(ASc) 

These variable changes permit Eq. (AI) to be written as 

=3A 2D*-lj)'d -r2dViOd ;.dwf)'dt _t2d l: 
'Tn n re d se d e dt' 

_at r r S 8 

where 

,-1 Sl'd .,.2dv 
It = re -, 

_at dr 

a ={w* + 2W*[n- 1- (3/2)n-2!3W!2, 

y={W* + 2W*[rn- l - (3/2)(r/n)2!3]p!2 

(A9) 

(AIO) 

(A11) 

(AI2) 

Equations (AS) are cubic equations that can be solved 
exactly to give v and was functions of rand s. Addi­
tionally, v and w may be expanded as power series, giv­
ing 

The coeffiCients are found to be 

v 1(m)=m- 1(3/W*)1!2 , 

v2(m)=m-2(1- 5m/9)[3/(2W*)] , 

v3(m)=m-S [5(1- 5m/9)2 

(A13) 

(AI4) 

(A15a) 

(A15b) 

- (19m 2/27 -IOm/3+ 11/3)](3/(4W*»3!2 

and so on. 
(AI5c) 

Using Eqs. (AI3)and (A14), let us next write Eq. (A9) 
as 

x [e~f)' dte-t2 + va(3) + 3V3(3) (s + es2 (l' dte-t2) + ... J 
8 vl(3) 2v,(3)~ )8 

where 

p(r) " vi'(3):~ , 

and 

O'(s) =: V~'(l):; 

(A16) 

(AI7) 

(AIS) 

TABLE III. Values of L(a). 

W* n a L(a) 

19.88 16 3.60 1.37 
44.94 30 5.83 1.78 
49.51 43 6.30 1. 84 
55.53 69 6.87 1.91 
72.57 81 7.92 2.03 

100.6 125 9.49 2.19 

For large a and Y, A is independent of Cl! and y and Eqs. 
(AIO) and (Al3) give 

(AI9) 

The remaining integrals must be done numerically, but 
several considerations help to simplify matters. ll) 
Since v and ware known exactly as functions of r and s, 
p(r) and O'(s) may be calculated numerically with high 
precision. (2) For large Y, the integrals are indepen­
dent of Y. (3) Numerical calculations show that only the 
the first term of Eq. (AI6) contributes significantly to 
'Tn' With the aid of Eqs. (A15) and (AI9), Eq. (AI6) may 
now be written to a good approximation as 

'Tn" 3n2(W*W*r'L(a) , (A20) 

where 

L(a)= J.:dre-,.2p(r)~OdreS20'(s)erfC(s) (A21) 

and erfc (s) is the complementary error function. 

The integral L (a) was evaluated numerically for sev­
eral values of W*. The results, listed in Table III, 
show L(Cl!) to be a very slowly varying function of W*: 
L(a) increases approximately as (W*)lIS. 

*The support of the Power Program of the Office of Naval Re­
search is gratefully acknowledged. 
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