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Intrinsic viscosity of stiff dumbbells from time correlation 
functions· 

Gerald Wilemski 

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755 
(Received 8 April 1975) 

The intrinsic viscosity of a suspension of stiff dumbbells is evaluated by a time correlation function method. 
The required moments of the internal coordinates are calculated directly from the diffusion equation, 
without explicit evaluation of the Green's function. For the rigid dumbbell, the correct high frequency limit 
is obtained, disposing of recent doubts over this possibility. The interplay of dumbbell stiffness and shearing 
frequency is also illustrated. 

I. INTRODUCTION 

Time correlation function methods (TCFMl have pre­
viously been proposed2

-
a for use in polymer dynamics. 

Several of these methods have been used to calculate 
the intrinsic viscosity of flexible4- 7 and rigid6,9 chain 
polymers in solution. Although a correct result9 had 
been reported for the latter application, the adequacy 
of TCFM and diffusion equations for predicting limiting 
high frequency behavior has been questioned. 6 Inter­
twined with these two disparate viewpoints was some 
confusion regarding the correct form of the stress ten­
sor whose correlation function was to be calculated. 
Yamakawa, Tanaka, and Stockmayer10 attempted to re­
solve these difficulties, but it now appears that only 
very recently has this been accomplished. 11,12 Much of 
the disagreement apparently arose because of misunder­
standing over the different ways of handling constraints. 13 

In this article TCFM and a diffusion equation are used 
to calculate the Newtonian intrinsic viscosity of a sus­
pension of free-draining stiff dumbbells. This problem 
has been considered before, both with6,9,11 and with­
out14-

16 TCFM. The present calculation differs from 
previous treatments in evaluating various moments of 
the internal coordinates of the dumbbell directly from 
the diffusion equation, avoiding entirely the somewhat 
lengthier procedure of explicitly calculating11 the 
Green's function of the diffusion operator. A single 
relation for the intrinsic viscosity is obtained, valid at 
all frequencies through terms of order K-l, where K is 
the spring force constant of the dumbbell. For a com­
pletely rigid dumbbell, direct passage to the limit K-1 

- 0 yields the correct result at all frequencies, ex­
plicitly allaying the recent6 skepticism about TCFM. 
The results illustrate the interplay between the stiff­
ness of the dumbbell and the frequency of the OSCillating 
shear in determining the apparent rigidity of the particle 
in solution. Hydrodynamic interactions have been omit­
ted for simplicity, but their inclusion in this case is not 
difficult. 11,15 

II. EQUATIONS FOR THE FREE-DRAINING 
DUMBBELL 

The dumbbell distribution function G satisfies the dif­
fusion equation 

(2.1) 

where t is the friction constant for a single particle and 
Kj is the force on particle i 

(2.2) 

For the potential of mean force W we make the same 
choice as Fraenkel. 14 Thus, 

(2,3) 

where rj denotes the position vector of particle i, K is 
the spring force constant, and b is the finite equilibrium 
length of the spring. Upon transforming into relative 
coordinates and rejecting any center of mass depen­
dence, Eq. (2. 1) becomes, 

where 

D=2kT/t, 

and 

K=-K(r-b)r/r. 

In spherical coordinates Eq. (2.4) becomes 

~~ =Dr-2(a~) [r2(~~)+K(kTr1r2(r-b)GJ 
+Dr-2M/J,q,G, 

where 

(2.4) 

(2. 5) 

(2.6) 

(2.7) 

(2.8) 

The complex intrinsic viscosity [1)] is given by the 
expression 10,11 

(2. 10) 

where N A is Avogadro's number, M is the dumbbell 
molecular weight, and 1)0 is the sol vent viscosity. 

The time correlation function needed is the follow­
ingll ,12: 

(2.11) 

where 

(2.12) 
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(2.13) 

and 

(2.14) 

The normalization constant no will be specified later. 
Here, Jxy has already been expressed in relative coor­
dinates, and Ky is the y component of the force K. In 
spherical coordinates Eq. (2.12) becomes 

J xy(t) = - K J r(r - b) sinze sin<t> cos<t> G dr . (2. 15) 

III. CALCULATION OF MOMENTS 

The moments of interest are defined as 

.0. (n)(t) = f (r - b) n sinze sin<t> cos<t> G dr (3.1) 

and 

(3.2) 

Then, note that 

Jxy(t) = - K[.o.(Z)(t)+b.o.(I)(t)] • (3.3) 

Upon multiplying Eq. (2. 8) by (r - b) n and integrating, 
the following exact equations are obtained: 

d.o.(O)/dt=-6DR(-Z) , (3.4) 

d.o. (l)/dt = - Ti1 .o. (1) _ 4DR (-1) + 6DbR (-Z) , 

d.o.(Z)/dt= - 2Til .o.(Z)+ 8DbR(-1)- 6Db ZR(-Z) , 

d.o.(3)/dt=- 3Til .o.(3)+6D.o.(1) 

(3.5) 

(3.6) 

+6Db.o.(O)-12Db ZR(-1)+6Db 3R(-Z) , (3.7) 

where 

Tl=kT/KD. (3.8) 

In order to solve these equations for .0. (Z) and .0.(1) a 
simple perturbation expansion is necessary. In the 
limit of very large K, the dumbbell will perform small 
amplitude vibrations about the reference length b. Then 
r-l and r-z may be expanded in terms of the deviation, 
6 = r - b. With these expansions, the moments R (-1 )(t) 
and R N)(t) may in turn be expanded as 

R(-l)=b-l .o.(O)_ Elb-Z.o.(l)+ Ezb-3.o.(Z)- E3b-4.o.(3) + 000, 

(3.9) 

and 

R(-Z)=b-Z.o.(O)_ 2El b-3.o.(l)+ 3Ezb-4.o.(Z) 

-4Esb-s.o.(3)+ooo. (3. 10) 

Here, parameters Ej have been introduced in order to 
identify easily the terms arising in each order of the 
expansion in 6. For example, in order to display terms 
only through 62

, both El and EZ may be put equal to unity, 
and the higher En(n:::: 3) set equal to zero. Equations 
(3.4)- (3.7) may be solved consistently through order 
63

• Higher-order consistency would, of course, involve 
equations for higher moments. 

After taking the Laplace transform of Eqs. (3.4)­
(3.7) and performing the necessary algebra, one obtains 
the expressions for ,&(l)(S) and ,&(Z)(s) which are dis­
played in Eqs. (A1)-(A2) of the Appendix. These equa­
tions in conjunction with Eqs. (2.10), (2.11), and (3.3) 
will yield the desired result. The final step is the cal­
culation of the equilibrium averages. For large K, the 
normalization constant no of Eq. (2.13) is given as 

(3. 11) 

where 

(3,12) 

and 

The averages which contribute terms of order K-l to 
['11] are the following: 

(A(O)(O).o.(l)(O»eq= 2b'Yzo/15 , 

< A (1)(0).0. (1)(O»u = (A (0)(0).0. (Z)(O»,q 

= bZ')I(l + 3 ')')zo/15 , 

{.o.(I)(O).o.(Z)(O»eq= 6b 3 ·y2 z o/15 , 

(.o.(Z)(O).o.(Z)(O»oq= 3b 4,..zzo/15. 

IV. THE INTRINSIC VISCOSITY 

(3.14) 

(3. 15) 

(3.16) 

(3. 17) 

Upon combining Eqs. (2.10), (2.11), (3.3), (A1), and 
(A2) and displaying only terms which will contribute to 
order K-

1
, the following expression for [7)] may be ob­

tained: 

[7)]= NAbbzz o {1 1 [1 1/2 ] 
30M7)o 1+iwTl+6')1VlEl + l+iwT 1+iwTl+6'YlllEI + 1+iwTz+6'Y/.LIEZ 

+ ')I [[9+ (1 + iWTrl]Ol(W)+ [2El + (4E1 -'- 7Ez)(1 + iWTrl + (2El - 3Ez)(1 + iWTrZ] OZ(W)]} , (4.1) 

where 

TZ=Tl/2 , 

T =b z/6D , 

Ol(W)= (l+iwTlfl+ H1+iw7'zfl, 

Oz(w)= (l+iwTd-l(l+iwTafl • 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Note that III and 1.1.1 are defined in Eqs. (A9) and (All) 

I 

of the Appendix. 

Evidently the third-order expansion in 6 has con­
tributed no term of order K-

l • Though no details are 
reported here, further analysis of the equations for 
higher moments shows that no other terms of order K-1 

will be generated. This statement is consistent with the 
value of [7)] at zero frequency. In general, for the free 
draining dumbbell at zero frequency17 
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[ ]O_~ 2) 
1J - 12M1Jo (r eq, (4.6) 

and for large K, using Eq. (2.13) to evaluate (r 2 ).q to 
order K-1, 

(407) 

Mter setting W= 0 and expanding any remaining terms, 
Eq. (4.1) gives precisely this result. 

The limit K - 00 is easy to perform, 
result is obtained: 

and the expected 

[] = NA b
2

, {1 (3/2)} 
1J rd 30M1Jo + l+iwT • 

(4.8) 

Thus, by means of TCFM the correct limiting high 
frequency behavior for a rigid dumbbell has been de­
duced. Upon further reflection there seems to be no 
a priori reason to doubt the fundamental accuracy of 
TCFM in this application. The conventional method, 14-16 

which does give the correct answer, requires the solu­
tion of the diffusion equation which is perturbed by an 
additional term representing the effect of the shearing 
flow. For small rates of shear (linear response) the 
dynamical behavior of this solution will be determined 
by the same relaxation modes found for the Green's 
function of the unperturbed equation. ThUS, provided 
all constrained coordinates are treated properly, both 
methods should give identical results. From this point 
of view, the strategy of employing the Fraenkel model14 

is quite satisfactory. Taking the limit K - 00 is legiti­
mate mathematically, and it is physically justifiable 
whenever experimental circumstances so warrant. 

Particles in solution may appear rigid or nonrigid 
depending on the magnitude of the experimental probing 
frequency. This behavior is nicely illustrated by the 
set of calculations presented in Fig. 1. There, the 
real part of [1J], designated [1J'], is plotted as a function 
of frequency for four different values of K. These values 
were chosen in order to make the ratio of the vibra-

1.0 

0.8 

[7]'] 0.6 

[7]]0 

0.4 
o 

0.2 

0.0 
-2 -I 0 I 2 4 5 

log (WT) 

FIG. 1. Frequency dependence of [1) '] for dumbbells of varying 
stiffness. The curves were calculated for the indicated values 
of (TilT). Note that stiffness increases as (TtlT) decreases. 

tional relaxation time Tl to the rotational relaxation 
time T, 

(4.9) 

become successively smaller, and ultimately zero (K 
- ""). The four chosen values for T1/T were 10-2 10-3 

1 
4 ' , 

0- , and O. For these choices the bracketed terms 
multiplied by K-1 in Eq. (4.1) are negligibly small and 
may be omitted. 

The three frequency ranges indicated by Fraenkel14 

are apparent in Fig. 1. The initial decline attributable 
to the rotational motion of the dumbbell is followed by 
the plateau region characteristic of the rigid dumbbell. 
Last comes the deCline in the highest frequency region. 
One sees clearly that as the force constant is increased 
the dumbbell responds to the oscillating shear like a 
rigid particle over successively larger ranges of fre­
quency. In each case, though, for finite K a frequency 
range is reached in which the vibrational modes of the 
stiff dumbbell can be excited. This leads to the final 
decline in viscosity since the dumbbell can now "follow" 
the oscillatory shear and reduce the frictional drago 
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APPENDIX 

Through order 15 3, Eqs. (3.4)-(3.7) may be solved 
for ~(1)(t) and ~(2)(t). The Laplace transforms (desig­
natedby ~ and with s as the transform variable) of 
these quantities are given in the following expressions: 

A (l)(S)= [~l(l- 36 y 2pu)]"lh(1+STr1(b/3) 

x (1 + 6 yp)~ (0)(0)+ T1~ (1)(0) 

+ T16 yp b -1 ~ (2)(0) - T1 6 yb-2ES(Vz+ 12 YlJ.zp)~ (S)(O)} 

(A1) 

+ T z~ (Z)(O) - Tz 6 yb -l ES(21.1.2+ 6 'YV2 u)~ (S)(O)} • 

Here, 

t=(6Drl b2
, 

and 

Also, 

~l" 1 + ST1 + 6 yVEl + (6 y)ZVzES , 

~z= 1 + 8T2+ 6 YI.I.1 Ez+ (6 y)2I.1.zEs~z , 

~s= 1+ 8T3+ 4 y, 

where 

vl=t[2-(1+8Tr1] , 

vz=+ H(t)- (l+STr1 H;l, 
1.1.1= H(t)+(1+STr1], 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

(All) 
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Next, 

P =P1Ez- 3'Y11Z~21E3Ez, 

a= alEl-12"jJ.z~ilE3' 

and finally 

Pl= Ht- (1+s'Tr1 Hil, 

al = i[1+ (1 +S'T r1 Hil • 

*Supported by the National Science Foundation. 

(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

l R• W. Zwanzig, Ann. Rev. Phys. Chern. 16, 67 (1965). 
2J. J. Erpenbeck and J. G. Kirkwood, J. Chern. Phys. 29, 

909 (1958); 38, 1023 (1963). 
3y • H. Pao, J. Macrornol. Sci. Phys. I, 289 (1967). 
4W. H. Stockrnayer, W. Gobush, Y. Chikahisa, and D. K. 

Carpenter, Chern. Soc. Faraday Discuss. 49, 182 (1970). 
oK. Iwata, J. Chern. Phys. 54, 1570 (1971). 
sM. Doi and K. Okano, Polyrn. J. 5, 216 (1973); M. Doi, H. 

Nakajima, and Y. Wada, colloid and Polyrn. Sci. (submitted). 
1M. Bixon, J. Chern. Phys. 58, 1459 (1973). 
8R• Zwanzig, J. Chern. Phys. 60, 2717 (1974). 
9y. Chikahisa and W. H. Stockrnayer, Rep. Prog. Polyrn. Phys. 

Jpn. 14, 79 (1971). 
10 H• Yarnakawa, G. Tanaka, and W. H. Stockrnayer, J. Chern. 

Phys. 61, 4535 (1974). 
I1 B. U. Felderhof, J. M. Deutch, and U. M. Titulaer, J. 

Chern. Phys. 63, 740 (1975). 
12W: H. Stockrnayer, G. Wilernski, H. Yarnakawa, and G. 

Tanaka, J. Chern. Phys. 63, 1039 (1975), 
13M. Fixrnan, Proc. Natl. Acad. Sci. USA 71, 3050 (1974), 
14G• K. Fraenkel, J. Chern. Phys. 20, 642 (1952), 
1"R. B. Bird, H. R. Warner, Jr., and D. C. Evans, Adv. 

Polyrn. Sci. 8, 1 (1971). 
ISJ • Kovac, Ph.D. thesis, Yale University, 1974. 
l1p. Debye, J. Chern. Phys. 14, 636 (1946), 

J. Chern. Phys., Vol. 63, No.6, 15 September 1975 


	Intrinsic Viscosity of Stiff Dumbbells from Time Correlation Functions
	Recommended Citation

	tmp.1515778414.pdf.zTxe2

