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Abstract 

COMPARATIVE SEROLOGICAL AND MOLECULAR ANALYSIS OF GROUP VIII 

SPIROPLASMA FROM AUSTRALIA AND NORTH AMERICA 

August 2003 

APRIL CARMITA MURPHY 

B.S. GEORGIA SOUTHERN UNIVERSITY 

M.S. GEORGIA SOUTHERN UNIVERSITY 

Directed by: Professors Frank E. French and Laura B. Regassa 

Spiroplasma bacteria (Mollicutes: Spiroplasmataceae) are characterized by 

motility, helical morphology and are most frequently found in insect guts and phloem 

tubes of plants. Traditionally, Spiroplasma have been classified by serology. Recent 

work has generated 16S rDNA sequences that generally correlate with the serological 

findings. Although the serology and the 16S rDNA sequence analysis clearly classifies 

strains to the group level, they do not distinguish between strains within the same group. 

The goal of this project was to investigate the utility of the 16S-23S rDNA intergenic 

spacer region sequence as a means to distinguish these closely related strains. 

v 



We chose Group VIII strains for this analysis because they were not separated by 

16S rDNA analysis. We generated 16S-23S rDNA intergenic sequence and detailed 

serological profiles for eight Group VIII spiroplasmas isolated from North American and 

Australian horse flies. Within 293 nucleotides of 16S-23S rDNA intergenic spacer 

region, there was 96% identity among the eight strains. The sequence analysis grouped 

the strains into 3 main clusters, with the type strains Spiroplasma chrysopicola, S. 

syrphidicola, and TAAS-1 and BARC2649 each falling in to a different cluster. The 

phylogenetic analysis did not correlate precisely with the detailed serology. In addition, 

the phylogenetic groups did not correspond with geographic or host diversity. 
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Chapter I 

Introduction 

Mollicutes are the smallest self-replicating Prokaryota known (Harasawa and 

Kanamoto, 1999) and readily pass through 200nm pores. The genus Spiroplasma was 

placed in the Family Spiroplasmataceae, Order Entomoplasmatales, Class Mollicutes, of 

the Division Tenericutes (Tully et al., 1993). Spiroplasma are characterized by helical 

morphology and motility. They lack a peptidoglycan cell wall and are descendents of a 

clostridial branch of gram-positive bacteria (Woese, 1987). 

Mollicutes that are pathogenic to plants multiply in and are transmitted by insect 

vectors which are phloem-feeding species, namely leafhoppers (Anonymous, 1995; Bove, 

1997). Spiroplasmas were first discovered in 1973 through the etiology of two plant 

pathogens: com stunt and citrus stubborn diseases. Both diseases resulted in stunted 

growth of the infected plant as well as small ill-formed fruit. These plant pathogens are 

restricted to the sieve tube elements of the plant. The causative agent of Citrus Stubborn 

disease, Spiroplasma citri, was the first mollicute to be characterized and named (Saglio 

et al., 1973). Spiroplasma kunkelii, the causative agent of Com Stunt disease, was fully 

characterized and named by 1986 (Whitcomb et al., 1996). 

Morphological changes occur in spiroplasmas throughout their life cycle, but at 

some point they all possess a helical structure (Whitcomb et al., 1999) that is primarily 

observed during the exponential growth phase of the organism (Vazeille-Falcoz et al., 

1997). Nutritional quality and various environmental parameters of culture media also 
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influence morphology (Chang, 1989). Spiroplasma are devoid of periplasmic fibrils, 

flagella, and axial filaments, but they are capable of achieving motility. The types of 

motility displayed by the spiroplasmas are rotational and flexional movement (Razin, 

1989; Whitcomb et al., 1999). Rotary movement is accomplished through slow 

undulation, flexing, or twitching of the cell (Razin, 1978). 

The Spiroplasma branch may have evolved as a lineage adapted to exploit various 

habitats in the hemolymph, ovaries, fat bodies, hypodermis, salivary glands, and gut 

lumen of insects. Because of this relationship, the genus Spiroplasma may be one of the 

most abundant groups of microbes on the earth (Hackett and Clark, 1989). Spiroplasma 

species are found in association with a wide variety of arthropods, including several tick 

species, Coleoptera, Diptera, Hemiptera, Homoptera, Hymenoptera, Lepidoptera, and 

Odonata (Bove, 1997). Although most complete life cycles are not known, spiroplasmas 

are probably deposited by insect defecation or regurgitation of fluids during feeding 

(Hackett and Clark, 1989; Wedincamp et al., 1996). Some members of the genus 

Spiroplasma are maintained in cycles in the phloem of plants and the bodies of plant- 

sucking insects that act as vectors (Whitcomb, 1981). Spiroplasma may sometimes be 

transmitted from infected insect to uninfected insects via plant phloem (Fukatsu et al., 

2001). Alternatively, horizontal transmission via parasitoids is also possible (Huigens et 

al., 2000). 

The vast majority of mollicutes are host-restricted (Hackett and Clark, 1989). The 

issue of host specificity has important implications for pest management programs based 

on these microbes. For example, the Colorado potato beetle is a major pest of potatoes, 

tomatoes, and eggplant in North America (Hackett et al., 1996). These beetles are often 
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infected with host-specific, gut-inhabiting spiroplasmas, which could be used in 

biocontrol upon addition and expression of an insect-lethal gene (Konai et. al., 1996). 

However, a better understanding of the nature of host specific associations will be needed 

before utilizing spiroplasmas as biological control agents (Hackett et al., 1992). 

Most members of the genus Spiroplasma are known or suspected to be parasitic 

[sic], although the degree of effects are extremely diverse between different species and 

under different conditions, ranging from clearly detrimental to almost neutral or 

sometimes slightly beneficial (Whitcomb, 1981). Some insect spiroplasmas are 

entomopathogens. Spiroplasma melliferum and S. apis are honey bee pathogens that 

cross the gut barrier into the hemolymph where they multiply and kill the bee (Clark et 

al., 1985; Mouches et al., 1983). Spiroplasmapoulsonii infects neotropical Drosophila 

(fruit flies) and kills the male progeny (Williamson et al., 1999). However, many insect 

spiroplasmas are not pathogenic, often restricted to the gut, and may be regarded as 

mutualists or incidental commensals (Bove, 1997). Most of the isolates multiply at 370C 

which raises the question of whether or not they could be pathogenic to vertebrates 

(Konai et al., 1996). Spiroplasma mirum from ticks was an experimental pathogen of 

vertebrates when injected into the eye of fetal mice (Tully et al., 1995). 

Clark et al. (1984) reported that tabanid flies (Diptera: Tabanidae) contain many 

spiroplasmas. To date, Tabanidae are recorded hosts for 11 of the 34 known Groups of 

Spiroplasma (Williamson et al., 1998) including one that contains three subgroups 

(Group VIII) (Clark et al., 1984; French et al., 1990; Whitcomb et al., 1997). Tabanid 

flies (horse flies) exhibit a high incidence of spiroplasmal microbes (French et al., 1992) 

in the abdominal viscera. It is common to isolate three or four strains from a single fly 
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and for the faster growing strains to out compete the slower strains in cultures 

(Whitcomb and Hackett, 1996). To date, none have been shown to be pathogenic to their 

hosts. 

Certain tabanid associated strains appear to be geographically limited (Whitcomb 

et al., 1999). Recent analysis of isolates from tabanids of Costa Rica, Ecuador, U.S.A., 

Australia and France revealed putative new species (French, unpublished data). Some 

serologically identical strains were found in tabanids from both U.S.A. and France, while 

others were isolated only in France (Le Goff et al., 1991; Vazeille-Falcoz et al., 1997). 

The spiroplasmas from tabanids have one of two fundamentally different 

morphologies. The Group VIII spiroplasmas exhibit short cells (four turns or less) during 

some point in their growth phase and they catabolize arginine. The other cluster of 

tabanid spiroplasmas is characterized by long cells that usually do not catabolize 

arginine, but ferment glucose. In addition, the Group VIII spiroplasmas have a 

significantly higher G+C ratio of the chromosomal DNA than do longer spiroplasmas 

(Whitcomb et al., 1990; Carle et al., 1990). 

Before assignment of binomial names, putative species are currently classified in 

a group system (Gasparich et al., 1993). In 1976, the International Committee of 

Systematic Bacteriology Subcommittee assembled a group of Spiroplasma workers 

whose task was to evaluate various techniques for classification of Spiroplasma. By 

1980, the assembly published criteria for Spiroplasma classification as well as a set of 

type strains (Whitcomb et al., 1999). The revised criterion for the classification system 

of spiroplasmas has resulted in 34 Groups and 14 subgroups (Anonymous, 1995; 

Williamson et al., 1998). 
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Traditionally, spiroplasmas are classified by serology based on surface antigens 

and utilization of other phenotypic characteristics. The first step is to place unknown 

strains into a known Spiroplasma Group based on surface reactions to combinations of 

specific Spiroplasma antibodies (Anonymous, 1995). After screening, the deformation 

(DF) test is the most widely used serological test for further evaluation of spiroplasmas 

(Williamson et al, 1978). The spiroplasmas tested are mixed with individual antiseras 

from the positive screening group and reacted at dilutions from 1:20 to 1:2560. The 

endpoint titer is the point at which half of the spiroplasma cells react and half do not 

react; the identity of the unknown spiroplasma is indicated at this point (Williamson et 

al., 1978). If the identity of the strain is not resolved by the serological DF test, dilution 

cloning is done to obtain a culture that originates from a single cell so that 

antibody/antigen reactivity will be homogeneous. Cloning is essential in many cases 

because mixed cultures can not be correctly identified. Dilution cloning is usually 

completed three times and reciprocal DF tests are done (Whitcomb and Hackett, 1987). 

Detailed serology shows considerable differences among spiroplasmas 

(Whitcomb et al., 1999). Serology of spiroplasmas has been studied in great detail and 

careful examination of the totality of spiroplasma data indicates a strong correlation 

between serology and molecular phylogeny (Williamson et al., 1998). Group 

classification of spiroplasmas is based to a considerable degree on serological data. It is 

recognized that reciprocal cross reactivity is required to establish groups, since one-way 

cross-reactions, which in some cases can be of considerable magnitude, are not unusual 

in serology (Whitcomb et al., 1987). Every combination of Spiroplasma antigen and 

antibody reaction has been tested by DF serology in the course of defining the 34 groups 
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and 14 subgroups (Williamson et al., 1998). Everyone of the cross reactions observed 

in these tests has been consistent with the topologies of phylogenetic reconstructions 

(Gasparich et al., 2003). 

Phenotypic characters are not able to serve as a sole basis for phylogenetic 

classification (Razin, 1989). The early genetic analysis of spiroplasmas indicated G+C 

values from 26 to 31 mol% and a genome that ranges from 1,100 kbp to 2,200 kbp 

(Dodge et al., 1998; Gasparich et al., 2003). Evolutionary' relationships based on 16S 

rDNA sequence indicate that Mollicutes arose by simplification of Gram-positive 

bacteria (Woese, 1987). However, the lack of sequence divergence in the 16S rDNA 

region of the spiroplasmas prevents detailed phylogenetic analysis (Dodge et al., 1998). 

When examining Group VIII Spiroplasma, the G+C content values range from 28-31%, 

evolutionary distances among the type strains are very small (similarity coefficients of 

0.992-0.999), and the 16S rDNA sequences failed to resolve the relationships among 

them (Stackebrandt and Goebel, 1994). The 16S-23S spacer region may be better suited 

to this type of phylogenetic analysis because it includes both conserved and variable 

regions in a short stretch and is less conserved than the adjacent 16S and 23S rRNA 

genes (Harasawa et al., 1996). 

In my study, the 16S-23S spacer region from eight serologically distinct Group 

VIII isolates was analyzed. Genomic DNA was isolated, PGR amplified, and sequenced. 

The 16S-23S spacer region sequence was aligned and employed for phylogenetic 

analyses to separate the Group VIII Spiroplasma strains and show relatedness among the 

isolates from two continents. North America and Australia. The sequence analysis 

grouped the strains into 3 main clusters, with the type strains Spiroplasma chrysopicola, 



S. syrphidicola, and TAAS-1 and BARC2649 each falling into a different cluster. The 

phylogenetic analysis did not correlate precisely with the detailed serology. In addition, 

the phylogenetic groups did not correspond with geographic or host diversity. 



Chapter II 

Materials and Methods 

Collection and isolation of bacteria. Spiroplasma were isolated from female 

horse flies (Diptera: Tabanidae) in temperate and tropical locations on two continents. 

The fly hosts were captured using various methods including Gressitt/Malaise traps and 

hand nets. The host and isolation locale of putative species and the American type 

culture collection strains examined in detail in this report were: (1) GSU5485 from 

Cydistomyia sp., in temperate Engella, Queensland, Australia (S 21° 10.0' E 48° 30.4'; 

725m above sea level; 57km inland), 6 February 1999 by Frank E. French; (2) GSU5603 

from Scaptia lasiophthalma in temperate Batemans Bay, South Wales, Australia (S 35° 

40.2' E 150° 12.8'; 40m above sea level; 5km inland), 24 February 1999 by Frank E. 

French; (3) GSU5367 from Diachlorous curvipes in tropical Puenta Vargas National 

Park, Province Limon, Costa Rica (N 9° 42.9' W 82° 49.3', 2m above sea level), 6 

August 1998 by Frank E. French; (4) GSU5431 from Tabanus occidentalis in tropical 

Refuge Vida Silvestre, near Curu, Province Puntarenas, Costa Rica (N 9° 48.17 W 84° 

55.52'; 35m above sea level), 14 August 1998 by Frank E. French; (5) BARC1357 from 

Tabanus lineola in temperate Bulloch Co., Georgia, U.S.A., 12 July 1989 by Frank E. 

French; (6) BARC2649 from Tabanus lineola in temperate Bulloch Co., Georgia, 

U.S.A., 25 April 1991 by Brenda A. Hester, ATCC 700284 T(T= type culture); (7) 

Spiroplasma syrphidicola (EA-1) from Eristalis arbustorum (Diptera: Syrphidae) in 

temperate Prince Georges Co., Maryland, U.S.A., July 1980, T.B. Clark, ATCC 33826 r; 
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(8) Spiroplasmu chrysopicola (DF-1) from Chrysops sp. in temperate Prince Georges 

Co., Maryland, U.S.A., August 1983, T.B. Clark, ATCC 43209 and (9) TAAS-1 from 

Tabanus atratus in Big Bend National Park, Texas, U.S.A., September 1987, by Robert 

F. Whitcomb, ATCC 51123 1 (Clark, 1982; Clark et al., 1984; Gasparich et al., 1993). 

Spiroplasma isolates were obtained as described by Wedincamp et al. (1996). 

The tabanids were chilled, surface sterilized with 0.5% NaOCl for at least 45 seconds, 

rinsed in distilled water for 45 seconds, and the terminal abdominal segment was 

removed. The viscera were removed, minced in 1.5 ml of MID broth, passed through a 

0.45|am filter, incubated at 30oC, and observed daily for growth. The recipe for 500 ml of 

MID broth is 332 mg Glucose, 332 mg Fructose, 3,320 mg Sucrose, 25,150 mg Sorbital, 

7,000 mg BBL Mycoplasma Broth Base, 2,320 mg Tryptone, 2,660 mg Peptone, and 8 

ml 0.1% Phenol red, 534 ml Schnider's Drosophila Medium, 166 ml Fetal Bovine Serum, 

and 322 mg Penicillin G with a pH of 7.8 (Whitcomb, 1983). Spiroplasma cultures were 

examined by dark field microscopy at 1200 X magnification to ensure that helical cells 

were present. Isolates were stored at -70oC in MID broth until tests were administered. 

Serological Analysis. Spiroplasma cultures were evaluated serologically to 

determine group placement. Group placement was accomplished by screening isolates 

against 12 combinations of 32 antisera to spiroplasmas from tabanid hosts (Whitcomb et 

al., 1999); positive identification was determined based on 50% or greater cell 

deformation. For those placed in Group VIII by the screening assay, serological 

deformation (DF) tests were performed against the five specific antisera making up the 

screening cocktail combination for Group VIII (EA-1, DF-1, TAAS-1, BARC1357, and 

BARC2649). The individual antisera were diluted 10-fold in MID broth and reacted 
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with an equal volume of Spiroplasma cultures for 30 minutes at room temperature. 

Positive reactions were determined microscopically by observing deformation or 

clumping of at least 50% of the cells (Williamson et al., 1978). Identity was resolved by 

testing against individual antisera and a positive DF test score at a dilution of 1:320 or 

greater resolved identity. 

Cloning was completed for isolates whose identity was not resolved. Cultures 

were serially diluted in MID broth from 10"' through 10'11. For each dilution of 10"7 

through 10"", 18 ml of broth was distributed on 96-well microtiter plates, with 200 \i\ of 

broth in each well, and observed daily for color change of the MID broth. The MID 

contained phenol red, an acid indicator. If spiroplasmas grew, the color changed from 

red to yellow upon acidification indicating growth. To isolate a clone, broth from a 

single yellow well was chosen. All strains used in this study were cloned by dilution 

three times. DF tests were repeated after each round of cloning. 

Triply-cloned cultures of selected strains were used for antisera production. Each 

strain was growrn in 500 ml of MID broth at 370C, the cells were collected by 

centrifugation, resuspended in 10 ml of phosphate buffered saline (1.16% NaiHPCU, 

0.24% NaF^PCU, and 0.584% NaCl, pH 7.5). A 2.4 ml aliquot of the cells was added to 

lyophilized RIBI® adjuvant (Sigma Chemical Co., St. Louis, MO), and a 1.0 ml dose was 

administered as 300 ij.! intradermally, 400 p.1 intramuscularly, 100 (il subcutaneously, and 

200 |il intraperitoneally to a rabbit. The immunization schedule was distributed over 

three week intervals until antibody levels crested at a 1:640 or greater dilution, with 1.0 

ml of resuspended cells in adjuvant injected every three weeks. Serum was recovered 

from the blood and aliquots were diluted 1:10 in MID broth for subsequent serology. 
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Two way deformation tests were completed by doing reciprocal DF tests with all other 

cloned Group VIII strains and their respective antisera. I completed the serology for 

GSU5485 and GSU5603 and utilized the data from Stewart (2001) for the others. 

DNA isolation, amplification, and sequencing. Genomic DNA was isolated 

using the method described by Duret et al. (1999). Twenty milliters of culture was grown 

in MID broth at 370C and examined by dark field microscopy for concentration and 

morphology. When cells reached a density of 90-100 cells per field of view, they were 

harvested by centrifugation. The pellet was resuspended in 600 |al of STE buffer (10 mM 

Tris-HCl, 1 mM EDTA, 10 mM NaCl, and 5 M NaCl) and cells lysed with 67^1 of 10% 

SDS at 670C for 15 minutes. The lysate was treated with 2.3 (ig/ml of RNAse for 30 

minutes at 370C and then extracted with phenol: chloroform: isoamyl alcohol (24:24:1). 

The pellet was EtOH precipitated from the aqueous phase and resuspended in 50 |il TE 

buffer. 

A 16S-23S rDNA spacer region of approximately 330 bp was PGR amplified 

using primers with homology to the 16S and 23S rDNA genes (5'- 

CGGTGAATACGTTCTCG-3' and 5'-CAAGGCATTCACCATAC-3', respectively). 

Amplification was carried out in a 50 (il reaction mixture containing 100 ng of genomic 

DNA, IX Buffer A (Promega Corp., Madison, WI), 0.2 mM dNTPs, 2.5 units Taq 

polymerase (Promega Corp., Madison, WI), and 1.5 mM MgCb. Amplification cycles 

were completed as follows: denaturation at 940C for 5 minutes, 35 cycles at 940C for 45 

seconds, 460C for 45 seconds, 12° for 60 seconds, and one cycle at 720C for 2 minutes. 

PCR products were separated on a 2% agarose gel and purified using a Qiagen Gel 

Extraction Kit (Qiagen, Inc., Valencia, CA). Amplified products were sequenced at the 
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Davis Sequencing Facility (Davis, CA) with the same primers used for PCR 

amplification. All DNA sequences were confirmed by at least two independent 

sequencing reactions. The DNA sequences were aligned using CLUSTALW 

(www.ebi.ac.uk/clustalw/) and a 293 bp region was chosen for subsequent analysis. 

Phylogenetic Analysis. Phylogenetic trees were constructed by Dr. Tao Lin from 

the nucleotide sequence of the 16S-23S intergenic spacer regions. The neighbor-joining 

tree was constructed with PAUP (phylogenetic analysis using parsimony) software and 

was based on a comparison of the 293 bp of nucleotide sequence in the spacer region. 

Bootstrap confidence levels above 50% were obtained for each branch point. 



Chapter III 

Results 

Serological analysis. Spiroplasma were isolated on two continents with climates 

ranging from tropical to temperate. Spiroplasma hosts included five genera and seven 

species of tabanid fly and one syrphid fly, E. arbustorum. Detailed serological analysis 

of Group VIII strains Spiroplasma syrphidicola (EA-1), Spiroplasma chrysopicola (DF- 

1), TAAS-1, BARC1357, BARC2649, GSU5431, and GSU5367 had been previously 

completed (Stewart, 2001). To add to this body of work, I completed serological analysis 

of twro new strains from Australia, GSU5485 and GSU5603. I triply cloned these two 

strains and confirmed that the isolates serologically reacted with Group VIII screening 

antisera combinations. Interestingly, GSU5603 also reacted with other group antisera 

combinations inferring that GSU5603 is not exclusively related to Group VIII 

Spiroplasma. 

Antisera was then produced for GSU5485 and GSU5603 and reciprocal DF tests 

were completed for all nine strains (Table I). No two-way reactions were observed 

between the Australian isolates GSU5485 and GSU5603 and the other 7 Group VIII 

strains, but deformation was observed with S. syrphidicola (EA-1) cells against GSU5485 

antisera. Stewart (2001) reported a strong two-way reaction between BARC2649 and 

GSU5367. She also suggested that GSU5431 may be a bridge strain because of its 

reactivity with TAAS-1, BARC1357, and S. chrysopicola (EA-1). In general, the Group 
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Table I. Degree of spiroplasmal cell deformation against specific antisera.1 

Antibody 

Antigen BARC 
26494 

GSU 
53674 

BARC 
13574 

GSU 
54314 

TAAS- 
1J EA-l2 GSU 

5485 
DF-13 GSU 

5603 
BARC26494 3204 6404 4,5 4 4 4 — 4 

GSU53674 
6404 25604 4 4 4 4 — 4 — 

BARC13574 4 4 12804 4 4 4 — 4 — 

GSU54314 4 204 3204 12804 6404 204 — 804 — 

TAAS-14 4 4 404 1604 25604 404 — 804 — 

EA-12 4 204 804 3204 4 12804 160 4 40 
GSU5485 — —     20 640   — 

DF-13 4 204 4 4 4 4 — 25604 — 

GSU5603 40 — .... .... .... .... .... 80 2650 

1 Inverse of the greatest dilution exhibiting at least 50% cell deformation is shown;2 Spiroplasma 

syrphidicola;3 Spiroplasma chrysopicola;4 From K.M. Stewart, 2001;5 —Indicates no reaction at a 

dilution of 1:20 or greater. 

VIII spiroplasmas have little to no cross reactivity with each other; 90% of the 

heterologous DF reactions had values of < 80. 

Initial serology indicated that GSU5603 was not atypical Group VIII strain. 

GSU5603 screened positive for the Group VIII cocktail and seven other screening 

cocktails. GSU5603 did not have positive DF reactions against Group VIII antisera at a 

level above 1:80 (Table I). DF scores for GSU5603 versus antisera of Tab4C (Group 

XVII) and Spiroplasma helictum (Group XXXIII) were both 1:160. Antisera GSU5603 

had strong one-way DF scores with 20 additional isolates from seven species representing 

three genera of tabanids collected in temperate eastern Australia (Table II). Reactions at 

1:160 to 1:2560 were seen in the 20 strains. Two of these isolates also reacted with 

antisera GSU5485. Isolates 5573 (Dasybasis sp. from Canaberra, Australia) and 5542 
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('I'abanus particaecus from Narrabri, Australia) had strong one-way DF test scores of 

1:320 and 1:640, respectively (Table II). Interestingly, isolate 5542 (Tabanus 

particaecus, from Narrabri, Australia) had strong one-way DF reactions with antisera 

from both GSU5603 and GSU5485 (Table II). 

Table II. Deformation test scores for additional Australian isolates. 1 

i i * Coordinates Host 1S^oTTr-rA-» Isolate GSU5485 GSU5603 

GSU5485 S 210 10.0', £48° 30.4' Cydistomyia sp. 640' 0 
5573 S 35° 19.1', E 148° 50.4' Dasybasis sp. 320 0 
55425 S 30° 24.4', E 149° 42.0' Tabanus particaecus 640 320 
54862 S 21° 10.0', E 148° 30.4' Cydistomyia hancroftiae 0 640 
54922 S 21° 10.0', E 148° 30.4' Scaptia aurifiva 0 1280 

54934 S 21° 10.0', E 148° 30.4' Scaptia aurifiva 0 320 
55295'6 S 26° 42.0', E 152° 32.2' Cydistomyia sp. 0 2560 
5591 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 640 

55933 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 1280 
5594 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 640 

5595 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 2560 

5597 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 640 

55982 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 160 

5600 S 35° 40.3', E 150° 12.8' Scaptia clavata 0 640 

5601 S 35° 40.3', E 150° 12.8' Scaptia lasiopthalma 0 640 

5602 S 35° 40.3', E 150° 12.8' Scaptia lasiopthalma 0 320 

GSU5603 S 35° 40.3', E 150° 12.8' Scaptia lasiopthalma 0 2560 

56042 S 35° 40.3', E 150° 12.8' Scaptia lasiopthalma 0 2560 

56055 S 35° 40.3', E 150° 12.8' Scaptia lasiopthalma 0 1280 

56063 S 35° 40.3', E 150° 12.8' Scaptia lasiopthalma 0 320 

5611 S 35° 40.3', E 150° 12.8' Scaptia testacae 0 2560 

56125 S 35° 40.3', E 150° 12.8' Scaptia testacae 0 1280 

56135 S 35° 40.3', E 150° 12.8' Scaptia testacae 0 1280 

1 Inverse of the greatest dilution exhibiting at least 50% cell deformation;2 Completed by Alex Zarzuela;3 

Completed by Amanda Slider;4 Completed by Amy Gray;5 Completed by Michael Gutierrez;6 Completed 

by Frank French. 



16 

Molecular and phylogenetic analysis of Group VIII strains. Genomic DNA 

was isolated from the nine strains that were examined serologically (Table I). All nine 

were double strand sequenced, yielding approximately 450 base pairs of confirmed 

sequence data. Approximately 150 bp corresponded to the 16S rDNA gene and 293 bp 

was 16S-23S spacer region. Confirmed sequences were aligned using CLUSTALW with 

the expectation that the 16S rDNA sequence would show at least 99% identity for all 

Group VIII strains (Dodge et al., 1998). The 16S rDNA gene was 100% identical for all 

strains except GSU5603. GSU5603 was only 91% identical over the 126 bp of 16S 

rDNA gene sequence, and therefore was excluded from subsequent analysis. 

When the 293 bp 16S-23S intergenic spacer sequence was aligned using 

CLUSTALW, there was 97% sequence identity among the eight Group VIII strains, with 

substitutions occurring at a total of 11 sites (Figure 1). GSU5367 and BARC2649 had 

identical spacer sequences but differ from the other six sequences at sites 28, 31, 43, 62, 

84, 91, 110, and 287 with the following substitutions: T/A, T/C, C/A, G/A, T/C, A/G, 

A/G, and A/T, respectively. GSU5367, BARC2649, GSU5485, and TAAS-1 differ from 

S. chrysopicola, GSU5431, S. syrphidicola, and BARC1357 at site 85 with the 

substitution of an A for a G. At site 124, TAAS-1 and S. chrysopicola differ from the 

other six strains with the substitution of G for an A. At site 288, BARC1357 and S. 

syrphidicola differ from the other strains with the substitution of a T for an A. 

A phylogenetic tree was produced from the 16S-23S spacer region of the eight 

Spiroplasma isolates by analyzing the number of changes between each pair in the group 

of sequences (Figure 2; Mount, 2001). We chose the Neighbor-joining method because it 



Figure 1. CLUSTALW multiple sequence alignment of 293 bp from the 16S-23S 

intergenic spacer region of eight Group VIII Spiroplasma. 
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S.syrphidicola TTTCTATGGAGTTATACTTTATAGTAAATACGGCTATAATGAAGTTATGTTTAGTTTTCA 60 
BARCI357 TTTCTATGGAGTTATACTTTATAGTAAATACGGCTATAATGAAGTTATGTTTAGTTTTCA 60 
GSU5431 TTTCTATGGAGTTATACTTTATAGTAAATACGGCTATAATGAAGTTATGTTTAGTTTTCA 60 
S.chrysopicola TTTCTATGGAGTTATACTTTATAGTAAATACGGCTATAATGAAGTTATGTTTAGTTTTCA 60 
TAAS-1 TTTCTATGGAGTTATACTTTATAGTAAATACGGCTATAATGAAGTTATGTTTAGTTTTCA 60 
GSU5485 TTTCTATGGAGTTATACTTTATAGTAAATACGGCTATAATGAAGTTATGTTTAGTTTTCA 60 
GSU5367 TTTCTATGGAGTTATACTTTATAGTAATTATGGCTATAATGACGTTATGTTTAGTTTTCA 60 
BARC2 64 9 TTTCTATGGAGTTATACTTTATAGTAATTATGGCTATAATGACGTTATGTTTAGTTTTCA 60 

** *********** ***************** 

S.syrphidicola GAGATTAGTTTCTCTGAATTAATCGAAATTGAACAAGTAGTTAAATTTTGATTAAAAATT 120 
BARCI357 GAGATTAGTTTCTCTGAATTAATCGAAATTGAACAAGTAGTTAAATTTTGATTAAAAATT 120 
GSU5431 GAGATTAGTTTCTCTGAATTAATCGAAATTGAACAAGTAGTTAAATTTTGATTAAAAATT 120 
S.chrysopicola GAGATTAGTTTCTCTGAATTAATCGAAATTGAACAAGTAGTTAAATTTTGATTAAAAATT 120 
TAAS-1 GAGATTAGTTTCTCTGAATTAATCAAAATTGAACAAGTAGTTAAATTTTGATTAAAAATT 120 
GSU5485 GAGATTAGTTTCTCTGAATTAATCAAAATTGAACAAGTAGTTAAATTTTGATTAAAAATT 120 
GSU5367 GGGATTAGTTTCTCTGAATTAATTAAAATTAAACAAGTAGTTAAATTTTAATTAAAAATT 120 
BARC2 64 9 GGGATTAGTTTCTCTGAATTAATTAAAATTAAACAAGTAGTTAAATTTTAATTAAAAATT 120 

* ********************* ***** ****************** ********** 

S.syrphidicola GTTCTTTGAAAACTGGATAATAGACATCTAGTTATTTCATTTTTAATGAAATAACAAAAT 180 
BARC1357 GTTCTTTGAAAACTGGATAATAGACATCTAGTTATTTCATTTTTAATGAAATAACAAAAT 180 
GSU5431 gttctttgaaaactggataatagacatctagttatttcatttttaatgaaataacaaaat 180 
S.chrysopicola GTTCTTTGAAAACTGGATAATAGACATCTAGTTATTTCATTTTTAATGAAATAGCAAAAT 180 
TAAS-1 gttctttgaaaactggataatagacatctagttatttcatttttaatgaaatagcaaaat 180 
GSU5485 GTTCTTTGAAAACTGGATAATAGACATCTAGTTATTTCATTTTTAATGAAATAACAAAAT 180 
GSU5367 gttctttgaaaactggataatagacatctagttatttcatttttaatgaaataacaaaat 180 
BARC2 64 9 GTTCTTTGAAAACTGGATAATAGACATCTAGTTATTTCATTTTTAATGAAATAACAAAAT 180 

***************************************************** ****** 

S. syrphidicola AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
BARC1357 AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
GSU5431 AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
S.chrysopicola AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
TAAS-1 AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
GSU5485 AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
GSU5367 AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 
BARC2 64 9 AATTCAAATTTTCTGTTATTAAAGTAATTTTTAAATTAATAACTAAAATTTCACAGTTAT 240 

**********************************************************-x-* 

S.syrphidicola ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTTTATTAA 2 93 
BARC1357 ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTTTATTAA 2 93 
GSU5431 ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTTAATTAA 2 93 
S. chrysopicola ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTTAATTAA 2 93 
TAAS-1 ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTTAATTAA 2 93 
GSU5485 ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTTAATTAA 2 93 
GSU5367 ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTAAATTAA 2 93 
BARC2 64 9 ATTTTGTAAATGATTCTCAAAAAAATTATAAAAACCTTGATTAATTAAATTAA 2 93 

********************************************** **+"T* 

* indicates conserved nucleotides. 
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best described the situation between the serology and phylogeny of Group VIII 

Spiroplasma. This method does not assume a molecular clock and produces an unrooted 

tree. As with our samples, the levels of evolutionary change were unknown, therefore, 

neighbor-joining was the most reliable in predicting the correct tree (Saitou and Nei, 

1987). No outgroup was chosen because eight of the nine strains were included in the 

analysis. GSU5603 was the most distant of the strains sequenced for 16S-23S spacer 

region, and its sequence divergence (51% identity) was great enough that an incorrect 

phylogenetic prediction would have been produced by its inclusion. A neighbor-joining 

relationship indicated two pairs of indistinguishable strains, GSU5367 and BARC2649, 

and BARC1357 and Spiroplasma syrphidicola (EA-1). The type strains, S. syrphidicola, 

S. chrysopicola, TAAS-1, and BARC2649, separated into three main branchings in the 

topology of the tree. Spiroplasma chrysopicola (DF-1) branches alone. TAAS-1, 

GSU5485, GSU5367 and BARC2649 constitute a second branch. The third branch 

includes Spiroplasma syrphidicola (EA-1), BARC1357, and GSU5431. 
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Figure 2. Neighbor-joining phylogenetic tree derived from 293 base pairs of 16S-23S 

rDNA spacer region sequence. 

~ DF-1 (Splroplasma chrysopicolu) MxrylMud. I'.S.A. 

I TAAS-1 Texas. V.S.A. 

GSU5367 
C'osila Rjra 

BARC2649 
Georgia. U.S.A. 

GSU5485 Australia 

GSU5431 Costa Rica 

EA-1 (Spiroplasma syrphidicola) Man lynd. l .S.A. 

BARC1357 Georgia, U.S.A. 

0.005 substitulions/site 



Chapter IV 

Discussions 

Serology has been the basis for Spiroplasma categorization for the past 20 years 

(Anonymous, 1995). Serology, particularly the DF test, has been a very effective means 

of differentiating strains and showing homology, especially in cases of strong reciprocal 

reactions, but giving little information concerning phylogeny (Whitcomb et al., 1999; 

Gasparich et al., 2003). 

Although vital, serology has had problems. Initially, serological methods worked 

well with spiroplasmas. In particular. Group VIII placement is verified by positive 

screening reactions, one-way DF test scores, two-way DF test scores, and unique 

phenotypic characteristics, such as short cell morphology and catabolism of arginine. 

A rare case of failed identification by serology occurred when the strain DF-1 (S. 

chrysopicola) was initially placed in Group XVII. Eventually, this strain proved to be 

distantly related to other Group VIII strains. Another incidence of failed serology was 

when BARC2649 failed to cross-react with known Group VIII antisera (Whitcomb et al., 

1999). Because of this particular flaw with serology, thel6S rDNA gene sequence was 

explored as a plausible means for properly grouping bacteria (Woese, 1987). 

Analysis of the 16S gene sequence indicates a general agreement with serology 

for strains and Groups of Spiroplasma (Dodge et al., 1998; Gasparich et al., 2003). 

However, some clades of serologically distinct strains have identical 16S rDNA 

sequences. For example. Group VIII strains show > 99% identity among 16S rDNA 
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sequences (Gasparich et al., 2003) making it impossible to differentiate these strains 

based on 16S gene analysis. 

Recent work has utilized the 16S-23S intergenic spacer region as a means to 

distinguish among closely related bacteria. Harasawa and Kanamoto (1999) recently 

used the 16S-23S spacer region to differentiate two biovars of Ureaplasma urealyticwn. 

It was hoped that sequence divergence of the 16S-23S spacer region would be species 

specific within the Group VIII spiroplasmas, distinguishing them one from another. 

Phylogenetic analysis of eight Group VIII Spiroplasma using the 16S-23S spacer region 

resulted in clear divisions among the strains, placing them in 3 main groups. 

We compared the phylogenetic analysis to detailed serological tests for the 8 

strains, but did not find a convincing correlation. Two cases showed a strong correlation 

between serology and the phylogenetic analysis. BARC2649 and GSU5367 exhibited 

strong two-way reactions during serological testing and were indistinguishable by 

phylogenetic analysis. In addition, Spiroplasma chrysopicola (DF-1) had no strong 

serological reactions and separated alone on the phylogenetic tree. For most strains, the 

serology did not correlate with our phylogenetic tree. TAAS-1 showed moderate cross- 

reactivity with GSU5431, but groups with GSU5367 and BARC2649, and GSU5485. 

GSU5485 had no serological reactivity but groups with GSU5367 and BARC2649, and 

TAAS-1. Spiroplasma syrphidicola (EA-1) had a moderate reaction with GSU5431 but 

is phylogenetically indistinguishable from BARC1357, which showed no serological 

reactivity. GSU5431 has serological reactivity with BARC1357 and TAAS-1, but groups 

with BARC1357 and S. syrphidicola (EA-1). 
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Examination of the geographical isolation sites or the spiroplasma hosts in 

relation to the phylogenetic groups did not show a correlation. Spiroplasma chrysopicola 

(DF-1) and S. syrphidicola (EA-1) were isolated from Maryland, U.S.A., but separate 

onto different branches. GSU5431 and GSU5367 were isolated from Costa Rica and 

likewise separated onto different branches. As well, BARC1357 and BARC2649 were 

isolated from Georgia, U.S.A., and separated onto separate branches. BARC1357 

isolated from Georgia, U.S.A. and S. syrphidicola (EA-1) isolated from Maryland, 

U.S.A., and GSU5431 isolated from Province Puntarenas, Costa Rica branch together. 

This branch represents both temperate and tropical regions as well as two host fly 

families, two genera, and three species. Interestingly, Australian GSU5485 separates 

with American TAAS-1, and American BARC2649 and Costa Rican GSU5367. This 

particular branch includes isolates from four species in three genera of two Tabanidae 

tribes from the U.S.A. and Australia. DF-1 (Spiroplasma chrysopicola) from Maryland, 

USA, however, separates alone. 

GSU5603 screened positive for Group VIII, but short cells were never observed. 

In addition, GSU5603 screened positive for seven other Groups, untypical of Group VIII 

strains. Because of the reaction with other groups of spiroplasmas, GSU5603 probably 

should not have been chosen for this analysis. However, this strain was commonly 

isolated in temperate eastern Australia (21° S to 35° S), with 20 other isolates from 7 

species, representing 3 genera, of two subfamilies of Tabanidae. None of these rapidly 

growing isolates exhibited short cell morphology. 126 bp of the 16S rDNA sequence for 

GSU5603 was only 91% identical as compared to the 100% identity for all of the other 

Group VIII strains. A complete analysis of thel6S gene is needed in order to determine 
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if GSU5603 fits into the Group VIII clades described by Dodge et al. (1998) and 

Gasparich et al. (2003). 

To date. Group VIII Spiroplasma have only been distinguished based on detailed 

serological analyses, DNA-DNA reassociation data, and 16S rDNA sequence data 

(Whitcomb et al., 1999). The 16S rDNA sequence is conservative and does not separate 

the five strains from the U.S.A. (Dodge et al., 1998), however, these strains and others 

were phylogenetically separated in our study based on analysis of the 16S-23S rDNA 

intergenic sequence. Use of the 16S-23S spacer region has the potential to drastically 

affect strain classification for Group VIII and other closely related Spiroplasma. DNA 

sequence analysis would provide a relatively cheap, rapid alternative to differentiate these 

closely related strains. 
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