
Georgia Southern University 

Digital Commons@Georgia Southern 

Legacy ETDs 

Fall 1998 

Genetic Variation within and among Populations of 
Florida Burrowing Owls (Athene cunicularia floridana) 
Wendy T. Denton 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd_legacy 

 Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology 
Commons 

Recommended Citation 
Denton, Wendy T., "Genetic Variation within and among Populations of Florida Burrowing 
Owls (Athene cunicularia floridana)" (1998). Legacy ETDs. 1014. 
https://digitalcommons.georgiasouthern.edu/etd_legacy/1014 

This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia 
Southern. It has been accepted for inclusion in Legacy ETDs by an authorized administrator of 
Digital Commons@Georgia Southern. For more information, please contact 
digitalcommons@georgiasouthern.edu. 

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd_legacy
https://digitalcommons.georgiasouthern.edu/etd_legacy?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd_legacy/1014?utm_source=digitalcommons.georgiasouthern.edu%2Fetd_legacy%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu




A" 

f-
> ^ v t - 

;% S. He^der^cf;. libj^ry ^5 
'a yp 

\yL X''*?~ 
K\-, 

# 

tA" ■ f^1" 'J 



Genetic Variation Within and Among Populations of 

Florida Burrowing Owls 

{Athene cunicularia flohdana) 

by 

Wendy T. Denton 

A Thesis Submitted to the Faculty 

of the College of Graduate Studies 

at Georgia Southern University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Biology 

Statesboro, Georgia 

Fall 1998 



Genetic Variation Within and Among Populations of 

Florida Burrowing Owls 

{Athene cunicularia floridana) 

by 

Wendy T. Denton 

(?..t jNoi' 

C. Ray Chandler, Chairperson 

Van Tassel 1 

Associate Vice President for Academic Affairs 

and Dean of Graduate Studies 

njii 
Date 

? 



Dedication 

To Daniel, Esta and Kimberly 

Three Excellent and Happy Scholar 

111 



This project was supported by a grant from The Florida Game and Fresh Water Fish 

Commission (FGFWFC), with further support from the Graduate Student Professional 

Development Fund of Georgia Southern University. The guidance and help of the Non- 

Game Division of the FGFWFC and its chief, Mr. Brian Millsap, made the project 

possible. Mr. Millsap, along with FGFWFC personnel Tim Breen and Julie Hovis, 

collected numerous samples, representing hours of field work. Tony Stephens, Jay Jones, 

Laura Phillips, Karen Lamatke, Carl Petrick, and Bruce Hagedom aided sample 

collection. Dr. Martha Desmond, together with Mr. Brian Mealy, contributed 26 samples 

from a previous study, which accounted for one third of my sample size. Dr. Desmond 

also provided western samples as an invaluable outgroup. Mr. William Nelson of Dr. 

John Avise's lab. University of Georgia, sequenced samples for me and extracted purified 

mitochondrial DNA from tissue samples. Dr. V.I. Friesen provided his unpublished 

manuscript of the first SSCP analysis of an avian species early in the project, which was 

an immense help. Dr. Oscar Pung provided supplies for field kits early in the project; Dr. 

Daniel Gleason allowed me to use his lab's spectrophotometer; and Dr. J. B. Claibome, 

Dr. Allison Morrison-Shetlar, and Ms. Laura MacKenzie shared their trans-illuminator 

during what would have been a very dark moment. Thank you to all of you! 



I wish to acknowledge the outstanding teaching, support, and friendship of my 

committee members, Dr. Ray Chandler, Dr. Qingquan Fang, and Dr. Lome Wolfe. This 

was a dream committee of impressive scholarship, cheerful encouragement, and endless 

patience. Thank you! 

I thank also The Center for Wildlife Education and Mr. Steve Hein for both patience 

and employment. Thank you for flexible hours and terrific support! 

Finally, and most importantly, thank you to my wonderful husband, Trey, and our 

self-sufficient and delightful children, Daniel, Esta, and Kimerbly. I love you all so very 

much. Thank you for keeping our home so happy and loving! 

p.s. Mom and Dad you are the greatest parents in the world! I hope you know 

how much we all love you! 



Abstract 

Genetic Variation Within and Among Populations of 

Florida Burrowing Owls {Athene cunicularia floridana) 

Wendy T. Denton 

This study employed DNA Polymerase Chain Reaction (PGR) and Single-Stranded 

Conformation Polymorphisms (SSCP) on a mitochondrial control region target to assess 

population structure and possible gene flow in the Florida Burrowing Owl {Athene 

cunicularia floridana), a Florida Species of Special Concern. Although widespread in 

Florida, Burrowing Owls occur at low densities in semi-isolated populations that are 

susceptible to extirpation from human development and the demographic consequences 

of small population size. To better manage these populations, there is a need for data on 

the population genetic structure of the Florida Burrowing Owl. Therefore, I acquired 

DNA from Burrowing Owls from stable peninsular populations (Miami, Cape Coral, and 

Tampa), outlying populations in north-central Florida (Suwannee, Madison, and Gilchrist 

counties), and the western panhandle region (Eglin AFB), and, as an out group, 

populations of Athene cunicularia hypugea (Western Burrowing Owls). 

Variation among 73 individuals for a 250 base pair locus in Domain I of the control 

region assayed as nine genotypes. Results indicated that the frequency of these 

genotypes varied significantly among six populations of A. c. floridana {G - 77.7, P < 

vi 
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0.001). No significant variation between floridana and hypugea was detected, but there 

was evidence of differentiation among Miami, Gulf coast birds (Tampa and Cape Coral), 

and the birds of the northern and panhandle populations. Genotypes were consistent with 

sibling and mother-offspring relationships for the maternally-inherited marker, although 

some questions regarding the repeatability of the SSCP assay arose. 
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Introduction 

Listed as a Species of Special Concern by the Florida Game and Fresh Water Fish 

Commission (1990), the Florida Burrowing Owl has been the focus of several recent 

studies conducted, coordinated, and /or supported by that commission. Information on 

habitat, breeding biology, population size and trends, dispersal, and survival indicates this 

subspecies has been both threatened and, in some ways, aided by the intrusion of humans 

into its range in the past 50 years (Millsap and Bear 1997). Historically associated with 

the prairies of south-central Florida, floridana now occurs regularly in agricultural and 

suburban areas, and such developments as airports, industrial parks, golf courses, and 

military bases. While benefiting from habitat creation, as wetlands and forests have been 

converted to open, managed land use, populations have been shown to be vulnerable, 

with locally flourishing populations collapsing suddenly (Millsap 1993). Florida 

Burrowing Owls appear to benefit from land development up to a point but decline 

rapidly when development becomes more intense. Wesemann and Rowe (1987) 

suggested the owls prefer areas with developed lots accounting for 25%-75% of the total 

land available. Densities declined with either less or more development. 

Because populations are locally unstable, a statewide census is difficult. The best 

available estimate suggests the population is between 3,000 and 10,000 pairs (Millsap 

1993). The Florida Burrowing Owl occurs primarily as semi-isolated populations in 

peninsular Florida, the Florida Keys, and in the Bahama Islands. Recently established, 

1 
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isolated breeding colonies occur in several locations in north-central Florida and on Eglin 

Air Force Base in the western panhandle region. 

The origin of outlying populations is unclear. The Florida Burrowing Owl is non- 

migratory, and Millsap and Bear (1997) found a mean natal dispersal distance of only 

1355 m for females and 511 m for males. It is possible that isolated populations (e.g., 

north-central Florida and Eglin) might each have resulted from an unusually long¬ 

distance dispersal of a single breeding pair from other floridana populations. 

Alternatively, though less likely, colonies could have been founded by migratory western 

birds. S. c. hypugaea is listed as accidental in the east from New Hampshire and Ontario 

south to Virginia (American Ornithologists' Union 1998:301). These northern areas of 

Florida had little appropriate habitat for Burrowing Owls until recent times, so the 

possibility of the owls having gone undetected is unlikely. A thorough census of the 

northern counties is made more difficult by the apparent instability of these small 

colonies. Several recent north-Florida populations have disappeared after only a few 

breeding seasons, and populations may escape notice if they do not persist for several 

years. A Jacksonville population that persisted for five or six years was recently 

extirpated, and owls nested as far north as Bainbridge, Georgia for several seasons (B.A. 

Millsap, personal observation) (Fig. 1). 

The combination of a small statewide population, susceptibility to human activity, 

and frequent appearance and disappearance of new populations suggest that a study of the 
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Figure 1. General distribution of Florida Burrowing Owls. Dark areas indicate regions 

with a Burrowing Owl density of 1-5 owls for every 40 km surveyed (based 

on Price et al. 1995:92). 
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genetic structure of Florida Burrowing Owls might be useful to guide future conservation 

and management decisions concerning this species. Although Desmond (1997) analyzed 

genetic differentiation of subspecies of Burrowing Owls, her study provided no insight 

into population-level questions within the Florida subspecies. 

Project Objectives 

My project was initiated to examine the genetic variation within and among 

populations of Florida Burrowing Owls. I addressed three broad questions relating to the 

genetic structure of Burrowing Owl populations. First, I sought information regarding 

subspecies differentiation between floridana and hypugea. Second, I was interested in 

the overall variation and in the genetic structure of floridana populations. Finally, I 

hoped the research might identify the possible origins of outlying populations of 

floridana. To meet these objectives, I gathered information in two areas: the natural 

history of Burrowing Owls and the molecular techniques that would best produce the 

desired data. 

Natural History of Florida Burrowing Owls 

Florida Burrowing Owls are small owls, averaging 222 mm in height, with a 

wingspan of approximately 530 mm (Eckert 1987:163-176.). The owls have long legs, 

suitable for scratching out burrows, and have bright, lemon-colored eyes. Burrowing 
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Owls make their nests in burrows, which they excavate themselves, or adapt from the 

excavations of armadillos or gopher tortoises. They prefer loose, sandy soil and open 

habitat, from which they can observe potential predators. Florida Burrowing Owls live in 

small colonies, generally two to five pairs (Eckert 1987), and extra-pair copulations and 

shared feeding of juveniles among nests appear to be common (Millsap and Bear 1997). 

Burrowing Owls are most active at dawn and dusk, but remain active throughout the 

day, searching for prey. Studies of western populations of Burrowing Owls indicate that 

small vertebrates make up the majority of the biomass of the diets. Invertebrates such as 

crickets, beetles, and crustaceans are the major food items by number, although they 

represent a small portion of the total biomass. During nesting season, the invertebrate 

proportion increases substantially (Haug et al. 1993). 

There is little sexual dimorphism within the species. Males tend to be slightly larger 

(unusual among raptor species) and, during the nesting period, males become lighter in 

color because the females spend more time in the burrow (Thomsen 1971, Butts 1973, 

Martin 1973, Millsap and Bear 1990). Florida Burrowing Owls generally lay between 

five and six eggs, and males and females share incubation and provisioning duties. 

Millsap and Bear (in press) found the mean number of young fledged to be 2.2 in the 

stable, peninsular populations. 

The most common causes of death among Florida Burrowing Owls are collision with 

vehicles, and predation by domestic animals and other birds of prey (Millsap and Bear, in 
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press). Death within collapsed burrows is difficult to survey, but is probably considerable 

during wet weather or where burrows are close to new development (Millsap 

and Bear, in press). Egg loss to raccoons, opossums, skunks, snakes, and armadillos is 

common (Eckert 1987). 

Taxonomically,y7oriJa«a is considered a subspecies along with seventeen other 

subspecies, of the Burrowing Owl {Athene cunicularia). The genus Athene is based on 

karyotypic evidence (Schmutz and Moker 1991) and, based on DNA-DNA hybridization 

evidence, might actually qualify as a family (Sibley and Ahlquist 1990:402-411). 

Desmond (1997) recently compared molecular markers for subspecies from North, 

Central, and South America and from the West Indies. Desmond found a distinct split 

between owls from North and South America, estimated to have occurred 2 million years 

ago when the two continents were connected by the isthmian land bridge. Desmond's 

results indicate a North American origin for the species, with a subsequent dispersal to 

South America. 

Historical distribution in Florida may have originated with a dispersal of western 

owls during the early to mid-Pleistocene glacial periods, with isolation occurring for the 

past 20,000 years (Webb 1990). However, lack of pronounced morphological 

differentiation might suggest a more recent colonization event. Early reports of colonies 

are generally from the central peninsula plains and the Gulf coast lowlands (Ridgeway 

1914, Bent 1938). A northward range expansion appears to have followed the post-war 

development of the state, as swamps were filled and forests cleared. 



Florida Burrowing Owls exhibit behavioral traits that differentiate them from their 

western counterparts. Most notably, floridana is non-migratory and generally excavate 

their own burrows. Hypugea depend upon fossorial mammals to excavate and maintain 

burrows in ground that is otherwise too hard for the owls to break open. Western 

Burrowing Owls live in large colonies in close association with thriving small mammal 

communities. This association appears to reduce predation on owls, as the mammals 

provide an alternative prey source for predators that the birds and mammals have in 

common. Floridana also nest in colonies, but these colonies are extremely fragmented, 

even where owl density is comparatively high. This fragmentation is probably made 

possible by the freedom from dependence upon prairie dog towns and ground squirrel 

communities. Fragmentation may also serve as a defense against predation. 

This relative self-reliance allows for dispersal of birds to new locations, without prior 

colonization or the presence of fossorial mammals. Because of recorded instances of 

parent-offspring mating (B.A. Millsap, pers. observ.), it is possible that a single mated 

pair could establish an isolated colony in a new location. 

Selecting a Genetic Marker and a Molecular Method 

Intraspecific studies such as this one require a high level of variability in the target 

molecule or genomic region. Studies of birds have shown that protein 

(allozyme/isozyme) divergence can be limited in populations that show meaningful 
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mitochondrial and nuclear DNA variability (Barrowclough et al. 1985). For this reason, 

nucleic acid analysis is more appropriate for avian investigations at lower taxonomic 

levels. Important recent studies using modem nucleic acid techniques to address 

questions in avian ecology and evolution include studies of Red-cockaded Woodpeckers 

(DNA profiles and RAPD, Haig et al. 1993, Haig et al. 1994a, Haig et al. 1994b), Red- 

winged Blackbirds (RFLP, Ball et al. 1988), cranes (RFLP and mt DNA sequences, 

Krajewski and Fetzner 1994, Snowbank and Krajewski 1995, Wood and Krajewski 

1996), Song Sparrows (RFLP, Zink et al. 1991), swiftlets (mt DNA sequences, Lee, et al. 

1996), Dunlin (mt DNA sequences, Wenink et al. 1993) as well as other avian species. 

Because the first direct sequencing of any portion of the Burrowing Owl genome had 

recently been completed on the mitochondrial control region and cytochrome b genes 

(Desmond 1997), I elected to target a portion of the mitochondrial control region 

(displacement or D loop), using primers designed from this sequence data. Mitochondrial 

DNA is frequently preferred for genetic studies, because it is maternally recombining, has 

a simple, closed structure, and evolves 5-10 times faster than nuclear DNA (Baker and 

Marshall 1997). The mitochondrial control region is known to evolve rapidly in 

numerous vertebrates and is generally considered an excellent target for studies at the 

species level or below. This non-coding portion of mitochondrial DNA was found 

to have a rate of substitution in humans between 2.8 (Cann et al. 1984) and 5 (Aquadro 

and Greenberg 1983) times faster than the rate of the rest of the mitochondrial genome. 
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The mitochondrial gene order in birds is different than it is in other vertebrates 

(Desjardins and Morais 1990, 1991, Ramirez et al. 1993, Quinn and Wilson 1993), with 

the regions tRNA Phe and tRNA Glu flanking the control region. The control region 

itself is generally described in three domains. Domains I and III are highly variable, and 

flank the highly conserved, central Domain II. 

While the 1000 - 1250 bp control region has yielded informative markers in studies 

of Snow Geese (Chen caerulescens) (Quinn 1992), Dunlins (Calidris alpina) (Wenink et 

al. 1993, 1996), Grey-crowned Babblers (Pomatostomus temporalis) (Edwards 1993 a,b) 

and Red Knots (Calidris canutus) (Baker et al. 1994), it is not uniformly polymorphic 

within all avian species (Baker et al. 1994). No work at this locus besides Desmond 

(1997) has been published for the Strigiformes. 

Numerous molecular techniques exist to address phylogenetic questions such as 

intraspecific variation and genetic distance. An appropriate method had to be selected 

from among several options, with its utility in a particular research situation balanced 

against its scientific and economic limitations. There were six methods that deserved 

consideration as possible methods for quantifying genetic differentiation among 

Burrowing Owl populations. 

DNA-DNA hybridization. - DNA-DNA hybridization involves combining the 

double-stranded DNA of two species, denaturing these strands and then allowing the 

single strands to re-associate. The extent to which single strands from different species 

will re-associate provides an indication of their level of divergence. This technique is 
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inexpensive, easily automated, and useful for estimating relationships between species or 

higher taxa. However, the effective limits of resolution depend on the degree of 

divergence (Werman 1996). It is almost certain that populations of Florida Burrowing 

Owls would not have diverged from one another to an extent measurable by this method 

(Werman et al. 1996). 

Restriction fragment length polymorphisms (RFLP). - Also called restriction site 

analysis, RFLP relies on known restriction endonucleases isolated from bacteria to digest 

DNA at constant positions within specific recognition sequences. A particular allele is 

cleaved into a reproducible array of fragments. Base substitutions and short 

insertion/deletions are reflected as changes in the fragment patterns. This method 

assumes that fragments of the same length are of the same sequence (homologous). 

Substitutions and insertions/deletions of 2-3 base pairs between the recognition sites will 

not be apparent. This method screens only the 4-6 base pairs of the specific code 

recognized by the endonuclease, and may fail to recognize variation for that reason 

(Dowling et al. 1996). 

Randomly amplified polymorphic DNA (RAPD1. - RAPD bases its analysis on the 

efficiency of PCR amplification for a short, random primer. RAPD uses randomly 

selected genes that may or may not show variability at low taxonomic levels. Because 

dominant allelic expression in the double strand hides recessive alleles, researchers are 

required to use RFLP on RAPD products to answer heterozygosity questions. Although 
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RAPD is inexpensive, it has shown poor repeatability and is easily contaminated by any 

form of DNA (bacterial, viral, etc.) allowed to enter the sample (Palumbi 1996). 

Microsatellite markers. - The use of microsatellite markers to digest hypervariable 

sections (short tandem repeats) of DNA leads to a DNA fingerprint. This fingerprinting 

has the potential to be unique to each individual sampled. Unfortunately, this method 

requires an initially large blood sample for the development of a genomic library in order 

to design primers specific for the species under consideration. In this case, analysis by 

this method would be prohibitively time consuming and expensive (Dowling et al 1996). 

DNA sequences. - Direct sequencing of a specific, variable region requires four 

basic steps. The target region must be isolated, and then amplified. The purified DNA is 

then sequenced and homologous sequences are aligned for analysis. Sequencing is a 

popular method for analysis of intraspecific genetic variation, although there is a trade¬ 

off between the complete information of one or two loci against the more general 

information on numerous loci offered by other methods. Sequencing requires the use of 

radioactive labeling materials and is also extremely time-consuming. For this study, only 

2-3 individuals from each population could be analyzed, reducing the power of our 

statistical analysis. Sequencing is an appropriate diagnostic follow-up to some other, 

more efficient screening technique (Hillis et al. 1996). 

Single-stranded conformation polymorphisms (SSCP). - The method of analyzing 

single-stranded conformation polymorphisms (SSCP) was selected as the most applicable 

and sensitive molecular technique for addressing this population-level molecular 
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question. SSCP is a recently developed technique for screening DNA sequences, and has 

proven to be sensitive at even the single base pair level. It is relatively simple and 

inexpensive, and its sensitivity makes it particularly useful for comparisons between and 

among populations (Girman 1996). One report of an avian species analyzed by this 

method appears in the literature (Friesen et al. 1997). Friesen et al. (1997) developed a 

successful assay of four nuclear intron loci between isolated subspecies and also between 

populations of a single subspecies of Marbled Murrelet (Brachyramphus marmoratus). 

The method has previously proven sensitive between closely related arthropod and 

helminth species, between breeds in swine and horses, between populations of African 

wild dogs, and in numerous other animal applications (Hiss et al. 1994, Itagaki et al. 

1995, Takeda et al. 1995, Marklund et al. 1995, Girman 1996). 

SSCP is emerging as a favored technique for DNA variation screening at the 

subspecies and population level. The technique is more sensitive than the RAPD method 

and also allows the researcher to specifically target highly variable regions of the 

genome. Once identified, a region is isolated, amplified, and then denatured to a single 

strand. By maintaining this single strand at cool temperatures, the fragment folds into a 

conformation unique to its length and sequence. When strands from several individuals 

are run together by electrophoresis in a cool non-denaturing polyacrylimide gel, each 

unique conformation will travel a different distance. Base-pair substitutions, insertions, 

and deletions in the region are apparent. Because the fragment under investigation is 

approximately 300 base pairs, this method has the potential to detect more variability 
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than RFLP. Identification of a genomic region that consistently shows insertion/deletion 

mutation for the species is the time-consuming step in this process. Repeatability is good 

for SSCP, providing that specific parameters such as gel conditions, temperature, and run 

time are strictly controlled (Dowling et al. 1996). 

In summary, I decided to target Domain I of the mitochondrial control region, using 

single-stranded conformational polymorphisms to assay for genetic variation among 

populations of Florida Burrowing Owls. My objective was to address questions of 

population origin, to assess genetic structure and genetic variation within and among 

populations, and to compare floridana to hypugea of the western United States. 



Materials and Methods 

Sample Collection 

Blood samples were collected during two consecutive nesting seasons, May - July of 

1997 and 1998. Samples were drawn from owls in five regions: Tampa (n = 11), Cape 

Coral (n =11), Eglin Air Force Base (n = 9), Miami (n =24), Marathon Key (n =5), and 

Gilchrist, Madison and Suwanee counties of north-central Florida (n = 6), with the help 

and supervision of Florida Game and Fresh Water Fish Commission personnel (Fig. 2). 

We conducted sampling in accordance with the American Ornithologists' Union 

guidelines (Oring et al. 1988). Approximately 0.20 ml of blood was collected in sterile 

vials containing 0.50 ml of a lysing buffer solution (Tris-HCL, EDTA, NaCl, H2O, SDS 

instructions from Mr. Tom Mullins, lab of Dr. Susan Haig, personal communication). 

We trapped owls by their feet at their burrows with noose carpets (Bub 1991:200-202). 

The traps at each burrow was continuously supervised. Field workers weighed, banded, 

measured (wing chord and rectrices), visually inspected, bled, and released each owl 

within 10 minutes of capture. Bleeding was by veinipuncture of the brachial vein with a 

26-gauge needle (method outlined by Haig et al. 1993). We collected blood in capillary 

tubes and aspirated (by rubber bulb) the blood into vials of lysing buffer. Vials were 

taken back to the lab and frozen at -20oC. Further samples were solicited and received 
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 GEORG/A 

Figure 2. General location of the six sampled populations of Florida Burrowing Owls, 

1997-1998. Sampled areas (Marathon Key, Miami, Cape Coral, Tampa, the 

North- central counties, and Eglin AFB) are shown in boxes. 
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from a 1993-1994 study of Miami-area owls (Desmond 1997). An additional five 

samples of Western Burrowing Owls (Athene cunicularia hypugaea) were also 

contributed by Dr. Martha Desmond (two samples from California, two from New 

Mexico and one from Nebraska). 

DNA Isolation 

Except where 1993-1994 and western samples had been previously extracted, DNA 

extraction was by United States Biochemical, Inc. (USB) kit, or by 2% 

Hexadecyltrimethylammonium Bromide (CTAB) extraction buffer. Blood quantities 

were relatively small; the USB kit proved to be more effective and was used exclusively 

after the early extractions. By following the procedure of the kits, the blood cell lysate 

was prepared and nuclease activity was inhibited. Next, the lysate was bound to a DNA 

extraction matrix. Then, the aqueous solution, which contains the nucleic acids, was 

separated from the organic phase by centrifugation. Lastly, the extracted DNA was 

precipitated with alcohol and eluted with 50 pi Tris-HCl (10 mM) buffer. Total genomic 

DNA/RNA was successfully extracted from all samples. 

PGR Amplification and Gel Electrophoresis 

A primer-pair was designed to amplify by PGR an approximately 290 base pair 

stretch of the highly variable Domain I of the mitochondrial control region. This portion 
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in Domain I of the mitochondrial control region proved difficult to amplify, but my early 

tests showed it contained a sufficient amount of variation at the population level. 

Optimal conditions proved to be: dhhO 25 pi, lOx Buffer (IX) 2.5 pi, MgCl (2.5 mM) 

2.5 pi, dNTPs (200 pM) 0.5 ul each, primer forward and reverse complimentary (0.2 pM) 

0.5 pi each, Taq enzyme 0.125 pi, and 0.5 pi template per 25pl. Two minutes at 80oC, 

was followed by 40 cycles of 940C - 35", 60oC - 35", 720C - 60" for each amplification. 

After numerous attempts, only approximately 50% of the individuals amplified 

successfully. Each PGR product was evaluated for success using 1 % argarose gel 

electrophoresis. 

A nested PGR process proved more successful, eventually amplifying 98% of the 

individuals. A primer pair was designed to attach just "inside" the first pair, so that 

approximately 20 bp were removed from the segment (Fig. 3). By amplifying each 

sample with the outside pair of primers, followed by a re-amplification under the same 

conditions using the inside pair of primers, successful amplification of 77 of 79 birds was 

achieved. 

Single-stranded Conformation Polymorphism Electrophoresis 

PGR products for each sample were run through a 0.75 mm, 7% non-denaturing 

polyacrylamide gel, with glycerol. Gels were run in a 0.5X TBE buffer, using a Bio-Rad 

Protein II xi Cell with cooling system. The electrophoresis apparatus was allowed to cool 

for 60 minutes. Gels were run in an ice bath to reduce "smiling," (the propensity of 
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p n 
1 2-f 1 -rc 1 

1-f 2-rc 
5'  ► 3' 

C tr-1 .f: G A A TGC A AT CCT TA A TGT ATA ATT G 

C tr-1 .rc: CCA TTC AAG G T A TGT ATT CAA G 

C tr-2 .f: G T A CAT T A A GTT ATA TAT CCC ATA 

C tr-2 .rc: TTC AC G G A A G G A CAA TT A A 

Figure 3. The sequence of the primer pairs used for PCR amplification of the Burrowing 

Owl mitochondrial control region. A two-step PCR amplification proved the 

most effective. Ctr-lf and Ctr-2rc were used in step one. The product of this 

amplification served as the template for step two, which employed the Ctr-2f 

and Ctr-lrc primers. 
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outside samples to run more slowly than samples loaded in interior wells) because no 

cold room was available. PCR product was denatured for 5 minutes in a thermocycler at 

980C, withl.Spl PCR product in 1 pi of a 95 % formamide solution. Single-strand 

conformations were fixed by plunging samples directly from the thermocycler into ice 

water. Two pi of each denatured sample were loaded after 5 minutes, directly from the 

ice to the electrophoresis gel. A 120C running temperature proved optimal, at constant 

millivolts = 22 for approximately 14 hours. Gels were removed and stained for 10 

minutes using SYBR Gold Nucleic Acid stain, and were visualized by 300 nm ultraviolet 

trans-illumination. Bands were scored while illuminated. Gels were photographed and 

scoring confirmed against the photograph. 

Sequencing 

Five samples of PCR-amplified product and one whole floridana bird were sent to 

The University of Georgia (UGA) sequencing lab for direct sequencing. Bill Nelson at 

UGA extracted purified mitochondrial DNA from the whole bird and amplified that 

template under identical PCR conditions. 

Data Analysis 

Genotypes were scored by the appearance of bands. Frequency (N) of each genotype 

was compared among populations using a G-test. Cluster analysis (based on Euclidean 

distances) was used to estimate genetic distance between populations. 



Results 

Seventy-seven samples were eventually amplified by PCR. These samples were 

produced in small quantities, due to the expense of frequent failures, making 

concentration of the samples impracticable. Successful amplifications were determined 

by ultra-violet trans-illumination (Fig. 4). Seventy-three samples were successfully 

assayed by SSCP. Gel results were visualized by ultra-violet trans-illumination (Fig. 5). 

I identified nine different genotypes (Fig. 6). 

The majority of individuals (85%) were of genotypes 1, 2, and 3. Eight percent of 

the individuals were of genotype 4, while only a single individual showed each of the 

remaining five genotypes. Known siblings and female parent/offspring pairs consistently 

scored the same genotype, as would be expected for a mitochondrial marker. A single 

individual that was amplified as two samples and run separately on the SSCP, also scored 

the same genotype. Two adult males exhibiting a similarly malformed foot also shared a 

genotype for this marker, further indicating a close genetic relationship (Fig. 6). 

The frequencies of alternative genotypes varied among populations (G = 77.7, P < 

0.001). Genotypes 1, 2, and 3 were widespread in four or more populations, with 

genotype 4 appearing in three populations, and genotypes 5-9 appearing only in a single 
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population each. Within-population variation appeared to be greatest for the Miami 

population, but this may have been a product of the larger sample size (Table 1). 

Cluster analysis showing percent similarity among populations (based on genotype 

frequency) indicate a grouping of populations with Miami the most distant from the other 

six populations. Eglin was also somewhat isolated, the Keys were quite similar to 

hypugea of the west, the northern populations (Suwanee, Madison, Gilchrist, and Eglin) 

were somewhat similar to the Keys and hypugea, and the Cape Coral birds were similar 

to the Tampa population (Fig. 7). 

I sought sequence data to support the genotypes indicated by SSCP, but these data 

proved unattainable. Of the five samples sent for sequencing, only four could be 

sequenced. Samples sequenced represented three genotypes indicated by the SSCP 

process. Sequence data produced by the forward primer contained a large proportion of 

"N," or indeterminate nucleotide bases. Data generated by the reverse complimentary 

primer were more complete, but the regions near the beginning and end of the fragment 

still contained too many "N" bases for analysis. The four samples that were amplified 

were approximately 285 base-pairs long and showed identical sequences from position 

76' through 270 position, with an indeterminate amount of variation at each end. 

Sequence data generated from the whole bird (pure mitochondrial template) was much 

more complete for the end regions, but differed considerably from the matching sequence 

region of the other four individuals. 
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M O 63 64 65 66 67 68 69 70 71 72 

300 base pairs 

Figure 4. An example of six successful PCR amplifications of the mitochondrial control 

region target. Bright bands near the 300 base pair location indicate successful 

amplification of the target region. The smears and empty wells indicate failure 

for this run. Numbers indicate individual birds, O = negative control, 

M = 1 kb ladder. 
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Figure 5. An example of successful SSCP gel electrophoresis. Three different genotypes 

are indicated in this photo; for individuals 59, 61, and the other (same 

genotype) individuals. Numbers indicate individual birds, M = Ikb ladder. 
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Figure 6. The nine identified genotypes are shown, with the individuals grouped by 

genotype. Patterns illustrate genotypes shown by SSCP. Genotype number 

appears at the top, total number of individuals showing this genotype appears 

at the bottom in italics. The individuals listed in columns exhibited that 

genotype. Family relationships include: Siblings - 10 & 12 and 28 & 29. A 

mother and three of her offspring - 71, 72, 73 and 74. Male adults who show 

a similar foot malformation -4 & 5. The same individual (split sample) - 31 & 

32. 
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Frequency of SSCP genotypes of Florida Burrowing Owls among populations 

and an out group of western Burrowing Owls. 

 Population  

West Keys Miami Cape Coral Tampa N. Central Eglin 

N = 5 N = 5 N = 24 N = 11 N = 11 N = 6 N = 9 

0.20 0.40 

0.80 0.40 

0.20 

0.54 

0.125 

0.04 

0.17 

0.04 

0.04 

0.04 

0.27 

0.73 

0.18 

0.82 

0.17 

0.17 

0.33 

0.17 

0.89 

0.17 

0.1 
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0.5 4 

0 .07 

0.46 

0.3 9 

0.2 1 

0.18 

0.14 

0.14 

0.18 
0 .2 1 

0 .2 1 

Miami 

E g 1 in 

N o rth 

Keys 

West 

Cape 
Coral 

Tampa 

Figure 7. Cluster analysis showing percent similarity of populations of Florida 

Burrowing Owls, based on genotype frequency as indicated by SSCP. 



Discussion 

The Florida Burrowing Owl is a Species of Special Concern (FGFWF 1990) whose 

semi-isolated populations can be benefited, and also threatened, by development and 

other human activities. Data on genetic population structure are important to assess 

accurately this subspecies' current status and future prospects. My results indicate that at 

least some of these populations are genetically distinct based on the frequency of 

alternative mtDNA genotypes. There are two particularly interesting aspects to this 

variation. 

First, variation revealed by SSCP appears to predate the split between eastern 

and western subspecies, because floridana is not genetically dissimilar from hypugea. 

Thus, the mtDNA variation observed in my study seems to be "older" than the 20,000 

years of the generally accepted subspecies split. An alternative possibility is that 

floridana is of more recent origin than previouslythought or floridana is subject to 

ongoing immigration from hypugea. The second result is the rather clear split into 3 

subgroups offloridana populations: Miami, the Gulf coast populations of Cape Coral 

and Tampa, and the populations of Eglin, the northern counties, and the Keys. This study 

has identified groups of populations with distinctive SSCP genotype frequencies. It may 

be important to consider this structure in efforts to manage and conserve populations of 

Florida Burrowing Owls, thus preserving floridana's current level of genetic variation. 
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Examples of heritable phenotypic variation, such as the recent spread of chocolate- 

colored irides within the Cape Coral population, highlight the importance of protecting 

population-level variation. While there is significant genetic structure among 

populations, the predominate genotypes are present, at least in small proportions, in many 

populations. If parent-offspring mating is common, and outlying populations can be 

established by a single mated pair, then the origin of outlying populations remains 

unclear. 

Previous analyses of mtDNA variation indicate that levels of genetic differentiation 

among populations are often strongly linked to a species' behavioral characteristics. For 

example, Dunlins (Calidris alpina) exhibit genotypes that are highly structured 

geographically. These long-distance migrants show high natal-site philopatry in breeding 

females and populations are fragmented in their arctic refugia (Wenink et al. 1993). 

Well-dispersed species with continuous populations and low breeding site philopatry, 

such as Red-winged Blackbirds (Agelaius phoeniceus) (Ball et al. 1988), show little or no 

geographic structure within or among populations. Red-cockaded Woodpeckers 

{Picoides borealis), a species with fragmented populations, were found to have 

intermediate levels of geographic structure to their populations (Haig 1994). The only 

work to date using SSCP to address population-level variation found geographic 

structuring in Marbled Murrelets within North America, and variation consistent with 

species distinction between Asian and North American subspecies (Friesen 1997). 
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Florida Burrowing Owls are non-migratory and show high breeding site fidelity, and 

their populations vary from highly isolated to continuous but fragmented, therefore it is 

not surprising that I detected significant differentiation among populations. The genotype 

frequencies indicated by this study do suggest a population structure to floridana that 

approximates geographic distribution. The majority of birds on the Keys and in the 

Miami area were of genotypes 1 and 2. The birds along the Gulf coast of Florida, Cape 

Coral and Tampa were more likely to be genotype 3. 

Three adjacent counties (Suwannee, Gilchrist and Madison) were loosely grouped as 

North Central Florida. The two Suwannee County birds, the most western of the northern 

counties, were both of genotype 3, suggesting a possible origin along the Gulf coast. The 

lone Madison County individual showed a unique genotype. The three individuals from 

Gilchrist county were of genotypes 1, 2 and 4, suggesting that this population is more 

similar to Miami than to the Gulf coast populations. It would seem likely that birds 

disperse from Miami up the central spine of the peninsula. In that case, birds sampled 

from the Lake Okeechobee region should also be similar to Miami and to Gilchrist 

County. 

The birds of Eglin Air Force Base were 89% genotype 1. This population shows a 

strong founder effect due, at least in part, to a sampling bias, with a mother and three 

offspring taken in the sample. Because Genotype 1 is present in all but the Cape Coral 

populations, the origin of the Eglin birds is not strongly indicated by this study. Five 
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samples collected from hypugea scored as either genotype 1 or 2, so an origin from the 

Western Burrowing Owl cannot be ruled out for the Eglin population. 

The greater variation in genotypes seen in the Miami population may indicate this as 

an older population, and the more recently established populations of the panhandle and 

the northern counties as young populations showing a strong founder effect. This result 

is compatible with the historical dispersal of Burrowing Owls from south to north in the 

state, and also with observed tendencies toward low natal dispersal distances and close- 

relationship mating. Small sample sizes in the outlying populations make this 

determination unclear, however, as the Miami variation may be a product only of a large 

sample size. 

Variation within the floridana subspecies seems reasonably consistent with other 

avian species. I found 9 genotypes in 73 individuals. While no variation was found in 

Spotted Owls (the only Strigiform yet evaluated), at 23 loci for 107 individuals, the 

hyper-variable control region was not assayed (Barrowclough and Gutierrez 1990). 

Dunlins exhibited 35 genotypes in 73 individuals for mtDNA across a huge geographic 

range (Wenink et al. 1993), Red-winged Blackbirds had 34 genotypes in 127 individuals 

(Ball et al. 1988), Blue Tits showed nine genotypes in 25 individuals (Taberlet 1992), 

Redpoll Finches showed 17 haplotypes in 31 individuals surveyed (Seutin et al. 1995), 

Greenfinches were found to have 18 genotypes in 194 individuals, and 26 genotypes were 

apparent in 81 Lesser Snow Geese (Quinn 1992). 
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While the SSCP data indicates genetic variation between individuals and significant 

genetic structure to floridana populations, numerous concerns must be addressed. SSCP 

has been shown to be highly repeatable in previous studies, but its consistency was 

ambiguous in this study. Eighteen samples were re-run as a test of repeatability under 

consistent SSCP conditions. Three samples showed a banding pattern identical to that of 

their first run. Fifteen samples scored as different genotypes. Thirteen of these samples 

showed an absence of one or two bands, but did not have a directly contradicting band, 

and were scored under the genotype showing the most bands. This policy was the most 

conservative, and did not affect the major conclusions of the study. A low concentration 

of PCR product in the samples is the probable cause for "missing" bands. Only two 

samples showed contradictory patterns and remained at odds with their first run. PCR 

products could not be concentrated because of the great difficulty with which these 

products were amplified at all. 

The inability of the UGA lab to generate clean sequence data, particularly in the 

areas near the primers, as well as the extreme difficulty encountered during amplification, 

suggests that the primer fit was not accurate. The primers were designed based upon 

Martha Desmond's (1997) sequencing. These were interior primers, targeting a rapidly- 

mutating area of the genome. It is likely that individual variation at the primer location 

created a poor fit for the primer pairs. 

Desmond (1997) sequenced the control region for Western and Florida Burrowing 

Owls, and found no variation between any individuals at a 771 bp locus. This was an 
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unexpected result, given the high degree of variation generally observed in vertebrate 

control regions. A possible explanation proposed by Desmond, and a finding confirmed 

by others (Lopez et al. 1997, Schneider-Broussard and Neigel 1997, Collulra and Steward 

1995), is the incidence of mitochondrial copies being inserted into the nuclear genome. A 

primer designed for a mitochondrial target might instead amplify a more slowly evolving 

nuclear copy of the true target, confounding phylogenetic analysis. 

Due to a lack of variation in her amplified products, Desmond (1997) suspected that 

she had amplified a nuclear copy of the mitochondrial control region. It is also known 

now that some owl species (Spotted Owl, G. Barrowclough, personal communication) 

have two control regions in their mitochondrial DNA. It is unknown whether Burrowing 

Owls fall into this category as well. The large number of base pair differences between 

the sequence data from the pure mitochondrial amplifications and my amplifications 

indicates that I may have also amplified a nuclear copy. However, the sequence data for 

the pure mitochondrial amplification does not align with Desmond's sequences. 

Difficulty in amplifying products was first assumed to be due to a lack of 

mitochondrial DNA in the extracted whole genome. Red blood cells do not contain 

mitochondria, but in birds, they do contain nuclei. Therefore, there was a great deal more 

nuclear DNA to "confuse" the primer during the amplification process. There was a 

considerable amount of randomness in the amplifications, as successful amplification 
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appeared to depend upon the primer locating its mitochondrial target during one of the 

early cycles in the PCR process. After seeing the sequence results, however, variation in 

the primer region itself was probably more responsible for the difficulty in amplification. 

The results of this study suggest some interesting patterns in the geographic 

distribution of genotypes. Problems with amplification handicapped the study, but 

further investigation is certainly warranted. Future conservation management practices 

for this species will require a better understanding of gene flow, the origin of new 

populations, and the level of variation within stable populations. 

The ideal next step is to sequence directly and map the entire mitochondrial genome 

for Athene cunicularia floridana using primers designed from other species to target 

conserved regions. This process is both time consuming and expensive. However, once 

the genome is mapped, a rapidly evolving region, such as the early portion of the control 

region can be targeted with a more conserved primer. Amplification should run smoothly 

with a consistently recognized primer, and by concentrating the PCR products, the SSCP 

procedure should be both unambiguous and repeatable. 

A less expensive, intermediate solution is to sequence approximately 2000 base pairs 

of the mitochondrial genome, including much of the control region, using conserved 

primers from other avian species. This method would still be expected to yield a primer 

pair that correctly amplifies the mitochondrial control region, providing the control 



34 

region is located in Burrowing Owls in roughly the same location that it is in most avian 

species. The question of a vestigial control region could not be addressed, and some 

uncertainty would continue to exist as to the exact origin of amplified products, but by 

concentrating the PGR products, the SSCP procedure should also become both 

unambiguous and repeatable. 

Any future work should concentrate on increasing sample sizes, particularly in the 

small, outlying populations. Acquiring samples from the Lake Okeechobee population 

should also be given a high priority. 
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Appendix B. 

Sequence of Amplification from Purified Mitochondrial DNA 

1 NNTNNNNTTN TTNTC TGAAA GCNCATTTGG CGCCATTAGT CATTTNTCAC 
51 GCTCT ATCTT ACTACAAGGA AAGCTGCTTG TCCAGCTGCC CCCTACTCAA 

101 CCCCT TTTAT CCCT CCCTAT CCCACTGGTT TGCTCCCTTC AGACATCTCA 
151 TCCCTGGCAT CTCT TTCATG TCCTATCTGG GGTCCCCAAA TCCCCTCCCT 
201 TGAATACATA CCTT GAATGG AC 

Sequence of Amplification from Whole Genomic DNA (Individual Bird # 80) 

1 NNTTNAGTTT NANNTTNNAN NNNANNTTAN GNNTNGCNTT CAATTATACT 
51 TTAAGGATTG CNTTCAATTG T AC ATT AAGT TATATATTCCC ATAATACATA 

101 AT AT AT GT AC TATACACATA TAATGTATGC ATTATATT AA TCAGTATATA 
151 AACAGACATA CCTCATATCC ACATTTCTAC TTTCAAGGAA TAATAGAGCA 
201 ATGAAGGCTG G AAT A ACT AC ACTACTTGTA CTAAACCTAT AACT AAC A AT 
251 ACTACTGTAA ATGGTATATT GCTGAANNAT TGATTNANAG ANAANNNNAN 
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