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ABSTRACT 

A COMPARATIVE STUDY OF THE REPRODUCTIVE BIOLOGY OF 

SYMPATRIC MORNING GLORIES (/POMOEA-CONVOLVULACEAE) 

August 2001 

DEXTER R. SOWELL, II 

Bachelor of Science, Biological Sciences FLORIDA STATE UNIVERSITY 

Master's of Science, Biology GEORGIA SOUTHERN UNIVERSITY 

Directed by: Dr. Lorne M. Wolfe 

Despite the astounding diversity of flowering plants and of mobile 

organisms that serve as pollinators, sympatric co-flowering plants can 

potentially share pollinators with each other. This places two selection 

pressures on plants. First, plants compete for pollinators to visit their flowers 

and secondly, entice pollinators to be faithful (specialized) and visit only other 

members of their species. I tested whether sympatric co-flowering plants 

reduced their selection pressures via temporal partitioning or differential 

attraction of pollinators using six closely related, sympatric co-flowering 

morning glories (//towocti-Convolvulaceae). 

Diurnal flower phenology tightly overlapped, which did not facilitate 

temporal partitioning of pollinators. However, the differences in corolla color 
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and shape allowed for predictions of differential attraction of pollinators among 

the six Ipomoea flowers examined based on the pollination syndrome concept. 

Despite the recent caveats raised about the lack of rigorous fit between floral 

traits and pollinator fauna over large floras, the pollination syndrome concept 

adequately explained pollinator preferences in Ipomoea. As predicted, bees 

visited bee flowers (/. hederacea, I. imperati, I. pandurata, and I. trichocnrpa), and 

hummingbirds and butterflies visited their respective flowers (/. hederifolia and 

/. quamodit). Nectar, as predicted by the pollination syndrome concept, was of 

smaller volume and more concentrated in the bee flowers compared to bird 

flowers. Overall, bee flowers also receive much of their stigmatic pollen loads 

from pollen deposition by bees, whereas bird flowers received most of their 

stigmatic pollen loads through autogamy. Fruit and seed set were larger in bird 

flowers, and generally, all species had higher fruit and seed sets in 2000. 

Although pollination syndromes may not adequately predict the 

pollinator fauna of all plants, within the Ipomoea model examined here 

pollination syndromes accurately explained pollinator preferences. 
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CHAPTER I 

INTRODUCTION 

Ever since Darwin's pioneering studies with plants (1862,1876,1877), 

plants have served as model systems to study the process of evolution. The 

sessile lifestyle of plants, though, places a constraint on reproduction. Most 

angiosperms require pollinators for reproduction, so pollinators must be 

enticed to visit a flower for dissemination and receipt of gametes. The 

diversity of plants and the astonishing array of floral forms are associated 

with the numerous reproductive strategies and mating systems within the 

angiosperms. If pollinators are limiting, plants must compete for them (Waser 

1978a, Rathcke 1983, Campbell et al. 1997). Competition for pollinators should 

lead to selection on the size or number of attractive structures or rewards 

offered by flowers. For example, pollinators are known to prefer larger 

flowers or larger displays of flowers (Galen and Newport 1987, Inoue et al. 

1995, Schemske and Agren 1995, Conner and Rush 1996, Dafni and Kevan 

1997, Schemske and Bradshaw 1999) or flowers with greater rewards (Duffield 

et al. 1993, Cresswell and Robertson 1994, Schemske and Bradshaw 1999). 

Successful attraction of pollinators is not the final determinant of 

reproductive success. Floral visitors vary in their effectiveness as pollinators 

(Ramsey 1988, Wolfe and Barrett 1989, Fenster 1991, Andersson 1994, Fishbein 

and Venable 1996, Olsen 1997, Fange et al. 2000), and when more than one 



species is in flower, interspecific pollen deposited on stigmas can reduce 

reproductive success via unfertilized or aborted ovules (Feinsinger 1978, 

Waser 1978b, Stucky 1985). Plants, therefore, are not only under selection 

pressure to attract pollinators, but to encourage pollinators to be faithful in 

order to maximize intraspecific pollen movement. 

There are several ways that co-flowering plants may increase the 

probability of receiving reliable and faithful pollination service. First, plants 

can stagger flowering time and reward offering so pollinators are partitioned 

(Stone et al. 1998). This temporal character displacement can occur diurnally 

or seasonally. Another way plants have partitioned pollinators is through 

differential attraction. Floral characteristics such as color (Ennos and Clegg 

1983, Chittka and Waser 1997, Johnson and Dafni 1998), shape (Dafni and 

Kevan 1997), size (Galen and Newport 1987, Duffield et al. 1993, Inoue et al. 

1995, Schemske and Agren 1995, Conner and Rush 1996, Johnson and Dafni 

1998,) and reward (e.g. nectar, pollen, oils) type (Pyke and Waser 1981, Wolfe 

and Barrett 1989, Duffield et al. 1993, Cresswell and Robertson 1994, Stone et 

al. 1998) play key roles in attracting pollinators. Selection to reduce 

competition for pollinators and minimize interspecific pollen movement can 

result in highly specialized pollination systems, in which only one or two 

pollinator species are used (Johnson and Steiner 1997). Plants that use the 

same type of pollinator (e.g. bee, hummingbird, fly, etc.) typically have 

flowers that have the same suite of floral characteristics, or a pollination 

syndrome (Faegri and van der Pijl 1979). Examples of pollination syndromes 
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include red, tubular flowers for hummingbird pollination (e.g. Canipsis 

mdicans, Lobelia cardinalis), flowers with visible or ultra-violet nectar guides, 

high nectar sugar concentration (e.g. Delphinium spp., Campanula spp.), and 

white, fragrant night-blooming flowers for moth and bat pollination (e.g. 

Ipomoea alba, Yucca spp., Silene latifolia). Pollination syndromes are often 

viewed as the product of coevolution between plant and pollinator (Grant and 

Grant 1965, Janzen 1980, Crepet 1983, Johnson and Steiner 1997). 

Thus, plants exhibiting a specific pollination syndrome are expected to 

be visited by a discrete, or specialized, group of pollinator species. In contrast, 

plants with generalized pollination systems have flowers that are visited by a 

larger guild of pollinator species. Specialized and generalized pollination 

systems are each thought to have advantages and disadvantages (Faegri and 

van der Fiji 1979, Waser et al. 1996). A benefit of specialized pollination 

systems may be the efficient transfer of pollen. Specialized pollinators are 

faithful foragers and carry a higher proportion of intraspecific pollen 

(Feinsinger 1978, Waser 1978b), which should result in higher reproductive 

success. But pollinators can vary in relative abundance over time (Wolfe and 

Barrett 1989, Petersson 1991, Fishbein and Venable 1996, Lange et al. 2000), 

and the reproductive success of specialized plants should vary in time as the 

abundance of an obligate pollinator fluctuates. Plants with generalized 

pollination systems use multiple pollinator species, and are more likely to be 

resilient to fluctuations in the relative abundance of any one pollinator. The 

effects of the loss of a pollinator are dampened by the use of other pollinator 
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species for reproduction. Generalized pollinators typically visit multiple plant 

species, and thus carry both intraspecific and interspecific pollen. The 

maximum reproductive success of generalized plants may rarely be realized 

due to carryover of interspecific pollen (Feinsinger 1978, Waser 1978b, Stucky 

1985). Specialized pollination systems are considered derived from 

generalized pollination systems (Stebbins 1970). 

Despite the appeal of the concept of pollination syndromes, some 

biologists have questioned its relevance (Richards 1986, Herrera 1996, Waser 

et al. 1996). Richards (1986) notes that highly specialized flowers usually 

receive visits from one or a few pollinating species but that accidental 

pollination by other pollinators can occur. Herrera (1996) cited several lines of 

evidence where spatial and temporal variation in pollinator abundance and 

composition limits the ability of plants to specialize on pollinators that 

provide the best pollinator service. Selection pressure on floral traits to better 

fit pollinators may be outweighed by other selection pressures affecting 

reproductive success (Herrera 1996). Generalization may be more common 

than specialization based on surveys of large floras and associated pollinator 

fauna (Waser et al. 1996). Additionally, Waser et al. (1996) argued that since 

pollinators (individuals or colonies) may outlive the flowering period of their 

preferred species, they should visit more than one flowering species. The 

level of specificity of any plant's pollination system is dependent on the 

taxonomic level (order, family, genus, or species) that pollinators are 

examined (Waser et al. 1996) and time of year that a species flowers (Richards 
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1986). Petterson (1991) showed that Silene vulgar is, whose flowers fit the 

syndrome for moth pollination, is visited by over 26 species of moths. 

Johnson and Steiner's (2000) recent review led them to conclude that plants 

exhibit a continuum of pollination systems that range from generalized to 

specialized. They argue that pollinators should also be evaluated on a larger 

scale, such as the role pollinators play in population viability of plants, and 

not just in terms of the success of seed production in plants. 

The overall purpose of my thesis was to investigate the reproductive 

biology of sympatric plant species, using a comparative approach with six 

species of closely related morning glories, (Ipomoea, Convolvulaceae). A 

specific goal was to evaluate whether pollination syndromes existed in the 

sympatric morning glories in southeast Georgia. My approach was to 

determine if there were differences in the pollinator fauna that visit the six 

Ipomoea species, and if these differences could be explained by flower color 

and nectar reward offered. The six species I chose have flowering periods that 

overlap extensively, and potentially compete for pollinators. I determined if 

there were any temporal differences in flowering that could facilitate 

pollinator partitioning over time, and thereby reduce pollinator sharing. 

Ipomoea hederacea, I. imperati, I. pandurata, and /. trichocarpa have larger 

blue or white flowers, with a wide corolla throat. The remaining two Ipomoea 

species, /. hederifolia and /. quamodit, have red flowers with a narrow corolla 

throat. Using the pollination syndrome concept, I hypothesized that these first 

four Ipomoea species are pollinated by bees, and the latter two Ipomoea species 
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are pollinated by hummingbirds and butterflies. Pollination syndromes allow 

investigators to make predictions about the floral rewards of flowers as well. 

Flowers typical of bee-pollination generally produce small volumes of 

concentrated nectar. Flowers typical of hummingbird and butterfly- 

pollination produce large volumes of dilute nectar. I hypothesized that the 

four Ipomoea species with larger, blue flowers (/. hederacen, I. iruperati, I. 

pandurnta, and /. trichocnrpa) will produce less nectar with a higher sugar 

concentration relative to the two Ipomoea species with smaller, narrower 

flowers (/. hederifolia and /. quamodit). I compared nectar reward offered, 

stigmatic pollen loads, and the reproductive success (fruit and seed set) of 

each of the six Ipomoea species, and compared groups of Ipomoea pooled by 

pollination syndrome. 

ipomoea provides an ideal model to test for pollination syndromes. 

Despite being closely related, the species differ in flower color and size. Any 

differences in pollinator fauna between the six Ipomoea species are due to 

recent evolutionary events. 



CHAPTER II 

MATERIALS AND METHODS 

Description of the Study Species 

Ipomoea (morning glory) is a diverse genus of 600-700 species that are 

centered in the tropics and warm temperate areas (Austin 1984, Austin and 

Huaman 1996). The Ipomoea species present in southeast Georgia, approximately 

15 species, are annual or perennial, twining or trailing vines (Radford et al. 1968) 

that are self-compatible (Ennos 1981, Stucky 1985, Murcia 1990, Abbott 2000), 

excluding the self-incompatible /. pandurata (Stucky and Beckmann 1982). Most 

species are weedy and occupy frequently disturbed sites such as roadsides, 

fencerows, and the edge of crop fields. Several species occur sympatricaliy. 

Plants bloom from July to first frost and produce flowers that last less than one 

day. Fruits are dehiscent capsules with a maximum of four or six seeds, 

depending on the species. Table 1 lists flower color, flower shape, syndrome, 

maximum number of seeds per fruit, life history, and growth habit for six 

Ipomoea species. 

I focused my research on four Ipomoea species due to their abundance in 

Southeast Georgia from 1998 to 2000: /. hederacea (L.) Jacq., /. hederifolia L., /. 

quamoclit L., and /. trichocarpa Ell (synonym /. cordatotriloba Dennst.). In 2000,1 

also collected data on /. imperati (Vahl) Griseb. and /. pandurata (L.) Mey. 

Taxonomy follows that of Austin and Huaman (1996) due to their separation of 

the native I. coccinea L. from the introduced /. hederifolia L. I have retained the 

name /. trichocarpa for /. cordatotriloba, though, according to Radford et al. (1968). 
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Study Sites 

I conducted most of the field studies in Bulloch County, Georgia. Field 

sites with multiple Ipotnoea species within Bulloch County, Georgia included 

Hunter's Pointe, Hwy 80/25, Hwy 80 East, Hwy 67, Hwy 24, Howard's Lumber, 

and West Side Road (Table 2). I utilized three field sites with one Iponwen species 

each; Tybee Island in Chatham County, Georgia (/. impernti), Youngblood Circle 

in Bulloch County, Georgia , (I. pandurata) and South Carolina Route 3 close to 

the Allendale/Barnwell County line, SC (I. pandurata) (Table 2). Although I chose 

six Ipomoea species for comparison, I did not monitor all six Iponioca species for all 

three years. All sites were not used every year for reasons outside of my control 

(e.g. mowing, herbicide application, etc.). Table 2 lists all study sites, location by 

longitude/latitude, Ipomoea species present, and years sampled. 

Seasonal Flowering Phenology 

I determined the seasonal flowering phenology of four Ipomoea species (/. 

hederacea, I. hederifolia, /. quamoclit, and /. trichocarpa) over a four-month period. 

From August to November 1999,1 made weekly surveys of three sites with 

Ipomoea (Hwy 24, Hwy 67, Hunter's Pointe) by counting all flowers at each site. 

Counting all flowers at a site proved to be time-consuming. In 2000,1 sampled 

plots within Ipomoea sites to hasten flower censusing. I made weekly surveys 

from August to November at four sites with Ipomoea. At these four sites, I 

haphazardly placed 4-7 5m2 plots (Hunter's Pointe-6 plots, Howard's Lumber-5 

plots, Hwy 80 East-7 plots, and Hwy 80/25-4 plots) throughout the site in July as 

flowering began. All flowers in each plot were counted. The number of flowers 

for each Ipomoea species among all plots within a site were totaled and used as a 

measure of phenology at the site. 



Daily Flowering Phenology 

On 25, 26, and 28 September 1999,1 made hourly observations to monitor 

daily flowering phenology. The evening prior to observations, I clipped three to 

five vines of four Ipomoea species (/. hederacea, I. hederifoha, I. qunmoclit, and I. 

trichocarpa). Flowers on clipped vines open similarly to those in the field 

(personal observation). I chose vines that had three to six flower buds that 

would likely open the next morning. I estimated the degree of flower opening 

for a 22 hr period by assigning flowers to the following ranks: 

0 : closed 5:51- 63% expanded 

1 : < 5% expanded 6 : 64 - 75% expanded 

2:6- 24% expanded 7 : 76 - 90% expanded 

3 : 25 - 37% expanded 8 : 91 - 99% expanded 

4 : 38 - 50% expanded 9 : 100% expanded 

I also conducted one-time observations on the daily flower phenology of 

two additional species. I observed all the flowers (approximately 150) of /. 

pnndurata at the Youngblood Circle site on 30 July 1999. I observed a small patch 

of flowers (approximately 100) of /. unpernti at the Tybee Island site on 18 August 

2000. I noted the time when flowers began opening and wilting for I. pnndurata 

and /. imperati on their respective dates. Both days chosen for one-time 

observations on /. imperati and /. pnndurata were typical hot summer days. 

Nectar Biology 

I quantified nectar volume and sugar in six Ipomoea species (I. hederacea, I. 

hederifolia, /. imperati, /. pandurata, I. qunmoclit, and /. trichocarpa) at three sites 

(Hunter's Pointe, Youngblood Circle, Tybee Island) over six days in 2000. 

Shortly after sunrise and just before pollinator foraging, I haphazardly chose 15 
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flowers of each Ipomoea species and assigned to each flower one of three 

pollinator treatments: initial, unvisited, and visited. 

Initial -1 extracted nectar before pollinator foraging began in the Iponiocn 

site between 0630-0800 hrs. Flowers assigned to the initial treatment had no 

nectar removed by pollinators foraging. 

Unvisited -1 prevented pollinators from removing nectar on specific 

flowers by either placing bridal veil or screen mesh enclosures around specific 

flowers. I extracted nectar from the flowers after pollinator foraging had 

subsided in the community, between 1100-1300 hours. 

Visited - The flowers were not manipulated and were available to 

pollinators for servicing. I extracted any available nectar from the flowers after 

pollinator foraging had subsided in the community, between 1100-1300 hours. 

I extracted nectar from the base of the corolla with a 5 gL glass capillary 

tube (micropipette). I measured the fraction of the micropipette that nectar 

occupied to determine microliters of nectar, and then placed nectar onto a 

refractometer to determine sugar concentration in percent sucrose equivalents. 

If nectar was too concentrated or of too small of volume to refract light properly, 

I added a known volume of water to make refraction possible. The original 

sugar concentration was estimated with the following formula: 

volume^ concentration,=volume2X concentration. 

Nectar volumes and sugar concentrations were pooled across sites and 

days within species for a two-way ANOVA on ranks. Additionally, the six 

Ipomoea species were pooled into two groups by their pollination syndrome, bee 

flowers (/. hederacea, I. imperati, I pandarata, I. trichocarpa), and hummingbird and 

butterfly flowers (/. hederifolia, I. quamoclit), hereafter called bird flowers. Nectar 

volumes and sugar concentrations were pooled within their syndromes and 



analyzed by a two-way ANOVA on ranks of nectar volume and sugar 

concentration to determine if there were differences among nectar volume and 

concentration among these two groups, as a pollination syndrome would 

predict. 

Pollination Biology 

I studied the pollinators of six Ipomoea species at eight sites (Brannen 

Street, Howard's Lumber, Hwy 24, Hwy 67, Hwy 80 East, Hwy 80/25, Hunter's 

Pointe, Railroad) over a three-year period (1998-2000). I was specifically 

interested in which pollinators visit the six Ipomoea species to see if the different 

pollinator types specialize on a different colored Ipomoea species. In other words, 

is floral selection random with respect to the Ipomoea species? To statistically 

compare the observed to the expected visitation, I performed weekly counts of 

the flowers available to pollinators where pollinator data was collected to obtain 

the relative abundance of flowers of each Ipomoea species present. 

In 1998 I collected pollinator data from a single site, Hwy 24. I observed 

individual pollinators foraging in the community. I noted the type pollinator 

(bumblebee, sulphur butterfly, etc.) and the species of the first Ipomoea flower 

visited. Using only one flower per pollinator to test for preferences reduces the 

non-independence of samples (using multiple flower visits by any one 

pollinator). Later, I compared the number of flowers that pollinators visited to 

the number of flowers available. In 1999,1 collected pollinator data at six sites 

(Brannen Street, Howard's Lumber, Hwy 24, Hwy 67, Hunter's Pointe, Railroad) 

from August to November. I used the same methodology as in 1998. In 2000,1 

collected pollinator data weekly at four sites (Howard's Lumber, Hwy 80 East, 

Hwy 80/25, Hunter's Pointe) from August to November. I compared the 



frequency of flower visits of pollinators to the six Ipomoen species and then 

compared the pollinators to groups of Ipomoen pooled by flower color. 

Stigmatic Pollen Load 

I estimated the importance of pollinators as pollen carriers by quantifying 

pollen deposition in 2000. I quantified the amount of pollen on the stigma, or 

stigmatic pollen load, for six Ipomoen species (/. hederncen, I. hedenfohn, I. impernti, I. 

pnndurntn, I. qunmoclit, and /. trichocnrpn) at five sites (Hwy 80 East, Howard's 

Lumber, Hunter's Pointe, Youngblood Circle, Tybee Island). I used three 

treatments to determine the amount of pollen on stigmas before and after 

anthesis, and the importance of pollinators for pollen import. I haphazardly 

chose 15 flowers from each Ipomoen species present shortly after sunrise (see next 

paragraph for methods specific for /. pnndurntn). I haphazardly assigned to each 

flower one of the three pollinator treatments. 

Initial -1 removed pistils before pollinator foraging began in the Ipomoen 

community between 0630-0800 hrs. Flowers assigned to the initial treatment had 

no pollen on their stigmas due to pollinators, and any pollen present was from 

autogamy. 

Unvisited -1 prevented pollinators from removing or depositing pollen 

on specific flowers by either placing bridal veil or screen mesh enclosures around 

specific flowers. I removed the pistils from the flowers after pollinator foraging 

had subsided in the community. Autogamy was still possible under this 

treatment. 

Visited - The flowers were not manipulated and were available to 

pollinators for servicing. I removed the pistils from the flowers after pollinator 

activity had subsided in the community. The flowers assigned to the after 
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pollinators treatment would have pollen on their stigma due to autogamy and 

pollinator deposition. 

Ipomoea pandurata has a style length that varies considerably within the 

species relative to the other Ipomoea species studied. Style length is known to 

effect stigmatic pollen load (Wolfe and Barrett 1989, Murcia 1990). At the 

Youngblood Circle site on 14 and 22 August 2000,1 grouped 64 flowers of I. 

pandurata into one of four groups based on style length relative to stamen 

length: long, moderate, short, and reduced (Figure 1). Shortly after sunrise and 

before pollinator movement began at the site, I haphazardly assigned 3-7 

flowers of each style length group present to each of the three pollinator 

treatments: initial, unvisited, and visited. 

For all flowers assigned treatments, I placed stigmas individually in a 

small plastic vial and transported the vials back to the lab. In the lab, I placed a 

small cube (2x2x3 mm) of fuchsin-glycerine gel onto a microscope slide, melted 

the gel with a lighter, and rubbed the stigma onto the melted fuchsin-glycerine 

gel until all the pollen was removed from the stigma (Wolfe and Barrett 1989). I 

then placed a cover slip onto the gel and allowed pollen to stain for 24 hrs. I 

counted pollen loads under 20-30X magnification. 

I calculated mean stigmatic pollen loads within each treatment for each 

species and within style-length groups for I. pandurata. I pooled species 

(excluding I. pandurata due to variable style length) into two groups by 

syndrome, bee flowers (/. hederacea, I. imperati, I. trichocarpa) and bird flowers (/. 

hederifolia, 1. quamoclit) and calculated mean stigmatic pollen loads within each 

treatment for each syndrome. 
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Reproductive Success in Natural Ipomoea Communities 

I measured percent fruit set and percent seed set of four Ipomocu species (/. 

hederacen, I. hederifolin, I. quamoclit, and I. tnchocarpa) over two years (1999 and 

2000). I tagged a total of 350 flowers on eight sampling days at seven sites in 

1999 and 2000. Fruits were collected 4-6 weeks after flowers were tagged. Fruit 

set was defined as the percentage of flowers that develop a fruit. Seed set was 

the percentage of ovules that matured into seeds. I analyzed fruit set and seed 

set among species and year with a two-way ANOVA. Additionally, I grouped 

the four Ipomoea species into two groups by syndrome, bee flowers (/. hederacea, 

I. trichocarpa) and bird flowers (I. hederifolin, /. quamoclit), and analyzed fruit and 

seed set between syndrome and year with a two-way ANOVA. Ipomoea imperati 

and I. pandurata were not included in the analyses for reproductive success 

because fruit and seed set data was not collected in 1999. In 2000,1 collected 

mature fruits of /. imperati and /. pandurata, to calculate seed set. 



CHAPTER III 

RESULTS 

Seasonal Flowering Phenology 

Ipomoea began flowering in late July in 1999 and 2000. Seasonal 

phenologies were similar among species and years in 1999 and 2000. In 1999, the 

three Ipomoea species surveyed (/. hederifolia, I. quamoclit, and I. trkhocarpa) had 

peak flowering, defined as the day that had the largest percentage of total 

flowers surveyed for the season, within a ten-day period, between 4 and 14 

October (Julian dates 277-287, Figure 2) among the three sites (Hwy 67, Hwy 24, 

Hunter's Pointe). In 2000, the four Ipomoea surveyed (I. hederacea, /. hederifolia, I. 

quamoclit, and I. trkhocarpa) exhibited a similar seasonal phenology. Peak 

flowering of each of the four Ipomoea species occurred over a 32-day period 

between 24 August and 26 September (Julian dates 236-269, Figure 2) among the 

two sites (Hwy 80 East, Hunter's Pointe). Pooling the phenology of the two 

sites, /. hederacea had the earliest peak bloom on 24 August (Julian date 236). The 

phenology of I. hederifolia was much longer and had no distinct peak. The 

remaining two species, I. quamoclit and I. trkhocarpa had synchronous peak 

blooms around 26 September (Julian date 269). 

Daily Flowering Phenology 

Ipomoea hederacea, I. hederifolia, I. quamoclit, and I. trkhocarpa exhibited 

similar daily phenologies, differing mostly in the time the corolla begins to 

expand in the morning (Figure 3). Peak corolla expansion and corolla wilting 

were highly synchronous among the four species (Figure 3). Byl200 hrs, the 

flowers of all four species had begun to wilt. By sunset (1820 hrs), I. hederacea, I. 
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quamoclit, and /. trichocarpa flowers had fully closed, and /. hederifolia flowers were 

more than 75% closed. Ipomoen hederifolia did not fully close until 2300 hrs. I 

made observations on 18 August 2000 at 0630 hrs for phenology of I. imperati at 

Tybee Island beach. At 0630 hrs, approximately 40 minutes after daybreak, most 

of the approximately 100 flowers of /. imperati were untwisted but not yet open. 

By 0800 hrs, most flowers were fully expanded well after daybreak. Most I. 

imperati flowers were closed by 1300 hrs. On 30 July 1999,1 made observations 

on /. pandurata at Youngblood Circle. At 0400 hrs, one hour and 20 minutes 

before daybreak, approximately half of the 150 flowers were fully expanded. At 

daybreak (0540 hrs), nearly all of the flowers were fully expanded. Most flowers 

closed between 1200 and 1300 hrs. For all six Ipomoea species studied, the anthers 

dehisced at the start of anthesis (personal observation). 

Nectar Biology 

All six Ipomoea examined produced nectar as a reward for pollinators. 

Nectar volume - There was a significant species-treatment effect on nectar 

volume (Scheirer-Roy-Hare extension of the Kruskal-Wallis test, hereafter called 

a two-way ANOVA of ranks; Hint=20.6, df=10, P<0.05; Table 3). ipomoea imperati, 

/. pandurata, and I. quamoclit contain the largest nectar volumes in flowers 

excluded from pollinators at the end of anthesis (unvisited). Ipomoea hederacea, 1. 

hederifolia, and /. trichocarpa have the largest nectar volumes in flowers at the 

beginning of anthesis before pollinators begin foraging, usually between 0630- 

0800 hrs. Irrespective of flower treatments, there were differences in nectar 

production between the species (H =39.1, df=5, PcO.OOl; Table 3). ipomoea 

hederifolia, I. quamoclit, and /. pandurata produced more nectar than I. hederacea, I. 

imperati, and I. trichocarpa (Table 4). Irrespective of species, flower treatments did 

effect nectar volume (Htrt=20.2, df=2, P>0.50; Table 3). Flowers available to 



17 

effect nectar volume (Htrt=20.2, df=2/ P>0.50; Table 3). Flowers available to 

pollinators (visited) contained the least amount of nectar. Table 4 lists mean 

nectar volumes for each Ipomoea species-flower treatment. 

There was no significant syndrome-treatment interaction on nectar 

volume (Hj^l.8, df=2, PcO.OOl; Table 3). Bird flowers have slightly less nectar in 

bagged (unvisited) flowers compared to open (visited) flowers, whereas bee 

flowers contained significantly more nectar in unvisited flowers (Figure 4). 

There were significant differences between syndromes (Fisvn=23.4/ df=l/ P<0.001), 

irrespective of flower treatments, for nectar volume (Table 3). Bird flowers 

produced significantly more nectar (Figure 4) than bee flowers. Flower 

treatment did have a significant effect on nectar volume (Htrt=65.2, df=l, 

PcO.OOl), with bagged flowers generally having larger volumes of nectar 

exclusive of species. 

Sugar concentration - There was a significant species-treatment 

interaction effect on sugar concentration (two-way ANOVA of ranks, IT, nt=86.2, 

df=5, PcO.OOl; Table 3). Ipomoea hederifolia sugar concentrations are nearly equal 

in all three flower treatments (Table 5). Ipomoea imperati had high sugar 

concentrations before pollinator foraging began (initial) as well as in flowers 

excluded from pollinators at the end of anthesis (unvisited), with lowest sugar 

concentrations in flowers available to pollinators at the end of anthesis (visited). 

Ipomoea hederacea, I. pandit rat a, I. cjuamoclit, and /. trichocarpa had the highest sugar 

concentrations in open flowers available to pollinators (visited). 

Flower treatment had a significant effect (F4trt=27.1, df=l, PcO.OOl) on 

nectar sugar concentration (Table 3). Flowers excluded from pollinators 

(unvisited) had the highest sugar concentrations in four of the six Ipomoea species. 

Irrespective of the flower treatments, there were differences in sugar 
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concentration (Hspp=22.9, df=5, P<0.001; Table 3). Nectar concentrations vary 

from 47.3-5.7% sucrose equivalents (Table 5). 

Pooling the six Ipomoea species into their syndromes (bee vs. bird), there 

was a significant two-way interaction between syndrome and treatments 

(1-1^=12.5, df=2, PcO.Ol, Table 3). This interaction was due to the high nectar 

sugar concentration in flowers of I. hederifolia visited by pollinators (Table 5). The 

other five species show reduced nectar sugar concentration in flowers visited by 

pollinators (visited) relative to flowers excluded from pollinators (unvisited). 

Pollination Biology 

A total of twelve pollinator species was observed visiting the six Ipomoea 

species over a three-year period (Table 6). Using pooled data, bumblebees 

preferred the blue-flowered /. hederacea (50 of 191 visits) and I. trichocarpa (125 of 

191 visits). Together, 92% bumblebee visits (175/191) were to the two blue- 

flowered Ipomoea species. Solitary bees preferred the white-flowered I. impemti 

(39 of 68 visits) and /. pandurata (26 of 68 visits). Together, 96% solitary bee visits 

(65/68) were to the two white-flowered Ipomoea species. Sulphurs preferred the 

red flowered I. hederifolia (66 of 255 visits) and /. quamoclit (162 of 255 visits). 

Together, 89% visits (228/255) were to the two red-flowered Ipomoea species. 

The other pollinator taxa (fritillary, hummingbirds, skippers, swallowtails) 

were much less common and rarely serviced Ipomoea flowers. 

Grouping the twelve pollinator species into seven taxa (bumblebee, 

solitary bee, fritillary, skipper, sulphur, swallowtail, and hummingbird), six of the 

seven pollinator taxa did not forage randomly for flowers; pollinators have 

preferences for specific flower types (Table 7). Pooling the six Ipomoea species 

into three groups based on flower color: blues (I. hederacea, I. trichocarpa), whites 

(I. imperati, I. pandurata), and reds (/. hederifolia, I. quamoclit), all seven pollinator 
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taxa foraged differently from random (Table 8). Clear preferences for one 

flower color group were apparent for all pollinators excluding skippers. 

Bumblebees and swallowtails preferred blue flowers (I. hederncea, I. trichocnrpa); 

fritillaries, sulphurs, and hummingbirds preferred red flowers (/. hederifolin. I. 

quamoclit); and solitary bees preferred the white flowers (/. impernti, I. panditratn). 

Skippers preferred both blue (I. trichocnrpa) and white flowers (I. pamiurata). 

Figure 5 shows the proportion of visits to tpomoea flowers by bumblebees, 

solitary bees, skippers, swallowtails, gulf fritillaries, sulphurs, and 

hummingbirds, respectively. 

Stigmatic Pollen Load 

Pollinator visits increased the stigmatic pollen load in two of the five 

tpomoea species, thus, there was a significant species-treatment interaction effect 

on stigmatic pollen load (two-way ANOVA of ranks, Hlnt=22.0, df=8, P<0 01; 

Table 9). tpomoea impernti and I. trichocnrpa had substantially larger stigmatic 

pollen loads in visited flowers, 240 ± 18 and 181 ± 14 (mean pollen grains ± 1 SE), 

respectively, compared to unvisited flowers, 138 ± 18 and 71± 13, respectively 

(Table 10). The other three tpomoea species (I. hederncea, I. hederifolin, I. quamoclit) 

had marginally increased stigmatic pollen loads due to pollen import (Table 10). 

There was little difference in stigmatic pollen loads between initial and unvisited 

flower treatments (Tables 10-12). Many tpomoea flowers had pollen present on 

the stigma before pollinators began foraging. 

Pooling the tpomoea species into two groups by syndrome, excluding /. 

pandurata (see next paragraph), bird flowers had stigmatic pollen loads that were 

approximately one-third larger in visited flowers than unvisited flowers (Table 

11). Bee flowers had stigmatic pollen loads that were approximately four times 

larger in visited flowers than unvisited flowers. 



20 

Ipomoea panduratn was analyzed separately for stigmatic pollen load (Table 

12) because style length varies within the species (Figure 1). Differences in style 

length did affect the stigmatic pollen load (Fstyle=105.9, df=3,52, P<0.0001, Table 9). 

Pollination treatment (initial, unvisited, visited) also affected stigmatic pollen load 

(Ftrt=21.47, df=2,52, P<0.0001). Stigmas of long-styled flowers had the highest 

stigmatic pollen loads, both from autogamy (unvisited) and in flowers open to 

pollination (visited). However, there was a net loss of pollen when visited by 

pollinators (Table 12). The other three style length groups (moderate, short, 

reduced) received a net gain of pollen when visited by pollinators. This caused a 

significant interaction between style length and pollination treatment (Fint=3.06, 

df=6,52, PcO.Ol). Stigmas of reduced-style flowers are isolated below the hairy 

bases of stamens and received almost no pollen from autogamy or pollination. 

Stigmas of moderate and short-styled flowers received a net gain of pollen when 

visited by pollinators compared to autogamy. 

Reproductive Success in Natural Ipomoea Communities 

Fruit set - There were significant differences for fruit set (Fsp=5.59, 

df=3,344, P<0.0009) among the four species (Table 13). Year added a marginally 

significant effect on fruit set (Fyr=3.78, df=l, 344, P<0.053). In 1999, 80% of I. 

quamoclit flowers produced fruit. Fruit set was much lower in the other three 

species. Ipomoea hederacea, /. hederifolia, and I. trichocarpa had fruit sets of 42%, 35%, 

and 25%, respectively (Table 14). In 2000, /. hederacea had a fruit set of 47%, 

similar to 1999. The other three Ipomoea species had fruit sets nearly equal to each 

other, but different from their fruit sets from the previous year. Ipomoea 

hederifolia, /. quamoclit, and /. trichocarpa had fruit sets of 65°/), 63%, and 65%, 

respectively (Table 14). From 1999 to 2000,1, quamoclit had a reduction in fruit 

set, /. hederacea had almost no change, and /. hederifolia and I. trichocarpa had 



substantial gains in fruit set. Thus, there was a significant two-way interaction 

between species and year for fruit set (Fint=4.08, df=3/344, P<0.0073) among the 

four Ipomoen species (Table 13). 

Pooling the four Ipomoen species into two groups based on their 

syndromes (bee vs. bird flowers), there was a significant difference between the 

two groups for fruit set (Fsyn=4.70, df=l, 344, P<0.03; Table 13). Year also had a 

significant effect on fruit set (Fyr=4.38, df=l,344, P<0.04). More flowers produced 

fruits in 2000 Fyr=4.38, df=l, 344, P<0.04). The interaction between syndrome and 

year was not significant (Fint=0.67, df=l,344, P<0.41). 

Pooling 1999 and 2000, /. hedemcen, I. hederifoha, I. cjunmoclit, and /. 

trichocarpn had fruit sets of 44%, 50%, 72%, and 45%, respectively. Pooling species 

by syndrome (bee and bird) and year, bee flowers had mean fruit sets of 45%, 

whereas bird flowers had mean fruit sets of 61%. 

Ipomoen impernti and /. pnndnrntn were surveyed for fruit set in 2000. Fruit 

set was high for /. impernti at 93%. Fruit set could not be determined for I. 

pnndnrntn. Only two /. pnndnrntn populations surveyed yielded fruiting plants, 

and much less than 1% of flowers probably produced fruit. 

Seed set - Of the four Ipomoen species examined for reproductive success, 

three species can have a maximum number of four seeds per fruit. The 

remaining species, '. hedemcen, can produce a maximum of six seeds per fruit. 

There were significant differences for seed set (Fspp=3.84, df=3,180, P<0.01) 

among the four Ipomoen species (Table 13). Ipomoen hedemcen and I. hederifolin had 

higher seed sets, and I. quamoclit and I. trichocarpa had lower seed sets in 2000, 

relative to 1999. The increases and decreases in seed sets between the four 

species result in no net change in seed set between years (Fvr=0.14, df=l,180, 

P<0.91). There were no species-year interaction (Fint=0.23, df=3,180, P<0.88) 
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effects on seed set either. Ipomoen hederncen had lower seed sets compared to the 

other three species. In 1999, the percentage of fruits with full seed sets in I. 

hederacea, I. hederifolia, I. quamoclit, and /. trichocarpn were 24%, 33%, 40%, and 0% 

(only one of four tagged flowers matured to a three-seeded fruit), respectively- 

In 2000, the percentage of fruits with full seed sets in /. hederacea, I. hederifolia, I. 

quamoclit, and /. trichocarpa were 8%, 62%, 42%, and 23%, respectively. 

Pooling the four Ipomoea species into two groups by syndrome, bee 

flowers (/. hederacea, I. trichocarpa) and bird flowers (/. hederifolia, I. quamoclit), 

there was a significant difference (Table 13) between the two groups for seed set 

(Fpt=10.50, df=l, 180, P<0.001). Bird flowers had larger seed sets in both years. 

Neither year (Fyr=0.80, df=l,180, P<0.37) nor syndrome-year interaction 

(Fint=0.80, df=1.180, P<0.37) had a significant effect on seed set (Table 13). 

Pooling syndromes among years, bee flowers had mean seed sets of 63%, 

whereas bird flowers had mean seed sets of 75%. 

Ipomoea imperati and /. pandurata were surveyed for seed set in 2000. Seed 

set in /. imperati was similar to other bee flowers at 57%, and only 14% of fruits 

have a full seed set. Ipomoea pandurata had seed set similar to bird flowers at 76%, 

and 33% of fruits have a full seed set. 



CHAPTER IV 

DISCUSSION 

In general, there was a high degree of concordance between theory and 

reality for the Ipomoea model examined. There was strong agreement between 

nectar constitution, flower color, and pollinator fauna as predicted by 

pollination syndromes. Each of the six Ipomoea species was visited 

predominately by the predicted pollinator type. Numerous studies report that 

hummingbirds and butterflies forage on species whose flowers have nectar 

with less concentrated sugar (Baker 1975, Bolten and Feinsinger 1978, Corbet 

and Wilmer 1981, Pyke and Waser 1981, Feinsinger et al. 1986, Bernardello et 

al. 2000), compared to bee-pollinated species with less nectar but more 

concentrated sugar (Pedersen 1953, Gut et al. 1977, Brink and deWet 1980, 

Durkee et al. 1981, Southwick and Southwick 1983, Cresswell and Robertson 

1994). In general, as pollinator body mass increases, nectar production rates 

increase and sugar concentrations decrease (Pyke 1981). These consistent 

differences in nectar preferences of pollinators could be argued as evidence 

supporting the role of nectar in shaping pollination syndromes. 

There is some disagreement in the scientific literature, however, 

between rewards and pollinators in light of pollination syndromes. There are 

studies that reveal that hummingbirds prefer foraging on flowers with much 

higher nectar concentrations. Gut et al. (1977) never observed hummingbirds 

visit the 'typical' hummingbird flowers of Ipomopsis nggregnta and Aqiiih'gia 



formosa, both of which have nectar concentrations of 25% sucrose at their 

study site. Hummingbirds instead heavily visited on two species of Cirsium 

that had nectar concentrations of 54 and 59% sucrose. Watt et al. (1974) 

showed that the flowers visited by hummingbirds had nectars with the 

highest mean sugar concentration at 36.9% sucrose equivalents. Flowers 

visited by bees had nectars with a mean sugar concentration of 30.5% sucrose 

equivalents. Selection pressure is theorized to maximize a pollinator's rate of 

reward intake (Schoener 1971, Charnov 1976, Fyke et al. 1977). Consequently, 

pollinators should visit plants or species that offer them the most energetic 

rewards in one visit, with minimal flight time to the next flower. Plants 

should be under a selection pressure to offer highly energetic rewards, via 

large nectar volumes or highly concentrated nectars, yet not to the extent that 

a pollinator becomes satiated or remains at the plant and does not disseminate 

pollen. 

Some Ipomoea species are known to be self-compatible and apparently 

produce fruit from selfing consistently (Ennos 1981, Murcia 1990, Abbott 

2000). If plants are self-compatible, then one question that arises is why 

produce large flowers or offer large rewards? Some Ipomoea can self-pollinate 

in the absence of pollinators, such as /. hederacea, which has its stigma fixed 

level with the anthers (Ennos 1981). Other Ipomoea species, such as I. purpurea 

and I. trichocarpa, have stigmas exerted beyond the anthers, thereby reducing 

opportunities for selfing, can still set fruits from self pollen in the absence of 

pollinators due to wind or gravity dispersal of pollen. Pollinator abundance 
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likely varies over time for Ipomoea. The flowers may provide Ipomocti ample 

outcrossing opportunities in years when pollinators are abundant. 

The outcrossing rates of the morning glories I studied are not known, 

save for /. hederncea, which has been shown to have a low outcrossing rate of 4- 

7% (Ennos 1981). My data indirectly support low outcrossing in I. hederncea, 

for there was little difference in stigmatic pollen loads of visited and unvisited 

flowers (Table 10). In southeast Georgia, Ipomoea trichocarpa has its stigma 

exerted above the anthers in its flowers, unlike /. hederncea, and most likely 

need pollinators for sufficient pollination. Stigmatic pollen loads in I. 

trichocarpa were five times higher in flowers available to pollinators, compared 

to unvisited flowers excluded from pollinators. Ipomoea trichocarpa, 

predominately visited by bumblebees, is likely to be the most outcrossed 

Ipomoea. Bees do groom themselves periodically to remove pollen on their 

body, and some pollen most likely never reaches a conspecific stigma. But 

high fidelity and their hairy bodies make bumblebees quite adept at carrying 

pollen. 

The styles of the two bird-pollinated species, I. hederifolia and /. 

quamoclit, elongate during anthesis (personal observation). The stigmas pass 

by the anthers, which have already dehisced their pollen. Ipomoea hederifolia 

and /. quamoclit appear to receive autogamous pollen in the morning. If so, the 

lower stigmatic pollen loads in these two species could be explained by higher 

selfing rates. The Ipomoea flowers visited by bees produce more pollen than 

flowers visited by hummingbirds and butterflies, which suggests that the bird 
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flowers are utilizing autogamous pollen for pollination more than the bee 

flowers. The ability of /. hederacen, I. Iiedenfoha, I. cjuamoclit, and /. trichoairpn to 

produce fruits in the absence of pollinators, as well as anther dehiscence 

occurring before or at anthesis, indicates that autogamy probably plays a part 

in their reproductive success of all four species. Ipomoea pnndnrnta is known to 

be self-incompatible and rarely produces fruit (Stucky and Beckmann 1982), 

and therefore, requires outcrossing in the strictest sense for reproduction. 

Both I. imperati and /. pandumta produce copious amounts of pollen, which 

may be linked with their predominate pollinator, pollen-collecting solitary 

bees. 

Pollinators foraging on multiple plant species could cause plants to 

compete with each other for pollination service (Waser 1978a, Rathcke 1983, 

Campbell et al. 1997). Interspecific pollen movement is thought to be a 

stronger selective force than competition for pollinators, though, in 

determining fitness (Waser 1982, Rathcke 1983). Pollen movement between 

species reduces reproductive success by way of unfertilized ovules (Feinsinger 

1978, Waser 1978b). Plants should, therefore, be under selection pressure to 

maximize reproductive success by promoting pollinator faithfulness to 

improve the dissemination and receipt of pollen. Consequently, pollination 

syndromes are a way of explaining why flowers are of certain shape, color, 

and reward to entice specific pollinating agents to be faithful to its species. 

Sympatric plants with overlapping flowering periods can push their 

flowering phenologies apart from each other to reduce competition for 
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pollinators or to minimize interspecific pollen transfer (Stone et al. 1998). This 

is probably rarely an option though given the short time period pollinators 

may be available (Herrera 1996, Waser et al. 1996). In populations where the 

closely related Ipomoea purpurea and /. hederacea are sympatric, two previous 

studies both found that the more attractive I. purpurea (Stucky 1984) had 

higher outcrossing rates (Ennos 1981, Stucky 1985). Ennos (1981) concluded 

that interspecific pollen flow from /. purpurea to /. hederacea may have selected 

to fix stigma-anther separation to zero in I. hederacea, so that autogamous 

pollen, which lands on the stigma before anthesis begins, could block /. 

purpurea pollen from clogging the stigma on /. hederacea flowers and prevent 

the subsequent loss of reproductive success (Guries 1978). Fruit and seed sets 

were higher in autogamous pollination of I. hederacea compared to 

autogamous and outcross pollination (Stucky 1985). Ipomoea hederacea seems 

adapted for selfing, which would allow it to coexist sympatrically with species 

with similar flowers. 

The lack of substantial differences in flowering phenologies among 

Ipomoea gives merit to pollination syndromes as a way of segregating 

pollinators in sympatric communities with multiple species in bloom. The 

two white-flower Ipomoea species, I. imperati and I. pandurata, begin blooming 

two months earlier than the other four Ipomoea species examined (personal 

observation). These two species are also predominately visited by solitary 

bees, unlike the other four Ipomoea species, and may be confined to an earlier 

flowering phenology when solitary bees are available. The other four Ipomoea 
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species, /. hederacea, I. hedehfolin, I. cjiinmodit, and /. trichocnrpa, have strongly 

overlapping flowering phenologies, both diurnally and seasonally. Although 

their pollinators are available earlier in the season, other factors may constrain 

when the Ipomoea species can grow or flower (daylight length, competition, 

etc). 

Pollination syndromes are generally thought to be the products of 

coevolution between pollinators and plants (Stebbins 1970, Faegri and van der 

Fiji 1979, Crepet 1983). Changes in one species instigate a reciprocal change in 

the other species so that the benefit each receives (plant's reproductive success, 

the pollinator's foraging efficiency) is maintained. Species with pollination 

syndromes in this light are, accordingly, evolutionarily more advanced within 

a phylogenetic group than those that utilize many different pollinators and 

show no adaptation to any one pollinator (Stebbins 1970, Faegri and van der 

Pijl 1979, Crepet 1983). This seems intuitive when specialized pollinators are 

most efficient in terms of pollen movement and subsequent reproductive 

success is maximized. Some authors have argued, though, that selection 

pressures for plants to specialize on one pollinator species can be confounded 

by other selection pressures and thus retard or negate the ability of 

coevolution (Herrera 1996, Waser et al. 1996). If the plants and the pollinators 

are not in complete sympatry, then there should exist a set of individuals of 

both plants and pollinators that do not interact with each other. Waser et al. 

(1996) points out that specialization is often defined above the species level. 

Solitary bees, which are often thought of as specialized pollinators, are so only 
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when foraging for pollen. Solitary bees show less specialization in flower 

visitation when foraging for nectar, and they can effectively pollinate those 

flowers for which they are not specialized. Waser et al. (1996) argues that 

specialization should only occur when one pollinator is consistently the most 

efficient pollinator or is the most abundant. A counterpoint they add, though, 

is there is usually heterogeneity in pollinator diversity, efficiency, or 

composition that thwarts the ability of a plant to specialize on one pollinator 

(Schemske and Horvitz 1984, Wolfe and Barrett 1989, Fishbein and Venable 

1996, Herrera 1996). 

Richards (1986) points out that most of the known pollination 

syndromes have exceptions. He gives an example where bees can come in 

contact with the much exerted stamens and pistils of some 'bird' flowers and 

cause pollination, though the nectar is far removed from the bee's reach. 

Richards also acknowledges that increasing complexity in flower shape 

reduces the number and kinds of pollinators that can visit the flower. 

Zygomorphic flowers are, therefore, more likely to be visited by specialized 

pollinators (Wolfe and Krstolilc 1999). Another exception of pollination 

syndromes was the discovery that bees see red flowers (Chittka and Waser 

1997). The red-flowered Asdepias tuberosa (butterfly weed) is in fact most 

effectively pollinated by Bombus and Apis bees (Fishbein and Venable 1996), 

which defies the normal color preferences for bees. Johnson and Steiner (2000) 

make two important statements in their review of pollination studies. First, 

plants occupy all points between specialization and generalization in their 
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pollination systems. This implies the dichotomous labeling of a plant's 

pollination system as either generalized or specialized is not appropriate. 

Secondly, there is much we do not know in way of pollination systems in 

species-rich developing countries of the world. The claims made that most 

pollination systems are generalized or specialized seem premature. 

In conclusion, the six Ipomoea species I studied have simple flower 

shapes, are self-compatible, and are in fact visited by more than one pollinator 

species/type. However, there are definite associations between pollinators 

and floral displays that fit the classic pollination syndromes. Pollinators do 

not forage randomly and are apparently cueing in on rewards, flower color, or 

shape when choosing flowers to visit. The importance of these separate floral 

traits in contributing to the overall floral display should be determined. This 

could be done through the use of color mutants, nectar manipulation, and 

alteration of flower size and shape and observing any changes in pollinator 

composition and visitation frequency. 
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Table 3. Results of a two-way nonparametric test (Scheirer-Roy-Hare 

extension of the Kruskal-Wallis test) for the effect of species, treatment, and 

species-treatment interaction on nectar volume and sugar concentration for six 

Ipotnoea species. Flower treatments included nectar volume and sugar 

concentrations in flowers at the beginning of anthesis (initial), as well as after 

anthesis in flowers excluded from pollinators (unvisited), and flowers 

available to pollinators (visited). 

nectar source of variation df H P 

volume species 5 39.1 *** 

treatment 2 20.2 *** 

species X treatment 10 20.6 * 

species pooled-bee vs. bird syndrome 1 24.1 *** 

treatment 2 19.4 *** 

syndrome X treatment 2 1.8 NS 

% sugar species 5 22.9 *** 

treatment 2 10.8 ** 

species X treatment 10 19.9 * 

species pooled-bee vs. bird syndrome 1 21.4 *** 

treatment 2 17.0 *** 

syndrome X treatment 2 12.5 ** 

* P<0.05; ** PcO.Ol; *** P<0.001; NS P>0.05 
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Table 4. Nectar volume (mean microliters ± 1 SE) of six Iponiocn species. 

Sample size for each mean ranged from 5-25 flowers. Nectar was extracted 

before pollinator foraging began in the community (initial), as well as flowers 

excluded from pollinators (unvisited) and flowers open to pollinators (visited). 

Ipomoea 
species 

flower 
color 

NECTAR VOLUME 

initial unvisited visited 

hederacea blue 0.80 ± 0.24 0.3610.15 0.0210.02 

hederifolia red 2.60 ±0.44 1.4510.59 1.5810.48 

imperati white 0.34 ± 0.08 0.4610.18 0.2810.07 

pandurata white 0.42 ± 0.07 1.3510.21 0.5010.14 

quamoclit red 0.8010.13 1.4410.27 0.3310.19 

trichocarpa blue 0.52 ±0.15 0.3010.13 0.0210.01 
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Table 5. Nectar sugar concentration (mean % sucrose equivalents ± 1 SE) of six 

Ipornoea species. Sample size for each mean ranged from 2-21 flowers, except 

for three values without standard errors, for which only one flower each had a 

determinable sugar concentration. The three flower treatments are as in Table 

legend 4. 

Ipotnoea flower SUGAR CONCENTRATION 
species color initial unvisited visited 

hederacea blue 13.8 ±2.5 27.3 ± 1.9 13.0 

hederifolia red 29.8 ±0.5 29.7 ±9.2 32.7 ±0.5 

imperati white 19.5 ±3.4 16.0 5.7 ± 1.5 

pandurata white 14.0 ±1.8 47.3 ± 7.6 14.9 ± 3.9 

quamoclit red 22.7 ± 1.3 34.4 ±5.0 24.5 ±7.5 

trichocarpa blue 14.7 ±7.2 41.8 ±13.9 8.0 



36 

Table 6. List of pollinator taxa observed visiting Ipomoen among eleven sites 

over a three-year period. Bumblebees, solitary bees, and sulphurs were the 

most common pollinators over three years. 

POLLINATOR TYPE COMMON NAME 

bumblebee 
J-l 
a> Bombus sp. 1 bumblebee 
a. 
o Bombus sp. 2 bumblebee 
c 
<u solitary bee 
E solitary bee sp. 1 
A solitary bee sp. 2 

fritillary 

Dione vnnillne gulf fritillary 

skipper 

a Epnrgyreus dams silver-spotted skipper 
<u Lerema accius clouded skipper 
On 
o 

"O 
Hyleplula phyleus fiery skipper 

a sulphur 
CL> 

Phoebis sennae cloudless sulphur 

swallowtail 

Pterourus glancus eastern tiger swallowtail 

Pterourus palamedes palamedes swallowtail 

hummingbird ruby-throated 

Archilodius colubris hummingbird 

Note: bumblebees are likely Bomlms pennslyvanicus and B. impntiens 
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Table 9. Results of a two-way nonparametric test (Scheirer-Roy-Hare 

extension of the Kruskal-Wallis test) for the effect of species, treatment, and 

interaction on stigmatic pollen load for five Iponioca species (/. hcdcmccn, I. 

hederifolia, /. impemti, I. quamodit, and I. trichocarpa). Treatments included 

collecting stigmas before pollinator forging began in the community (initial), 

as well as after pollinator foraging subsided in the community from flowers 

protected from pollinators (unvisited) and flowers open to pollinators 

(visited). Ipomoea panduratn was analyzed separately due to variable style 

length within the species. Style length, treatment (same as above), and 

interaction were tested with a parametric two-way ANOVA. 

SPL source of variation df H P 

species 4 31.0 *** 

treatment 2 38.1 *** 

species X treatment 8 22.0 ** 

species pooled-bee vs. bird syndrome 1 17.3 *** 

treatment 2 33.7 *** 

syndrome X treatment 2 6.6 * 

df F P 

pandurata style length (L, M, S, R) 3,52 105.9 **** 

treatment 2,52 21.5 **** 

style length X treatment 6,52 3.1 ** 

* P<0.05; ** PcO.Ol; *** P<0.001; **** P<0.00001 
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Table 10. Stigmatic pollen load (mean ± 1 SE) for five Ipomoea species. Sample 

size for each mean ranged from 10-20 flowers. Flower treatments for stigmatic 

pollen load were initial, unvisited, and visited. Net gain of pollen via 

pollination = mean visited - mean unvisited stigmatic pollen load. 

 STIGMATIC POLLEN LOAD  net gain of 
Ipomoea 
species 

flower 
color 

initial unvisited visited pollen via 
pollination 

hederacea blue 30.5 ±5.2 33.3 ± 4.3 40.2 ±5.8 + 6.9 

trichocarpa blue 10.3 ±3.1 11.8 ±3.6 56.6 ±9.6 + 44.8 

quamoclit red 11.6 ±2.3 14.5 ±3.6 15.4 ±2.1 + 0.9 

hederifolia red 11.4 ±2.1 14.7 ±3.2 24.9 ± 3.9 + 10.2 

imperati white 20.3 ±9.0 32.0 ±8.5 216.6 ±28.0 + 184.6 
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Table 11. Stigmatic pollen load (mean ± 1 SE) for Ipomoea pooled by expected 

syndrome (bee vs. hummingbird-butterfly). Sample sizes for each mean 

ranged from 20-40 flowers. Flower treatments for stigmatic pollen load were 

initial, unvisited, and visited (see Table 9 for treatment descriptions). Net gain 

of pollen via pollination = mean visited - mean unvisited stigmatic pollen 

load. 

Ipomoea STIGMATIC POLLEN LOAD net gain of 
species pooled initial unvisited visited pollen via 
by syndrome pollination 

bee 20.3 ± 5.7 25.7 ±5.5 104.5 ±14.5 + 78.8 

bird 11.5 ±2.2 14.6 ±3.4 20.2 ±3.0 + 5.6 
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Table 12. Stigmatic pollen load (mean ± 1 SE) for Iponwea pandnratn. Sample 

size for each mean ranged from 4-7 flowers. Flowers were grouped into one 

of four categories (long, moderate, short, reduced) based on style length 

relative to the stamens (see Figure 1 for explanation). Flower treatments for 

stigmatic pollen loads were initial, unvisited, and visited (see Table 9 for 

treatment descriptions). Net gain of pollen via pollination = mean visited - 

mean unvisited stigmatic pollen load. 

Ipomoea  stigmatic pollen load  net gain of 
pandurata initial unvisited visited pollen via 

style category pollination 

long 229.7±71.4 312.0151.9 203.6121.3 - 108.4 

medium 5.412.3 39.7116.8 155.0122.1 + 115.3 

short 5.313.5 5.01 1.9 56.81 13.8 + 51.8 

reduced 0.010.0 0.110.1 1.010.4 +0.9 
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Table 13. Two-way ANOVA for the effect of species, year, and interaction on 

fruit set and seed set in four Ipomoea species. 

reproductive source of variation 
measure df F P 

% fruit set species 3 5.59 *** 

year 1 3.78 t 

species X year 3 4.08 ** 

error 344 

species pooled-bee vs. bird syndrome 1 4.70 * 

year 1 4.38 X- 

syndrome X year 1 0.67 NS 

error 344 

% seed set species 3 3.84 ** 

year 1 0.01 NS 

species X year 3 0.22 NS 

error 180 

species pooled-bee vs. bird syndrome 1 10.50 *** 

year 1 0.80 NS 

syndrome X year 1 0.80 NS 

error 180 

* P<0.05; ** PcO.Ol; ^ P<0.001; t 0.05<P<0.06; NS P>0.05 
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Table 14. Reproductive success measured via percent fruit set (% of flowers 

that developed fruit, mean ± 1 SE) and percent seed set (% of maximum 

number of seeds possible, mean ± 1 SE) for six Iponioea species. Sample size 

for each mean ranged from 2-60 flowers, except values where no standard 

error are given, for which only one fruit is represented. 

Ipomoea 
species 

flower 
color 

syndrome year % fruit set 
(mean±l SE) 

% seed set 
(mean±l SE) 

hederacea blue bee 
1999 

2000 

41.5 ±7.5 

47.3 ± 6.5 

53.9 ±6.7 

56.4 ± 5.4 

hederifolia red bird 
1999 

2000 

35.1 ±7.9 

65.0 ±6.2 

75.0 ± 16.0 

80.1 ±4.4 

imperati white bee 
1999 

2000 

X 

91.0 ±24.6 

X 

56.6 ± 2.9 

pandurata white bee 
1999 

2000 

X 

« 1% 

X 

76.2 ±5.0 

quamoclit red bird 
1999 

2000 

80.0 ±8.1 

63.3 ± 6.2 

75.0 ± 5.5 

69.7 ±4.5 

trichocarpa blue bee 
1999 

2000 

25.0 

65.0 ±6.2 

75.0 

68.6 ± 4.4 

*Ipomoea 
pooled by 

bee 
1999 

2000 

40.0 ±7.4 

56.5 ±4.6 

55.1 ±8.0 

63.7 ± 3.0 

syndrome 

bird 
1999 

2000 

56.9 ±5.9 

64.2 ±4.4 

75.0 ±4.5 

75.0 ± 3.5 

*Ipomoea 
pooled by 
syndrome 
and years 

bee-pooled across years 44.7 ± 6.0 63.5 ± 5.5 

bird-pooled across years 60.9 ± 5.2 75.0 ± 4.0 

*Note: /. imperati and I. pandurata were excluded from the pooled means because data 

was collected only in 2000. 
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Figure 4. Nectar volume and sugar concentration of Ipomoea nectar by 

syndrome in flowers excluded from pollinators. 
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Figure 6. Stigmatic pollen loads (mean ± 1 SE) of six Ipomoea species pooled by 

flower color. Clear columns represent flowers excluded from pollinators, 

hatched columns represent flowers open to pollinators. Red (I. hedcrifolia and I. 

quamocht), blue (/. hederacea and /. trichocarpa), and white (/. imperati and long- 

styled /. pandurata). 
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APPENDIX A 

Floral Measurements of Six Ipomoea Species 

Measurements of flower traits and results for ANOVA on corolla length and 

width for six Ipomoea species. Flower color, syndrome, mean corolla length and 

width in millimeters (mean ± 1 SE), and coefficient of variation (CV) for corolla 

width and length. Sample size for each mean ranged from 20-90 flowers. CVs 

determined from less than 26 flowers were corrected with Williams correction. 

Means followed by the same letter in a column are not significantly different 

from each other (Tukey-Kramer test). 

Ipomoea 
species 

flower 
color 

syndrome corolla 
length 

corolla 
width 

CV 
length 

CV 
width 

hederacea blue bee 32.8 ± 0.7 c 32.9 ± 1.0 c 10.9 14.8 

hederifolia red bird 32.2 ± 0.3 c 16.3 ±0.3 d 8.4 13.0 

imperata white bee 43.7 ± 1.2 b 63.3 ± 1.6 b 12.3 11.6 

pandurata white bee 61.0 ±0.8 a 74.8 ± 0.9 a 12.1 11.6 

quamoclit red bird 31.6 ± 0.3 c 18.5 ± 0.3 d 6.4 9.3 

trichocarpa blue bee 30.3 ± 1.2 c 30.5 ± 0.9 c 6.8 14.2 

F 331.6 978.3 

df 5,268 5,268 

P <0.0001 <0.0001 
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APPENDIX B 

Floral Measurements of Six Ipomoea Species Pooled by Syndrome 

Measurements of flower traits and results for one-way ANOVA on corolla 

length and width for two groups of six Ipomoea species pooled by syndromes. 

Syndrome, mean corolla length and width in millimeters (mean ± 1 SE), and the 

coefficient of variation (CV) for corolla width and length. Sample size for each 

mean ranged from 59-110 flowers. T-tests results are from bee (all) vs. bird 

syndrome for corolla length and width. 

Ipomoea pooled by syndrome corolla 
length 

corolla 
width 

CV 
length 

CV 
width 

bee(blue) 31.4 ±0.8 31.5 ±0.7 19.3 16.9 

bee (white) 57.9 ±0.9 72.8 ± 0.9 16.8 13.1 

bee (all) 48.6 ±1.2 58.4 ±1.6 31.5 36.7 

bird 32.0 ± 0.2 17.1 ±2.3 7.7 13.2 

t 11.06 19.65 

df 272 272 

P <0.0001 <0.0001 
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APPENDIX C 

Frequency of Floral Herbivory in Ipomoea 

Surveys were made 2-3 times a week from August to October to quantify the 

frequency of damage to Ipomoea flowers by floral herbivores, predominately 

larval Spodoptera sp., a noctuid moth. Mean percent of flowers damaged by floral 

herbivores is a mean of weekly means. Statistics of a two-way ANOVA on 

Ipomoea pooled by syndrome, year, and interaction are given below. The 

syndrome-interaction term is significant because bee flowers saw an increase in 

frequency of floral herbivory damage, while bird flowers saw a decrease in 

frequency of damage. 

Ipomoea 
species 

flower 
color 

syndrome year total# 
flowers 

surveyed 

# flowers 
damaged by 

floral 
herbivores 

mean ± 1 SE 
percent flowers 

damaged by 
floral herbivores 

1999 2493 47 2.2 ± 0.5 
hederacea blue bee 2000 794 23 5.3 ± 2.2 

1999 17,718 94 0.7 ± 0.1 
hederifolia red bird 2000 3065 23 0.5 ± 0.3 

1999 12,439 154 1.4 ± 0.1 
quamoclit red bird 2000 2817 23 0.5 ± 0.4 

1999 6143 197 4.6 ± 0.8 
trichocarpa blue bee 2000 4103 595 10.1 ± 2.0 

F df P 

syndrome 39.5 1,235 **** 

year 2.6 1,235 NS 

interaction 5.9 1,235 * 

* P<0.05, **** PcO.OOOl, NS P>0.05 
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APPENDIX D 

Effect of Floral Herbivory on Fruit and Seed Set 

Flowers damaged by larval noctuid moths, Spodoptcm sp., and adjacent 

undamaged flowers were tagged and fruits collected in subsequent weeks in 

1999. A G-test was used to compare the number of flowers in each treatment for 

each Ipomoea species that developed a fruit (fruit set), as well as the number of 

seeds in a fruit (seed set). The percentage of flowers that developed a fruit, and 

mean number of seeds per fruit are given below. 

FRUIT SET 

Ipomoea % of flowers 
species G P treatment developing fruit 

control 41.5 
hederacea 0.47 NS damage 34.2 

control 35.1 
hederifolia 1.04 NS damage 24.3 

control 80.0 
quamoclit 7.73 <0.01 damage 48.6 

control 25.0 
trichocarpa 1.53 NS damage 0.0 

SEED SET 

Ipomoea mean number of 
species G P treatment seeds/fruit 

control 3.2 
hederacea 2.92 NS damage 2.6 

control 3.0 
hederifolia 3.88 NS damage 3.2 

control 3.0 
quamoclit 15.77 <0.01 damage 0.8 

control 0.8 
trichocarpa 1.53 NS damage 0.0 

NS P>0.05 
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